
Research Article

Towards Effective Intra-flow Network Coding in
Software Defined Wireless Mesh Networks
Donghai Zhu1, Xinyu Yang1, Peng Zhao1,∗, and Wei Yu2

1Department of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
2Department of Computer and Information Sciences, Towson University, Towson, MD, USA

Abstract

Wireless Mesh Networks (WMNs) have potential to provide convenient broadband wireless Internet access to
mobile users. With the support of Software-Defined Networking (SDN) paradigm that separates control plane
and data plane, WMNs can be easily deployed and managed. In addition, by exploiting the broadcast nature
of the wireless medium and the spatial diversity of multi-hop wireless networks, intra-flow network coding
has shown a greater benefit in comparison with traditional routing paradigms in data transmission for WMNs.
In this paper, we develop a novel OpenCoding protocol, which combines the SDN technique with intra-flow
network coding for WMNs. Our developed protocol can simplify the deployment and management of the
network and improve network performance. In OpenCoding, a controller that works on the control plane
makes routing decisions for mesh routers and the hop-by-hop forwarding function is replaced by network
coding functions in data plane. We analyze the overhead of OpenCoding. Through a simulation study, we
show the effectiveness of the OpenCoding protocol in comparison with existing schemes. Our data shows that
OpenCoding outperforms both traditional routing and intra-flow network coding schemes.

Received on 16 October 2015; accepted on 15 December 2015; published on 19 January 2016
Keywords: wireless mesh network, software defined networking, intra-flow network coding

Copyright © 2016 D. Zhu et al., licensed to EAI. This is an open access article distributed under the terms of the 
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited 
use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.19-1-2016.150998

1. Introduction
Wireless mesh networks (WMNs) [1] have been con-
sidered a promising solution for providing convenient
broadband wireless Internet access to mobile clients
(e.g., smartphones and notebooks). In a WMN, station-
ary wireless mesh routers can establish the backbone for
mobile clients, controlling and monitoring traffic flows
in the network and managing routing paths according
to algorithms and protocols implemented in routers.
After being connected to one of mesh routers, a mobile
client can communicate with other mobile clients in the
same WMN or can get access to the Internet via the hop-
by-hop forwarding way.

Nonetheless, because of the heterogeneous infras-
tructure of WMNs, deploying and managing WMNs
is a challenging problem. The network administrator

HPlease ensure that you use the most up to date class file, available
from EAI at http://doc.eai.eu/publications/transactions/

latex/
∗Corresponding author. Email: p.zhao@mail.xjtu.edu.cn

will have to setup and maintain each mesh router
individually as network devices are vendor-specific. To
address the issue of network deployment and manage-
ment, Software-Defined Networking (SDN) [2] has been
proposed. The essential idea of SDN is to exploit the
ability of decoupling the data plane and the control
plane in routers or switches, and keeping only data
forwarding functions in network devices. By sending
configuration commands from the control plane that
consists of one or multiple controllers down to the data
plane, the network administrator then has the ability
to control and configure the data plane globally rather
than configuring each device individually. As we can
see, by using SDN, the network can be easily deployed
and managed. In addition, with the view of the entire
network, the network performance can be improved
by deploying global optimization strategies through
a powerful control plane [3]. For example, existing
research efforts [4–6] have shown the great benefit of
integrating SDN with WMNs.

1

EAI Endorsed Transactions  
on Wireless Spectrum 

EAI
European Alliance
for Innovation

EAI Endorsed Transactions on 
Wireless Spectrum

12 2015 - 01 2016 | Volume 2 | Issue 7 | e2

http://creativecommons.org/licenses/by/3.0/
http://doc.eai.eu/publications/transactions/latex/
http://doc.eai.eu/publications/transactions/latex/
mailto:<p.zhao@mail.xjtu.edu.cn>


D. Zhu et al.

Meanwhile, another challenge in establishing WMNs
is to achieve a high network performance despite
the unreliable and lossy wireless communication
channels. The inherent broadcast nature of wireless
communication channels can be exploited to improve
network performance. Network coding [7] is one
mechanism, which makes use of the broadcast nature
in wireless networks. For example, by integrating intra-
flow random linear network coding that enables relay
nodes to combine information content in packets before
forwarding and performing opportunistic routing [8],
the MORE protocol [9] has demonstrated that network
coding can improve network throughput significantly
and can be extended to support applications, including
data distribution in peer-to-peer networks [10], etc.

As we can see, the SDN technology and network
coding scheme are two different techniques to address
different challenges in WMNs. Again, the key idea
of SDN is to keep routers or switches simple, while
moving the control function into the control server
deployed in the network. The intra-flow network coding
scheme can achieve much better performance than hop-
by-hop forwarding schemes because of leveraging the
nature of the wireless broadcast medium. Therefore,
one research problem is raised: How can we integrate the
SDN and intra-flow network coding schemes to make that
the integrated scheme performs better than the individual
ones?

To answer this question, in this paper we make the
following contributions.

• We designed the OpenCoding protocol to address
the challenge of easily deploying WMNs and
further improving the performance of WMNs.
The key idea of OpenCoding is to use SDN in the
network where the intra-flow network coding is
deployed. That is, a controller that works on the
control plane makes routing decisions for mesh
routers and the hop-by-hop forwarding function
is replaced by the network coding function in
data plane. By decoupling control plane and
data plane, mesh routers can be simple, leading
to a much easier ability to manage a network.
More importantly, through the aid of viewing the
entire network, a global optimization strategy can
also be easily applied. Based on this idea, we
developed a novel scheduling scheme for intra-
flow network coding, which can achieve a high
network performance gain, as well as the fairness
of multiple network flows.

