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Abstract

In this paper we present a Cooperative Spectrum Sensing (CSS) algorithm for Cognitive Radios (CR) based on
IEEE 802.22 Wireless Regional Area Network (WRAN) standard. The core objective is to improve cooperative
sensing efficiency which specifies how fast a decision can be reached in each round of cooperation (iteration)
to sense an appropriate number of channels/bands (i.e. 86 channels of 7MHz bandwidth as per IEEE 802.22)
within a time constraint (channel sensing time). To meet this objective, we have developed CSS algorithm

using unsupervised K-means clustering classification approach. The received energy level of each Secondary
User (SU) is considered as the parameter for determining channel availability. The performance of proposed
algorithm is quantified in terms of detection accuracy, training and classification delay time. Further, the
detection accuracy of our proposed scheme meets the requirement of IEEE 802.22 WRAN with the target
probability of falsealrm as 0.1. All the simulations are carried out using Matlab tool.
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1. Introduction and efficiency. CR should intelligently sense the unused
spectrum bands and learn without interfering with
primary users. The experience gained through learning
makes the CR to optimally reconfigure RF operating
parameters and improve its decision. To perform this,
CR must support the following functionalities [4]:

Spectrum awareness: It involves sensing the avail-
able spectrum bands and monitoring the activities of
primary user with the help of spectrum sensing algo-
rithms. These algorithms are used to identify the spec-
tral activity pattern and estimate the characteristics of
spectrum holes.

Learning: This phase acts as a knowledge base
between spectrum sensing and decision phase. The
gathered knowledge through learning can then be
exploited to improve decision capability of CR.

Decisions and actions: The decision phase helps
to choose appropriate spectrum band according to
spectrum characteristics and user information. The
actions are performed by effectively utilizing spectrum
holes. The knowledge gathered during the learning
phase acts as input to this module. The reconfiguration

A Cognitive Radio (CR) is a key technology [1] that
allows wireless devices to dynamically access the
available spectrum opportunities. Cognitive radio is
a software defined radio [2] with the capability of
identifying unused spectrum in a particular time,
frequency and geographic location and utilizing it
in opportunistic manner. The cognition capability of
a CR is defined as the ability of CR transceiver
to sense the surrounding radio environment, analyze
the captured information and decide the best course
of action in order to decide which spectrum bands
are to be used and best transmission strategy to be
adopted. CR is capable of making intelligent decisions
and it’s actions are based on observing the wireless
connections and then using intelligent algorithms and
computational learning to optimize their behavior.
From the Definition of CR by Simon Haykin [3], it
is clear that a CR device must have the attributes:
awareness, intelligence, learning, adaptivity, reliability
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Figure 1. Functional model of CR

during this phase. The above sequence of operations by
CR is schematically shown in Fig. 1.

1.1. Motivation

In CR, the most important step is to obtain necessary
observations about its surrounding RF environment,
such as the presence of primary users and the
appearance of spectrum holes. Spectrum sensing
enables the detection capability of CR to measure, learn
and be aware of the radio’s operating environment. The
spectrum sensing problem in CR consists of three sub-
problems [5]:

* Decide which channel to sense (Channel sensing
is a decision making problem)

* Decide whether the channel is idle/busy based on
local observations of the sensed channel (Primary
signal detection or channel-state detection prob-
lem)

* Decide collaboratively whether to access the
channel or not if it is indeed idle (Cooperative
decision making problem)

Cooperative communication in wireless networks
addresses the problem of channel impairments (i.e.
multipath fading/shadowing) and improves the spatial
diversity gain [6] of wireless receivers. The wireless
nodes can make collaborative decision strategies
to access channels with the help of cooperative
communication techniques. The idea of CSS has
been adopted from this cooperative communication
technique. These CSS schemes greatly improve the
received Signal-to-Noise ratio (SNR) under deep fading.
Through this cooperation, the SUs can share their
locally observed information about spectrum holes
and make more accurate collaborative decision. It is
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noted that the cognitive capability [7] of CR enhances
the decision quality of CSS algorithms and improves
cooperative sensing accuracy. Recent advances in
spectrum exploration and exploitation are discussed in

(8].