• We conducted extensive simulations to demon-
strate the effectiveness of OpenCoding in com-
parison with existing schemes. Our evaluation
data shows that our proposed OpenCoding out-
performs OLSR [11], OpenFlow [12], and MORE
[9] protocols. On average, OpenCoding achieves

68.32%, 12.46% and 9.88% gain over OLSR,
OpenFlow and MORE in terms of data trans-
mission throughput, respectively. Meanwhile, the
throughput of OpenCoding drops little when the
number of concurrent flows increases. The results
also show that OpenCoding outperforms OLSR,
OpenFlow and MORE protocols in terms of end-
to-end delay. To our best knowledge, there has
been no previous work, which integrates the SDN
technique into the intra-flow network coding in
WMNs and evaluates performance gain.

An earlier version of this work was published in
[13]. Based on the conference version, we have made
substantial extensions and revisions. The rest of the
paper is organized as follows. In Section 2, we give
the background and review existing research efforts
that are closely relevant to our research. In Section
3, we present our proposed OpenCoding scheme in
detail, including the architecture, the detailed design,
and how to achieve fairness optimization. In Section 4,
we analyze the overhead of OpenCoding. In Section 5,
we show the performance evaluation of OpenCoding
in comparison with several representative schemes.
In Section 6, we discuss some open issues related
to OpenCoding. Finally, we conclude the paper in
Section 7.

2. Background and Related Work
In this section, we give the background and literature
review of SDN and OpenFlow, as well as intra-flow
network coding.

2.1. Wireless Mesh Networks
Wireless Mesh Networks (WMNs) are developed for
a new broadband Internet access technology with
growing interests in both research and industry [1].
Because of highly self-organized and self-configured
features of WMNs, they are used to extend last-mile
access to the Internet and have become a promising
technology for providing easy wireless access for mobile
users.

The infrastructure of WMNs is shown in Figure 1.
As we can see from the figure, WMNs consist of
two types of nodes: mesh routers and mesh clients.
Mesh routers are almost stationary and establish the
mesh backbone for mesh clients, thus there are no
power limits on mesh routers. Mesh routers can
equip multiple wireless interfaces and serve as the
Internet gateway or bridge and integrate heterogeneous
networks, including both wired and wireless networks.
To this end, the deployment and management of such
a heterogeneous infrastructure will be a big challenge.
Meanwhile, because of the unreliable and lossy wireless
communication channels of WMNs, another challenge

2EAI
European Alliance
for Innovation

EAI Endorsed Transactions on

Wireless Spectrum
12 2015 - 01 2016 | Volume 2 | Issue 7 | e2



Towards Effective Intra-flow Network Coding in Software Defined Wireless Mesh Networks

in establishing WMNs is to achieve a high enough
network throughput performance.

Figure 1. Infrastructure/backbone WMNs

With the rapid development of radio techniques,
a number of approaches have been proposed in
order to increase the capacity and flexibility of
WMNs. Typical examples include cognitive radios
[14], cooperative communications [15], Multi-Input
Multi-Output (MIMO) systems [16] and Multi-radio
Multi-channel (MRMC) systems [17]. On the other
hand, by exploiting the broadcast nature of wireless
medium, innovative transmission schemes, including
Opportunistic Routing (OR) [8] and network coding [7],
have also been developed to increase the performance of
WMNs.

2.2. SDN and OpenFlow
Generally speaking, SDN is an emerging network archi-
tecture, which can decouple control plane and data
plane, with goals of achieving a higher transmission
speed, greater scalability, and greater flexibility. The
key idea of SDN is to allow software developers and
network administrators to allocate and manage the net-
work resources in an easy way via an open interface. Its
concept was originally developed by Nicira Networks
based on their earlier development at UCB, Stanford,
CMU, Princeton [2]. Figure 2 illustrates the standard
architecture of SDN, which is defined by Open Net-
working Foundation (ONF) [18]. As we can see from
the figure, the control plane can send commands down
to the data planes of the hardware (e.g., routers or
switches) [19]. The hardware in the data plane can only
simply deliver data among them by checking the flow
tables, which are distributed by the controller in the
control panel. In this way, the hardware devices can be
greatly simplified.

One of well-known SDN protocol standards is the
OpenFlow [12], which was originally proposed for

wired networks in order to make Internet switches
intelligent and programmable through a standardized
interface. OpenFlow allows network devices from
many different companies to utilize the abstraction
of the control planes and data planes [20–22], thus
OpenFlow receives a considerable amount of industry
attention. Besides OpenFlow, there are other SDN
implementations and standards, such as IEEE P1520
standards [23], ForCES [24] and SoftRouter [25].
Also, there are a number of earlier work related to
programming networks and active networks [26, 27].

Application Layer

Control Layer

Infrastructure Layer

Business Application

SDN

Controller 

Software Network Service

Network Device Network Device

Network Device Network Device

API API API

Controller/Data Plane Interface, 

e.g.OpenFlow

Figure 2. SDN architecture defined by ONF[18]

There have also been several research efforts on
applying SDN/OpenFlow paradigm in wireless mobile
networks. For example, Figure 3 shows an generic
software defined wireless network-based architecture of
a mobile network operator [28]. In Figure 3, we can see
that SDN technology can be applied to various types of
wireless networks. In this paper, we focus on applying
SDN technology to wireless mesh networks [1]. In [4],
an architecture that allows the flexible and efficient use
of OpenFlow in WMNs was demonstrated. As the first
attempt to apply OpenFlow in WMNs, the evaluation
of this proposed architecture on a real test-bed called
KAUMesh showed that the SDN architecture could
achieve better performance than traditional schemes
in terms of transmission throughout, control traffic
overhead, and rule activation time. Riggio et al. in [29]
proposed a set of high-level programming abstractions
for WiFi networks, which enables new features and
services to be implemented as software modules.

In order to obtain the link information and
controlling link behavior, the OpenFlow protocol
extensions were proposed to allow controllers to
remotely control and manage wireless links through
a set of Media-Independent Management (MIM)
mechanisms [30]. In addition, one OpenFlow-based

3
EAI

European Alliance
for Innovation

EAI Endorsed Transactions on

Wireless Spectrum
12 2015 - 01 2016 | Volume 2 | Issue 7 | e2



D. Zhu et al.

Figure 3. SDN-based wireless mobile network architecture

communication protocol was proposed to provide the
access to the data plane of network routers [31], which
can be used to balance traffic loads in the network.
These existing research efforts confirm that OpenFlow
can be a useful technique to improve the performance
of WMNs.

There have been other research efforts that show
the benefits of using the SDN/OpenFlow paradigm in
wireless networks. The examples include the minimum-
energy reprogramming in software-defined sensor
networks [32], capacity sharing in hybrid networked
environments [33], etc.

2.3. Intra-flow Network Coding
Network coding, which was initially introduced for
improving the performance of wired networks in [7],
has been considered as a promising communication
paradigm to improve network performance in terms
of throughput and energy efficiency. In the seminal
paper [7], Ahlswede et al. proved that in a directed
graph with lossless links, if operations are allowed
at the intermediate nodes, the theoretical maximum
multicast rate can be achieved and it is equal to
the min-cut from the source to each receiver. Later,
Li et al. showed that the linear coding operation is
sufficient to achieve that maximum multicast rate [34].
Also, Ho et al. further proposed a random linear
coding and proved that if the linear coefficients are
random selected over a large enough finite field at
each intermediate nodes, the destination could decode
the packets with a high probability [35]. What’s more,
Chou et al. developed the random linear network
coding infrastructure, which makes network coding

practical [36]. As the network coding shows its
significant advantage over the traditional routing in
terms of bandwidth efficiency, there has been a growing
interest to applying network coding to improve the
performance of wireless networks. For example, MORE
[9] is one protocol implemented on a real-world test-
bed and achieves a significant performance gain than
the traditional routing in WMNs by integrating network
coding with opportunistic routing [8].

It is worth noting that MORE protocol does not
take multiple flows, fairness, and scheduling into
account so that its performance drops as the number
of flows increases. To tackle this issue, a cross-layer
optimization framework [37] was proposed to optimize
the rate of packet transmissions between source and
destination pairs. In this framework, a distributed
heuristic algorithm was developed to solve the problem.
In addition, the problem for the network coding-based
opportunistic multicast routing was studied and a
duality-based distributed algorithm was proposed to
solve the problem [38]. In this proposed scheme, each
node only needs to maintain the local information.

Although these aforementioned distributed solutions
for optimizing network performance is indeed helpful
and can improve performance in terms of throughput,
energy efficiency and fairness, they are very costly to be
deployed in real-world applications. Fortunately, with
the support of the SDN technique, the controller in
software-defined networks could acquire the network
states dynamically by receiving regular reports from
deployed network devices. With the collected informa-
tion, the controller is able to acquire a global view of the
network and can deliver this important information to

4
EAI

European Alliance
for Innovation

EAI Endorsed Transactions on

Wireless Spectrum
12 2015 - 01 2016 | Volume 2 | Issue 7 | e2



Towards Effective Intra-flow Network Coding in Software Defined Wireless Mesh Networks

network devices. Therefore, the global optimization can
be achieved by exploiting the SDN technique.

3. OpenCoding
In this section, we present our approach. Particularly,
we first brief the architecture, and then introduce the
detailed design of our approach as well as how to
conduct fairness optimization.

3.1. Architecture
OpenCoding is a novel transmission protocol based
on the concept of SDN for WMNs. In our study,
we consider a WMN, which consists of one control
server, one or more mesh gateways, and multiple mesh
routers that are connected to some mobile clients
(e.g., smartphones, notebooks, etc.). In such a software-
defined network, the complexity of managing the
network is low and the network administrator can
manage the entire network. In addition, the network
can be controlled in real-time based on the intelligence
of network controllers.

Similar to the OpenFlow protocol, in OpenCoding-
enabled wireless mesh routers, packet forwarding
intelligence are moved to the control server, which is
referred to as the OpenCoding controller. As there is
no control functionality residing at the OpenCoding-
enabled routers, the data forwarding functionality can
be kept simple by only containing packet coding,
recoding, and decoding functions, which are basic
primitives defined in the random linear network
coding. Particularly, when a new data flow arrives at
an OpenCoding-enabled router, the router will perform
a PACKET_IN function, to ask for the routing for this
flow. Then, the controller makes the best decision and
computes the path for this flow, and distributes flow
entries, which contain actions to perform on individual
routers on the selected routing. After receiving these
flow entries, those designated routers will carry out
corresponding actions (e.g., the packet coding function
in source router, recoding function in forwarding
router, and decoding function in destination router).

The OpenCoding controller, which runs a network-
wide network operating system (e.g., NOX [39], etc.), is
the network element that is responsible for managing
routers and making decision to meet requirements.
All routers are connected to the controller through
the secure channel via one hop or multiple hops.
This secure channel can be provided by using the
SSIDs described in [4] or the use of multi-radio multi-
channel (MRMC) technique [17]. Notice that it is easier
and cheaper to use the different SSIDs to separate
the controller-to-router communication from router-
to-router communication, while the communication
quality may be worse due to the interference in the
wireless channel. Also notice that using the multi-radio

multi-channel technique can address the interference
problem, but it requires extra hardware and also needs
to deal with the channel assignment issue.

3.2. The Design of OpenCoding
In the following, we first introduce the basic idea of
our proposed approach and then present the detailed
design of our approach.

Basic Idea. In a conventional WMN, once a packet is
received and needs to be forwarded by a mesh router,
it first stores this packet into the packet buffer pool
and then uses a set of rules to find the next-hop of the
packet according to routing protocols. When there is a
transmission opportunity, the router sends the packet to
the corresponding next-hop node. In such a hop-by-hop
way, packets can be reliably delivered to destinations.