1.2. Related work

Although cooperative communication [9] has lot of ben-
efits to cognitive radios, there are still numerous the-
oretical and technical problems that remain unsolved.
In [10], author’s discuss various cooperative sensing
techniques with their emphasis on spectrum sensing
and access based cooperation, interference constraint
based adaptive cooperative feedback, cooperative trans-
mission based on rate-less network coding and interfer-
ence coordination based on limited cooperation. Coop-
erative sensing is proposed in the literature [11] and
its performance has been investigated extensively. In
a widely studied form of cooperative spectrum sens-
ing, the Secondary Users (SU) provide locally-sensed
information on the primary users activity to a decision-
making fusion center (FC) which can be an access
point or base station or one of the SUs [12]. The FC
analyzes the information and determines the activity
status of primary user. The cooperative sensing can be
categorized based on the type of fusion scheme used at
the FC. Hard decision combining schemes such as AND,
OR and k-out-of-N rule are considered in [13]. A coop-
erative sensing scheme based on linear combination
of the local test statistics was proposed in [14] where
the combining weights were optimized to improve the
detection performance. Relay based CSS schemes are
studied in [15].

As already discussed, cooperative learning [16] can
help a cognitive radio to learn the surrounding envi-
ronment and improve its sensing accuracy. However, in
recent years there has been a growing interest in apply-
ing machine learning algorithms to CSS. In [17], the
author has proposed CSS scheme based on supervised
learning approach such as Support Vector Machine
(SVM) and K-Nearest Neighbour (KNN) classification
algorithms. The same author in another paper [18] has
done a comparative study of Supervised (i.e. SVM and
weighted KNN) and Unsupervised learning techniques
(i.e. K-means clustering and Gaussian Mixture Model)
for CSS schemes. The comparison of various CSS clas-
sifiers has been carried out based on training dura-
tion, classification delay and Receiver Operating Char-
acteristics (ROC) performance. The result concludes
that unsupervised K-means clustering is a promising
approach for CSS due to its high ROC performance
with low classification delay and training duration.
However, in [18] the author assumed that the SUs are
immobile and the SNR of each SU has been normalized
to Gaussian distribution. In our work, we deployed SUs
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randomly with mobility in a grid topology and the
SNR values are changed during iterations according to
distance coordinates from the primary transmitter.

A survey on state-of-the art machine learning
techniques and role of learning in cognitive radio is
presented in [19]. In our recent work [20] we have used
Perceptron learning module in which the fusion centre
collects local sensing results of each SU and makes
the final decision based on soft combination of the
local decisions (weighted average method). The weights
corresponding to each SU is computed using energy
values captured by individual SU. The weight assigned
to every secondary user is multiplied to the local
decision value and the cumulative sum obtained from
all the secondary users is used to determine the final
decision of the FC. These weighted linear combinations
of the local decision vectors produce the Target Output.
Then, the hard-limit function determines the final
decision of FC about availability of primary channel.
Due to the dynamic channel environment, feature
vectors are scattered in decision boundary which
affects the detection accuracy of FC. To overcome
this, we have developed in this work unsupervised
K-means clustering approach which partitions set
of training energy vectors into K disjoint clusters.
This unsupervised K-means clustering is a promising
approach due to its higher detection accuracy and less
training and classification delays.

1.3. Contribution

This paper discusses a framework of CSS scheme using
unsupervised K-means clustering algorithm to meet
the functional requirement of IEEE 802.22 WRAN
standard. The key contributions of this paper are as
follows:

* The simulation scenario of CSS scheme has been
formulated using machine learning techniques to
meet the requirements of IEEE 802.22 WRAN
standard.