As stated, in a conventional mesh router, the function
that handles the forwarding of packets (i.e., data plane)
and the control of forwarding rules (i.e., control plane)
are closely coupled. This makes it is hard for routers to
extend with new functions. SDN/OpenFlow addresses
this issue by decoupling the control and data plane. To
be specific, the control plane is implemented partially
in a server rather that resides on the router only.
This leads to an easier network management. More
importantly, in the view of entire network, the global
optimization can be achieved, leading to an efficient
use of network resources. By leveraging SDN, we can
develop an effective scheme for carrying out intra-
flow network coding to achieve a higher network
performance gain than the network, in which the SDN
technique is not used, in terms of both throughput and
fairness.

Network State Measurement and Management. In order
obtain a global view of the entire network, the con-
troller in OpenCoding uses the Link Layer Discov-
ery Protocol (LLDP), which is also adopted in Open-
Flow protocol. To do so, the controller first sends a
PACKET_OUT message to all mesh routers. As soon as
the mesh router receives the PACKET_OUT message, it
will send LLDP messages to all of its neighbor routers.
Because there is no corresponding flow tables to pro-
cess these LLDP messages, the neighbor routers will
send PACKET_IN messages to the controller to report
the link quality measured by itself. In this way, after
receiving the PACKET_IN messages, the controller can
acquire the topology and current network state of the
global network.

In addition, to maintain the network topology
and state, the controller will periodically send
PACKET_OUT messages and the LLDP packets to
mesh routers. The controller will also obtain the
network information from the feedback PACKET_IN
messages generated from mesh routers, which can be
used to update network topology dramatically.

5EAI
European Alliance
for Innovation

EAI Endorsed Transactions on

Wireless Spectrum
12 2015 - 01 2016 | Volume 2 | Issue 7 | e2



D. Zhu et al.

Controller. In the following, we describe the detailed
protocol in the perspective of the components of Open-
Coding, including controller, source router, forwarding
router, and destination router. In a WMN, mobile mesh
clients can access the network through mesh routers. If
a mobile client wants to access the Internet or needs to
communicate with other clients in the same WMN, the
client shall first connects to one of mesh routers, and
that mesh router will be responsible for forwarding all
traffic flows. Denote S as the source mesh router that
connects to the mobile client that has data to transmit
and denote D as the destination mesh router that is
the mesh router with gateway or connecting to the
destination mobile client. When a source mobile client
initiates a traffic flow, S will send PACKET_IN message
to the controller to request for a new traffic flow.

After receiving a PACKET_IN message from S, the
controller computes the best routing with the global
view. As we know, in a traditional hop-by-hop routing,
after the routing path is established by some routing
protocols, a node keeps sending a packet until the next
hop receives it or the number of transmissions exceeds
a particular threshold. Nonetheless, in an intra-flow
network coding that is similar with an opportunistic
routing, there is no particular next hop. The nodes
closer to the destination than the current transmitter
can participate in forwarding the packet. Therefore, in
an intra-flow network coding, the routing of each node
consists of one or multiple next-hop forwarding routers.
What is more, the threshold of transmission count for
the current batch shall also be assigned to ensure the
efficiency of bandwidth use.

The detail of how to derive threshold of the number
of transmissions can be referred to Equations (1) and (2)
in [9]. Here, we use a simple topology to demonstrate
the computation of the transmission count. Consider
the scenario shown in Figure 4, where the value
under the arrow is the packet delivery probability of
corresponding link. For every packet from S to D,
in expectation, only 1.67 transmissions rather than 2
transmissions are needed when the network coding is
used, because R only needs to forward 67% of linear
combination of received packets. That is enough for
D to recover all packets as D receives the other 33%
through link “S → D”.

Further, notice that the number of transmissions
computed in [9] is only based on the average loss
rate of links and can be optimized. After the routing
is computed, the controller installs these routing
rules to all potential transmitting routers through
MODIFY_STATE messages. The rules contain: (i) the
flow ID that is used to identify each traffic flow,
(ii) the batch number in each flow, (iii) source IP,
(iv) destination IP, (v) forwarding router list for each
router, and (vi) forwarding transmission count. In the
simple scenario shown in Figure 4, C will tell S and

R DS
1

0.33

1

C

Figure 4. A simple topology

R to transmit once and 0.67 times for each encoded
packet to R and D, respectively. In addition, as soon
as the BATCH_FINISHED message that is sent from
the destination router is received by the controller,
the controller will immediately send BATCH_NEXT
message to all transmitting nodes. The source router
will stop forwarding packets in the current batch
and activate the transmission of the next batch, while
forwarding routers will also stop forwarding packets in
the current batch as well and wait for the next batch.

Some key message used in the OpenCoding is
summarized in Table 1.

Source. When a source mobile client initiates a traffic
flow, S performs the PACKET_IN function, to request
the controller for a new traffic. After receiving the
request, the controller makes a decision whether to
accept the request or not. If so, the controller computes
the best routing for this traffic and installs the
forwarding rules on the routers, which will participate
in this traffic transmission. As soon as the rule is
installed on the S, S will inform source mobile clients
to start sending packets to S.

On receiving the stream of packets, S stores the
packets first and divides them into batches. Each batch
consists of m packets

x = x1, x2, . . . , xm,

where xi is represented as a vector of

xi = (xi,1, xi,2, . . . , xi,n).

Also, each xi,j is a symbol of finite field Fnq . Here, m is
the batch size, q is a prime of a proper size, and all the
arithmetic operations are done over Fq. In addition, S
generates an augmented packet xi by prefixing xi with
the ith unit vector of dimension m:

xi = (

m︷                ︸︸                ︷
0, . . . , 0︸  ︷︷  ︸
i−1

, 1, 0, . . . , 0, xi,1, xi,2, . . . , xi,n)

6EAI
European Alliance
for Innovation

EAI Endorsed Transactions on

Wireless Spectrum
12 2015 - 01 2016 | Volume 2 | Issue 7 | e2



Towards Effective Intra-flow Network Coding in Software Defined Wireless Mesh Networks

Table 1. Message type in the OpenCoding

Types of Message: Description
MODIFY_STATE: The controller send MODIFY_STATE messages to routers to add, delete and modify

routing rules on routers.
PACKET_OUT: The controller sends PACKET_OUT message to routers that tell routers to send

corresponding messages out.
PACKET_IN: The source mesh router sends the PACKET_IN message to the controller to inform that

there is a new packet received in routers and ask for corresponding instructions.
BATCH_FINISHED: The destination mesh router sends the BATCH_FINISHED message to inform the

controller that the transmission of this batch should be completed.
BATCH_NEXT: The controller sends the NEXT_BATCH to inform the source and forwarding router to

stop the transmission of this batch, and another batch of packets should be activated
FLOW_REMOVED: Routers sends Flow_REMOVED messages to the controller to inform that one of the

flow tables is removed

For a random linear network coding, S randomly
picks the coefficients from the finite field Fq and creates
the combinations of packet xi . This means that for
packets

x = x1, x2, . . . , xm,

and coefficients

α = α1, α2, . . . , αm,

an output packet is represented as

y =
m∑
i=1

αixi = (
m∑
i=1

αixi,1, . . . ,
m∑
i=1

αixi,m+n)

The first m symbol of y is called the global coding
coefficient. Subsequently, S sends encoded packets
to the forwarding routers defined in installed rules
and waits for the BATCH_NEXT message from the
controller.

Forwarders. After rules are installed, mesh routers
work in promiscuous mode, listening all transmissions.
When the router receives a packet, it first checks the
packet to confirm whether the packet matches the
rules that are installed. More specifically, it checks
whether the flow ID and the batch ID extracted from
the packet’s header matches any entry in the flow table,
and whether it is in the forwarder list of packets. If
so, it further checks whether the packet is an innovate
packet by Guassian eliminations. An innovative packet
is linearly independent from the packets that the node
has previously received in this batch. A packet that
does not match any flow table or is not innovative will
be dropped. Otherwise, the packet will be stored for
encoding.

After the forwarding router accepts an innovate
packet, it then randomly selects the coefficients and
linearly combines the all received packets in the same
batch in a similar way with the source. This can be

formulated as follows:

z =
m∑
i=1

γiyi .

Here, z is the new packet created by the forwarding
router, γi is the random coefficient for the ith packet
and all the y are packets received in the same batch,
including the newly received one. Notice that in a fault-
free execution of the random linear network coding,
the packets transmitted in the network are all linear
combinations of the original augmented messages: x =
x1, x2, . . . , xm.

Subsequently, a packet header, which contains the
source and destination IP, flow ID, batch ID and
forwarding list, will be appended to the newly created
packet. When a transmission opportunity arises, the
packet will be send to its next-hop forwarding routers.

Destination. The destination router D receives packets
in a similar way as the forwarders. After receiving
m linearly independent packets zj , j = 1 . . . m, D can
recover the original packets xi , i = 1, . . . , m using
the global coding matrix G, where ith row is the
corresponding global coding vector through Guassian
eliminations with a high probability:

[I,X] = G−1 · Z. (1)

Here, I is the identity matrix, X is the matrix, in which
ith row is the corresponding xi , G−1 is the inverse of the
matrix G, and Z is the matrix, in which ith row is the
corresponding zi .

As soon as the current batch can be decoded, D
performs the BATCH_FINISHED function, and sends a
message to inform the controller that the transmission
of this batch should be complete and the next
batch transmission can be activated. The controller
then performs the NEXT_BATCH function and sends
a message to the source and all the forwarders.

7
EAI

European Alliance
for Innovation

EAI Endorsed Transactions on

Wireless Spectrum
12 2015 - 01 2016 | Volume 2 | Issue 7 | e2



D. Zhu et al.

In addition, D forwards the decoded packets to
destination mobile clients or to the Internet.

The control flow of OpenCoding is summarized in
Figure 5. On the sender’s side, before sending a packet,
the router will add the header to the packet, and
check whether the transmission count for this batch has
reached the pre-determined value. If so, the router will
turn to transmit the next packet; otherwise, this packet
will be sent to its next-hop forwarding routers. On the
receiver’s side, the router checks the header of packet
to determine whether to accept or not. If so, the router
will store the packet for recoding (i.e., if it is forwarding
router) or decoding (i.e., if it is destination router).

3.3. Fairness Optimization for OpenCoding
Benefited from the centralized control logic and the
global network view, OpenCoding can address other
issues, which are not easily solved in a distributed
manner. We now introduce a scheme to ensure the
fairness of OpenCoding.

Considering a scenario in which there are two
traffic flows f1 and f2 showed in Figure 6, which
are transmitted with intra-flow random linear network
coding. If the node R is the common forwarding router
of both flows, it will participate in forwarding packets
in these two flows. In the following, we present our
idea using an example. We assume that R just begins
to transmit a new batch from f1 and p1 is the first
packet in this batch, while another batch from f2 is
nearly at the end and p2 is the last packet in that
batch. In Figure 6, packets belong to different flows
are marked with different colors. In the original MORE
protocol, these two packets will not be differentiated
and they will be transmitted in First-In-First-Out (FIFO)
manner. Nonetheless, it is more important to transmit
p2 than p1 because as soon as the destination router
receives p2, it can decode all packets in this batch
while the reception of p1 will not bring any benefit
at that moment. To address this issue, we develop a
novel scheme to ensure the fairness of OpenCoding by
exploiting the centralized control of SDN.

When there are multiple flows in the network,
the controller periodically requests the destination
routers to report their states of the current batch.
The reports from the destination routers contain the
current batch ID and the progress of the corresponding
batch. In our proposed scheme, destination routers only
reports whether they receives m/2 innovative packets.
Meanwhile, forwarding routers maintain two virtual
queues, one for low priority packets (e.g., the packet
is in the first half of the batch), and the other for
high priority packets (e.g., the packet is in the second
half of the batch). When a new packet is added to the
output queue, an entry is added to the appropriate
virtual queue based on the progress of packet’s batch.