* Local sensing phase is carried out using energy
detection to scan the complete available channel
set from 54MHz-682MHz with channel band-
width of 7MHz.

e The Cooperative Spectrum Sensing (CSS) phase
is based on unsupervised K-means clustering
classification algorithm. The reason for adopting
learning algorithm in CSS is because of its ability
to dynamically adapt and train at any time, ability
to ’learn’ features and attributes of the system
which is often difficult to formulate analytically.
The performance of our proposed algorithms are
evaluated using training duration, classification
delay and detection accuracy.
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Figure 2. Working model of proposed CSS scheme

2. System model

2.1. Working model of the proposed CSS scheme

The Fig.2 shows the working model of the proposed CSS
scheme. Each SU senses the primary user transmitted
signal through sensing channel using energy detection
scheme. The operation of energy detector is based on
received signal power and noise power and comparing
with local threshold to decide presence (H;)/absence
(Hp) of PU. The statistical inference drawn from energy
detector which acts as local decisions X;(n) of ith SU at
sample index n is given by,

(1)

Hy : x;(n) = wi(n)
Hj : x;(n) = hj(n) x s(n) + w;(n)

where w;(n) is the additive white-Gaussian noise
(AWGN), s(n) is the primary user signal and h;(n) is the
gain of the sensing channel between PU and SU.

The decision metric for the energy detector can be
written as,

N
M; = ZO | xi(n) |? (2)

where N is the observation vector. The performance of
energy detector can be evaluated by using two proba-
bilities: Probability of detection 'P;” and Probability of
false alarm ’P;’. The probability of detection is to decide
the presence of primary user when it is truly present. In
contrary, the "P;” is to decide the presence of PU when
it is actually not present. It can be formulated as,

Py = B(M; > A/Hy)

Pf = Pr(Mi > /\/Ho) (3)

where ")’ is decision threshold which can be selected
for finding the optimum balance between 'P;” and "Pf’".
By setting a desired probability of false alarm and
calculating the variance of a data set, the system sets
a threshold to indicate signals above the noise level.
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Each SU processes the received energy and compares
it with a local threshold. The received signal strength
of each SU depends based on its distance from Primary
transmitter. The collection of energy vectors of each
SU is represented using a matrix shown below. In
this matrix, the row vectors and column vectors are
considered as secondary users and number of channels
respectively. Each secondary user has an array of values
specifying the availability of each of the 92 channels.
The local decision observations of all SUs are denoted
as Y;(t) and represented in matrix form as,

x1(n)  xq(n) x1(n)
xp(n)  xp(n) -0 xp(n)

Y;(t) = : : . . (4)
xn(n)  x,(n) xn (1)

Based on the local decisions of the N SUs, the fusion
center will take a final decision. The local sensing
phase is described in Algorithm 1. First, the primary
user signal is added with noise according to the
distance from the primary user. This noise added signal,
’signal_at_node’ acts as input to different SUs. For each
of the 10 secondary users, periodograms are calculated
for ’signal_at_node’, and based on that a Power Spectral
Density (PSD) graph is obtained. The frequency range
is considered as (54-698MHz) and divided into chunks
of 7MHz channel bandwidth which is scanned in steps
of channel width giving around 92 channels whose
status can be either ‘occupied’ or ‘available’. The average
energy values at each channel are compared to a
threshold value based on a random probability of false
alarm. If the energy value of the channel is greater than
the threshold, the channel is specified as ‘occupied’,
otherwise it is available’.

2.2. Unsupervised learning algorithm for proposed
CSS scheme

Learning ability is important in cognitive radios for
effective decision making. Learning algorithms are
implicitly built into spectrum knowledge acquisitions
and decision-making algorithms in the sense that they
convert information (current and past observations) in
to decisions and actions. As mentioned in [3], a CR
is an intelligent wireless communication system using
the attributes of intelligence and cognitive abilities that
enables self-learning and self-awareness.

Learning algorithms can broadly be categorized
as either Supervised or Unsupervised learning. In
the recent literature on CR [15], both supervised
and unsupervised techniques have been proposed for
various learning tasks. Unsupervised learning may
particularly be suitable for diverse RF environment to
make decisions and actions without prior knowledge.
In this framework, we propose to use unsupervised
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Figure 3. Schematic representation of learning module for
proposed CSS scheme

K-means clustering algorithm to make cooperative
decisions about channel availability. Before discussing
the algorithm, it is necessary to look into the
schematic representation of the learning module
shown in Figure.3. It consists of training module and
classification module. The training energy samples are
fed into the training module which provides trained
energy vectors to the classification module.