Node

Edge

Edge

Edge

Buffer

Random 

Combination

Edge

Figure 6. An Example of fairness optimization

In addition, when the last packet in the high priority
queue is sent, the low priority queue will be the high
priority queue and the high priority queue will be the
low priority queue. The controller periodically updates
rules, which are installed in the forwarding routers
based on the report from destination routers. The rules
inform forwarding routers the progress of the current
transmitting batch. To be specific, when a new packet
is received, if more than half of packets in that batch
are received by the destination router, the new encoded
packet will be added to the high priority queue waiting
to be forwarded, and vice versa. When there is a
transmission opportunity, it will first look up the high
priority queue. If it is not empty, the head packet in the
high priority queue will be transmitted.

Notice that the progress of corresponding batch can
be further subdivided and more corresponding virtual
queues can be used to further improve the fairness.
Nonetheless, from the simulation results described in
the performance evaluation section, dividing the batch
into two halves and two virtual queues are sufficient
to ensure the fairness. Again, it is worth noting that
developing such a special scheduler is benefit from a
global view enabled by SDN, while in the traditional
system with network coding, such a scheduler is hard
to achieve.

4. Overhead Analysis
In this section, we analyze the routing overhead
of our OpenCoding. As we described in Section 3,
there are three types of control messages needed
for the controller to obtain a global view of the
entire network: (i) PACKET_OUT message, (ii) LLDP
message and (iii) PACKET_IN message. In addition,
the flow table request and distribution incur extra
routing overhead. Therefore, the routing overhead of
OpenCoding consists of following two components and
can be represented by

OOpenCoding = OTO +OFT , (2)

8EAI
European Alliance
for Innovation

EAI Endorsed Transactions on

Wireless Spectrum
12 2015 - 01 2016 | Volume 2 | Issue 7 | e2



Towards Effective Intra-flow Network Coding in Software Defined Wireless Mesh Networks

Select the first packet 

in the output queue

transmission 

counter < value 

in the flow 

entry?

transmission

counter+=1

Add header to the 

new packet

Send to device

yes

no

Can transmit

Look up packet header

Am I in the 

forwarder list of 

the packet?

Is packet 

innovative?

Store packet

Am I destination?

Create a new 

encoded packet
Has reveiced m 

innnovate packets?

Send BATCH_FINISH 

to controller

Decode batch 

and deliver

Drop the packet

Match Any 

flow table? 

no yes

yes

yes

no

no

Receives a packet

yes

yes

no

Figure 5. Flow chart of the OpenCoding

where OTO is the overhead caused by the routing
discovery and maintenance, and OFT is the overhead
caused by the flow table request and distribution. In
the following, we derive the closed formulae for the two
components. All main notations used in this section are
listed in Table 2.

4.1. Overhead for Routing Discovery and
Maintenance

The total overhead of routing discovery and mainte-
nanceOTO is defined as the total amount of information
needed by control messages. Assume that a wireless
mesh network consists of N wireless nodes that are
uniformly distributed in a square field with a size of
a × b. To simply the analysis, assume the transmission
range of the routers is equal and is set to r. Then, the
ratio of the node’s coverage area to the whole area p is
provided by πr2

a×b .

Table 2. Notation

N : Number of nodes in the network
a, b: Size of the square field of network
r: Transmission range of a node
p: Ratio of node’s coverage area to the whole

network area
τ : Time step that is also referred to as the

interval for network topology update
η: Minimum average number of transmission to

broadcast a message to all the other nodes
h Random variable of number of hops between

two arbitrary nodes
OTO: Overhead caused by the routing discovery and

maintenance
OFT : Overhead caused by the flow table request and

distribution

9
EAI

European Alliance
for Innovation

EAI Endorsed Transactions on

Wireless Spectrum
12 2015 - 01 2016 | Volume 2 | Issue 7 | e2



D. Zhu et al.

Denote η as the minimum number of transmissions
to broadcast a message to every node in the network.
According to [40], if the average number of neighbors
for any node is at least 2, η can be determined as

η =
⌈
N − 2
pN − 2

⌉
. (3)

Denote IPO as the amount of information needed for
the controller to broadcast the PACKET_OUT message
within a time step τ . The controller periodically
broadcast the PACKET_OUT message of length logN
to all the mesh routers in the network. Here, logN
is the amount of information required to identify the
controller. Therefore, the amount of information that
controller broadcasts the PACKET_OUT message can be
derived by

IPO ≥ η logN. (4)

Denote IL as the amount of information needed
for mesh routers to advertise LLDP messages to their
neighbor routers within time step τ . As described, when
the mesh router receives the PACKET_OUT message
from the controller, it will advertise LLDP messages of
length logN to all of its neighbor routers to inform its
neighbor about the existence. Here, logN is the amount
of information required to differentiate one node from
the others. There are N − 1 mesh routers in network.
Then, IL can be derived by

IL = (N − 1) logN. (5)

Denote IP I as the amount of information needed
for mesh routers to report the link state through
PACKET_IN messages within time step τ . As described,
when the mesh router receives LLDP messages from
other routers, it is informed that the sender of LLDP
message is one of its neighbors. Then, it will send
PACKET_IN message to the controller to report the
link states measured by itself. That is to say, the
message contains the information about itself and its
pN neighbor routers. Therefore, the message length is
(pN + 1) logN . In addition, according to [41], the expect
number of hops between two randomly located nodes
in a a × b square field can be determined by Equations 6
and 7.

In Equation 6, fL(x) is the probability distribution
function (PDF) of the random variable x, which is the
Euclidean distance between two arbitrary nodes. Then,

E[h] =


∫
xfL(x)dx

r

 . (7)

Therefore, the amount of information needed
for mesh routers to report the link state through
PACKET_IN messages IP I can be derived by

IP I = E[h] ·N (pN + 1) logN. (8)

Overall, given a time step τ , the lower bound on the
total overhead caused by the LLDP protocol for the
whole network per second is given by

OTO =
1
τ

(IPO + IL + IP I ), (9)

where IPO, IL, and IP I are given in Equations 4, 5 and 8.
From the result of Equation 9, we can see that the

overall overhead of routing discovery and maintenance
OTO is O(N2 logN ) and it depends on the overhead
of sending PACKET_IN messages to the controller.
According to the result of [40], the routing overhead
of proactive routing protocols is O(N logN ). Therefore,
the routing overhead in this part is larger. That is
because in both our OpenCoding and OpenFlow, the
controller periodically asks routers for the topology
information of all of their neighbors. In order to reduce
the overhead of sending PACKET_IN messages, the
controller can increase the time interval and the routers
can send the topology message only when there are
changes in the states of their links between themselves
and their neighbors.

4.2. Overhead of Flow Table Request and
Distribution
The total overhead of flow table request and distribu-
tion OFT is defined as the total amount of information
needed in transmitting the request and flow table itself.

Denote IS→C be the amount of information of routing
request from a source router S to the controller C.
Denote IC→F as the amount of information of the
flow table distribution from the controller C to all the
forwarding mesh routers F.

A source router S sends a routing request message
to the controller C when there is a new traffic to be
transmitted. The message contains the information of
source and destination. Then, the message length is
2 logN . In addition, if the source and the controller are
randomly located in the network, the expect number
of hops between them is E[h]. Therefore, IS→C can be
derived by

IS→C = E[h] · 2 logN. (10)

After receiving the request message, the controller
computes the best routing path for this traffic flow
and installs the flow table on the forwarding routers,
which will participate in the transmission of this traffic
flow. The flow table contains the information of all the
forwarding routers. Notice that as E[h] is the expect
number of hops between two random located routers,
it can also represent the number of routers in the
shortest path from source to destination. In a random
linear network, the number of nodes participating in
the transmission will be larger than that of traditional
routing. Therefore, the length if flow table message

10EAI
European Alliance
for Innovation

EAI Endorsed Transactions on

Wireless Spectrum
12 2015 - 01 2016 | Volume 2 | Issue 7 | e2



Towards Effective Intra-flow Network Coding in Software Defined Wireless Mesh Networks

fL(x) =


2x

[
π
ab −

2x
a2b
− 2x
ab2 + x2

a2b2

]
0 ≤ x < b

2x
ab

[
π
2 − arcsin(1 − 2b2

x2 )
]
− 4x
ab2

[
x −
√
x2 − b2

]
− 2x
a2 b ≤ x < a

2x
ab

[
arcsin( 2a2

x2 − 1) − arcsin(1 − 2b2

x2 )
]

+ 2x
a2b2 [a2 + b2 − x2] − 4x

ab2 [a −
√
x2 − b2] + 4x

a2b
[
√
x2 − a2 − b] a ≤ x <

√
a2 + b2

(6)

is at least E[h] logN . The flow table will be installed
to at least E[h] routers, and every flow table will be
transmitted through E[h] hops. Thus, IC→F can be
estimated by

IC→F ≥ E[h]3 logN. (11)

Then, the overhead caused by the flow table request and
distribution can be estimated by

OFT =
(
E[h]3 + 2E[h]

)
logN. (12)

From the result of Equation 12, we can see that the
overall overhead of each flow table distribution OFT is
O(logN ). According to the result of [41], the routing
overhead of reactive routing protocols is O(N logN ).
Therefore, routing overhead of this part is smaller. That
is because in the flow table distribution procedure of
OpenCoding and OpenFlow, the source is aware of the
route to the controller and the controller also knows
the routes to all the forwarding routers so that the
broadcast RREQ messages are not needed.

5. Performance Evaluation
We perform simulation experiments to show the
effectiveness of our proposed protocol. In the following,
we first present the simulation methodology and then
show the simulation results.

5.1. Methodology
We evaluate the performance of our proposed scheme in
comparison with existing schemes in terms of through-
put, average end-to-end delay, and rule activation time.
In our simulations, the end-to-end delay is defined as
the duration from a packet is sent from the source
router until the packet is received by the destination
router. In MORE and OpenCoding, the end-to-end
delay is averaged across batches. The rule activation
time of both OpenFlow and OpenCoding is defined as
the duration from the time when the first packet of a
new flow arrives at the source router and the source
router performs PACKET_IN function until all the flow-
tables are distributed to the corresponding forwarding
routers.

We use ns-3 simulator [42] and compare the
performance of our proposed OpenCoding protocol in
comparison with the following protocols: OLSR [11],
OpenFlow [12], and MORE [9]. In the simulations to
evaluate the throughput, we use the topology of Roofnet

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput [kb/s]

C
um

ul
at

iv
e 

F
ra

ct
io

n 
of

 F
lo

w
s

OLSR
OpenFlow
MORE
OpenCoding

Figure 7. Throughput CDF of OLSR, OpenFlow, MORE and
OpenCoding

1 2 3 4
0

10

20

30

40

50

60

70

80

90

Number of flows

A
ve

ra
ge

 fl
ow

 th
ro

ug
hp

ut
 [k

b/
s]

OLSR
OpenFlow
MORE
OpenCoding

Figure 8. The throughput of OLSR, OpenFlow, MORE and
OpenCoding with different numbers of concurrent flows

[43], which is a known experimental 802.11b/g wireless
mesh network developed by MIT (Massachusetts
Institute of Technology). While in the simulations to
evaluate end-to-end delay and rule activation time,
we use the random topology that consists of 20, 35,
and 50 nodes to evaluate the scalability of network,
respectively. To keep the same node density, nodes are
randomly placed in a 377*377, 500*500 and 600*600
area, respectively. In all simulations, we use User
Datagram Protocol (UDP) traffic and the packet size for

11
EAI

European Alliance
for Innovation

EAI Endorsed Transactions on

Wireless Spectrum
12 2015 - 01 2016 | Volume 2 | Issue 7 | e2



D. Zhu et al.

all protocols is set to 1500B. In addition, to implement
the network visualization as described in OpenFlow,
the nodes in a software-defined network are equipped
with two network cards, one for the control path and
the other for the data path. In each simulation, we
randomly select the source-destination pairs in the
corresponding topology. In addition, the nodes works
in 802.11b and the data transmission rate is 1Mbps. For
both MORE and our OpenCoding, the batch size is set
to 32.