Generally, the training procedure of machine learn-
ing takes long time. To overcome this, the training
module can be activated only during the initial CR
deployment and any changes in primary network radio
configurations. The classification module helps to deter-
mine the channel availability with the help of test
energy vector. In order to achieve low classification
delay, it is necessary to choose suitable classification
algorithm with low complexity.

K-means clustering is an iterative, data partitioning
algorithm that assigns number of observations to
exactly one K clusters defined by centroids, where
K is chosen before the algorithm starts. It partitions
data into K mutually exclusive clusters, and returns
the index of the cluster to which it has assigned each
observation. It finds a partition in which objects within
each cluster are as close to each other as possible, and
as far from objects in other clusters as possible. Each
cluster in the partition is defined by its member objects
and by its Centroid. The centroid for each cluster is the
point to which the sum of distances from all objects
in that cluster is minimized. The Centroid of each
cluster is used for classification. Once the classifier is
trained, it is ready to receive test energy vectors for
classification. K-means clustering aims to partition the
observed energy vectors into K clusters (c1, c2,..ck) so
as to minimize the distance of vectors within cluster
by using distance measure. The partitioned clusters
are passed using ’argmin’ function as mentioned in
equation (5).

K
argmin Z Z ”YL - ak”z (5)

C1sC2eneCh YLeCy

where Ck is the set of training energy vectors
that belong to cluster K, Y is complete training
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Algorithm 1: Local Sensing Based on Energy Detection

No_of Nodes N;

Data: energyDetection()
Result: energy vector
begin

for user < 1 to N do

L « size(Primary_User_Signal)
Threshold « qfuuncinv(Pf(user))/sqrt(L)+1

Occupied[length(Periodgram_at_node )] < 0
while i < lengthPeriodgram_at_node do
if Periodgram_at_node i > Threshold then
| occupied(i) « 1
i=i+l
B Channel_width « 7 MHz

Energy < 0
Sum « 0
if (occupied == 1) then
Sum « Sum + 1
L Energy < Energy + Periodgram_at_node (freq)

if Sum > width/2 then
L Channel « 1

else
L Channel < 0

Data: changeVelocities(velocity;, velocity;, X)
begin
if (mod(x, 4) == 0) then
| Reverse the Velocity;
if (mod(x,2) == 0) then
| Reverse theVelocity;
else if (mod(x,4) == 1) then
Reverse the Velocity);
if (mod(x, 2) == 0) then
| Reverse the Velocity;

Data: changeDistances(velocity;, velocityj, X, Y)
begin
X « X + Velocity;

Y « Y + Velocity;
if (X, Y) > (100,100) then

| (X,Y) « (X,Y)=2x (Velocity;, Velocity;)
if (X,Y) > (0,0) then

L (X,Y) < (X,Y) +2x (Velocity;, Velocity;)

Signal_at_node « Primary_user_Signal + AWGN

Periodogram_at_node « periodogram(Signal_at_node)

energy vectors, aj is called Centroid of cluster K

and |.||> is known as Square of Euclidean distance.

After training, the classifier receives test energy vector
for classification. The classifier classifies based on the
following condition,
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where Y* is known as test energy vector received

by classifier, ay is the Centroid for cluster Kand g
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Algorithm 2: Proposed CSS scheme using k-means
clustering algorithm

Input energy(i,j) //Stores energy values of j'h SU
for the i'h band;
Initialize local decision(j,i);
YL « Training energy vectors;
YLk « Cy //partitions training vectors into K
disjoint clusters (C);
ay < y; //Initialize centre of cluster to determine
Centroid ay, wherei =1, 2,.., k;

for each cluster k do
YEK e ap 1 Yyrear Y5V = 1,2,k
//calculating mean of all training energy
vectors in cluster k
Distmeasure <« Euclidean || Cityblock
// for minimizing distance of energy vectors to
local minima
CH « H0|H1
// each SU reports its sensing decision to FC
CH — global decision
// FC declares final decision based on suboptimal
solution through convergence

is called threshold to control trade-off between false
alarm and detection probabilities. The algorithm works
as follows. First, it Partitions the set of energy data
into k disjoint clusters. The Centroid of first cluster
(for which the class is available) is the mean of the
data for which class is available. All the other data
is divided into separate K clusters such that within
squares sum of distances is minimized for all these
K clusters. For the given training energy vectors, the
data is first divided into two parts. One is for those
for which the class is available, and the other for those
for which class is unavailable. All the other data is
divided into K clusters, where K varies from 1 to 10.
For classification of test energy vectors, the classifier
determines if the test energy vector belongs to cluster
1 or other clusters, based on the distance of the test
energy vector to the centroids. We have considered two
distance measures namely Euclidean and Cityblock.
The Euclidean distance examines the root of square
differences between coordinates of a pair of objects.
Similarly, the cityblock distance examines the absolute
differences between coordinates of a pair of objects. The
classifier classifies the test vector as channel unavailable
if the distance d is greater than f which is a tunable
parameter. The value of this tuning parameter varies
from 0.1 to 0.3 which indicates the permissible value
of 'P¢’ as per IEEE 802.22. The steps involved in
unsupervised K-means clustering based CSS scheme is
shown in Algorithm 2.
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Figure 4. Silhouette plot for Euclidean distance measure: a)K=2
b)K=3 c)K=4 d)K=5

3. Simulation Setup and Results

The performance of the unsupervised K-means cluster-
ing algorithm for CSS has been analyzed by calculating
delay of training as well as testing energy vectors and
detection accuracy. We consider a CR simulation sce-
nario with one primary transmitter and 10 SUs which
operate in the frequency range of (54-698)MHz divided
into 7MHz of channel bandwidth. Multiple secondary
users are randomly deployed in a grid topology of area
120 x 120 Sq.km, using one FC. The distance coordi-
nates of each SU varies during each iteration. The value
of SNR for each SU changes based on the distance from
the primary transmitter. The other important simu-
lation parameters are as follows: Primary transmitter
power is 200 MW, Primary signal type is BPSK mod-
ulated signal, Noise model is Additive White Gaussian
Noise (AWGN). The simulation scenarios are performed
using MATLAB 7.14 (R2012a) in a 64-bit computer with
core i3 processor, clock speed 2.4 GHz, and 4GB RAM.

The performance of unsupervised K-means clustering
algorithm for CSS scheme has been summarized on
Table.1 and 2 using Euclidean and Cityblock distance
metrics. The following observations can be made from
the above summary. The variation of training delay with
respect to number of clusters is less under Cityblock
than Euclidean. There is less deviation on delay time
for test energy vectors under both distance metrics. It is
important to note that the detection accuracy remains
same under both distance metrics. Also, the rate of
detection accuracy satisfies the permissible limit given
by IEEE 802.22.
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Table 1. Performance Summary of k-means clustering based CSS scheme using Euclidean Distance metric

No of clusters

Training observation Training Delay Test observation

Test delay Detection accuracy

2 1634 0.0097 86 0.0289 69.76
3 1634 0.0117 86 0.0470 69.76
4 1634 0.0157 86 0.0543 69.76
5 1634 0.0168 86 0.0750 69.76

Table 2. Performance Summary of k-means clustering based CSS scheme using Cityblock Distance metric

No of clusters

Training observation Training Delay Test observation

Test delay Detection accuracy

2 1634 0.0116 86 0.0369 60
3 1634 0.0119 86 0.0506 60
4 1634 0.0121 86 0.0661 60
5 1634 0.0129 86 0.0757 60

Catver Dt Chist

Figure 5. Silhouette plot for Cityblock distance measure: a)K=2
b)K=3 ¢)K=4 d)K=b

To get an idea of how well-separated the resulting
clusters are, we can make a silhouette plot using the
cluster indices output from K-means. The silhouette
plot displays a measure of how close each point in
one cluster is to points in the neighboring clusters.
This measure ranges from +1, indicating points that
are very distant from neighboring clusters called "well-
formed clusters’, through 0, indicating points that
are not distinctly in one cluster or another called
’ill-formed clusters’, to -1, indicating points that are
probably assigned to the wrong cluster called ‘outliers’.
Silhouette returns these values in its first output. The
Silhouette plots using Euclidean distance metric for
different values of K are shown in Fig.4.
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The Silhouette graph shows two well-formed clusters,
with a little fraction of data points as outliers. Since,
most of the data points from both the clusters have
their index greater than 0.6, this shows that the data
points are tightly bound in the two clusters. With K
= 3, clusters are formed from the data for which the
channel is unavailable; the data points are scattered
into 3 clusters as shown above. The Silhouette Graph
show that the cluster 3 formed from above data is a
well-formed cluster. Cluster 2 and Cluster 3 can also be
thought of as well-formed, however the number of data
points that are classified as outliers are more in these
cases. With K = 4 clusters are formed from the data for
which the channel is unavailable, the data points are
scattered into 4 clusters as shown above. The Silhouette
Graph shows that the cluster 4 formed from above data
are an ill-formed data cluster. Cluster 1, 2 and 3 are
well formed data clusters; however, cluster 2 has some
ill classified points. With K = 5 clusters are formed
from the data for which the channel is unavailable, the
data points are scattered into 4 clusters as shown above.
The Silhouette Graph shows that all the clusters formed
with K = 5 are well-formed data clusters. Cluster 1 and
3 have some outliers classified under them, but all the
other clusters have the index of most of the data-points
above 0.6, which makes all of them distinct.

Similarly, the Silhouette plots for Cityblock distance
measure are shown in Fig.5 for various cluster values.
With K = 2 clusters are formed from the data for which
the channel is unavailable, the data points are scattered
into two clusters as shown above. The Silhouette Graph
shows that both clusters are very well-formed with no
outliers classified. Also, majority of data points in each
of the clusters have their index greater than 0.6, which
shows that the clusters have been formed tightly by
the data points. With K = 3 clusters are formed from
the data for which the channel is unavailable, the data
points are scattered into 3 clusters as shown above. The
Silhouette Graph shows that cluster 1 and 2 are well-
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formed, with cluster 1 having some outlier data points.
However, cluster 3 has a large number of outliers, hence
cannot be classified as well-formed. With K = 4 clusters
are formed from the data for which the channel is
unavailable, the data points are scattered into 4 clusters
as shown above.

The Silhouette Graph shows that only cluster 1 and
cluster 3 can be thought as well-formed. However,
cluster 2 has large number of data points specified as
outliers. Also, cluster 4 is not well-formed because of
the outliers shown in the Fig.5. With K = 5 clusters
are formed from the data for which the channel is
unavailable, the data points are scattered into 5 clusters
as shown above. The Silhouette Graph shows that
only cluster 1 and cluster 5 are well-formed. However,
cluster 5 is small as it contains less number of data
points. All other clusters have outliers classified within
them and hence cannot be thought of as well-formed.

4. Conclusion

In this paper, we presented cooperative spectrum
sensing (CSS) scheme using unsupervised k-means
clustering algorithm. The proposed CSS scheme has
the capability to learn from the radio environment to
achieve cognitive tasks. The received signal strength of
each SU is measured using energy detection scheme
and considered as feature input to the classifier module
to determine channel availability. The simulation
scenario has been formulated to meet the requirements
of IEEE 802.22 WRAN standard. The simulation
results show that the unsupervised k-means clustering
algorithm significantly improves detection accuracy
with training and testing delay of 16.8 and 75
milliseconds respectively. As future work, it can be
extended further to various cooperation scenarios to
support different wireless standards and specifications
which will help to improve the cognition capability and
cooperative sensing accuracy.
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