5.2. Results
In the following, we show the evaluation results
in terms of throughput, end-to-end delay and rule
activation time.

Throughput. Figure 7 shows the Cumulative Distribu-
tion Function (CDF) of the transmission throughput
of OLSR, OpenFlow, MORE and our proposed Open-
Coding, measured over 2000 different runs. In each
run, there is only one traffic flow in the network and
the source-destination pairs are randomly selected. Our
data shows that OpenCoding outperforms the other
three protocols in terms of throughput. Particularly, as
we can see from the figure, OpenCoding achieves a
significant larger throughput gain than the traditional
routing OLSR, and outperforms the OpenFlow and
MORE as well. In the median case, OpenCoding has
a 68.32%, 12.46%, and 9.88% throughput gain over
OLSR, OpenFlow and MORE, respectively. We also
observe that there is a performance gap between our
results and the results of [4] which is based on a real
test-bed. In our simulation, the data communication
and control communication is separated by using multi-
radio multi-channel technique to avoid the channel
interference, while they used different SSIDs that may
degrade the throughput performance to some extent.

Figure 8 shows the average per-flow throughput as a
function of the number of concurrent flows for these
protocols. In all cases, OpenCoding still outperforms
the other three protocols. In addition, the throughput
gain increases as the number of flows increases. As we
can see from the figure, the average per-flow throughout
of OpenCoding drops little, while the others decline
much more than that of OpenCoding. The evaluation
data confirms that OpenCoding can ensure the fairness
with the global optimization.

Because of the intelligent management of the con-
troller introduced by the concept of SDN, the best
routing can be optimally selected by the controller,
which could have a global view of the network. To
this extent, OpenFlow outperforms traditional rout-
ing mechanisms. Meanwhile, because of the utilization
of the broadcast nature of wireless communication
medium, MORE also achieves a significant throughput

gain over the traditional routing mechanisms. Exploit-
ing the benefits of both characteristics, the throughput
performance of OpenCoding is the best. In addition,
the developed scheduler for OpenCoding can effectively
ensure the fairness of multiple flows.

End-to-end Delay. Figure 9 illustrates the relationship
between the average per-packet end-to-end delay and
the number of flows for different numbers of nodes
in the network for OLSR, OpenFlow, MORE, as well
as our OpenCoding, respectively. Each simulation is
repeated 1000 times and the results are averaged as
illustrated. As we can see from the figure, all the average
delays increase as the number of flows and number of
nodes in the network increases. In particular, when the
number of nodes is 20, as the number of concurrent
flows increases from 1 to 4, the end-to-end delay of
OpenCoding increases 18.1% only, while those of OLSR,
OpenFlow and MORE increase 75.4%, 53.5%, and
124%, respectively. The result shows that OpenCoding
achieves a better performance as the number of network
flows increases. In addition, when the number of flows
is 1, as the number of nodes in the network increases
from 20 to 50, the end-to-end delay increases 43.9%,
41.7%, 37.2%, and 43.1% for OLSR, OpenFlow, MORE
and OpenCoding, respectively. This result shows that
the performance of OpenCoding is almost same as the
network size increases.

Rule Activation Time. In order to compare the rule
activation time of OpenFlow and OpenCoding, we
change the number of concurrent flows, as well as
the number of network nodes, and plot the average
value as shown in Figure 10. As we can see from the
figure, the rule activation time of OpenFlow is a little
shorter than that of OpenCoding. That is because in a
network with network coding, there are more routers
that participate in the transmission to fully exploit
the broadcast nature in wireless communication. In
particular, when the number of flows increases, the
rule activation time will grows as well. That is because
the controller needs to compute the best routing for
more flows. Therefore, when there are a large number
of traffic flows concurrently transmitted over the
network, the computation ability of the controller needs
to be powerful enough to avoid being performance
bottleneck.

6. Discussion
In this section, we discuss some open issues related to
OpenCoding.

6.1. Controller Design
When the network size becomes larger, the SDN
controllers could become the performance bottleneck
due to a large number of requests from routers. For

12
EAI

European Alliance
for Innovation

EAI Endorsed Transactions on

Wireless Spectrum
12 2015 - 01 2016 | Volume 2 | Issue 7 | e2



Towards Effective Intra-flow Network Coding in Software Defined Wireless Mesh Networks

1 2 3 4
4

5

6

7

8

9

10

11

12

13

Number of Flows

A
ve

ra
ge

 E
nd

−
to

−
en

d 
D

el
ay

 [m
s]

OLSR
OpenFlow
MORE
OpenCoding

(a) node number:20

1 2 3 4
4

6

8

10

12

14

16

Number of Flows

A
ve

ra
ge

 E
nd

−
to

−
en

d 
D

el
ay

 [m
s]

OLSR
OpenFlow
MORE
OpenCoding

(b) node number:35

1 2 3 4
6

8

10

12

14

16

18

Number of Flows

A
ve

ra
ge

 E
nd

−
to

−
en

d 
D

el
ay

 [m
s]

OLSR
OpenFlow
MORE
OpenCoding

(c) node number:50

Figure 9. Average Delay of OLSR, OpenFlow, MORE and OpenCoding versus number of flows with different node numbers

1 2 3 4
2

3

4

5

6

7

8

Number of Flows

A
ve

ra
ge

 R
ul

e 
A

ct
iv

at
io

n 
T

im
e 

[m
s]

OpenFlow
OpenCoding

(a) node number:20

1 2 3 4
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

Number of Flows

A
ve

ra
ge

 R
ul

e 
A

ct
iv

at
io

n 
T

im
e 

[m
s]

OpenFlow
OpenCoding

(b) node number:35

1 2 3 4
4

5

6

7

8

9

10

Number of Flows

A
ve

ra
ge

 R
ul

e 
A

ct
iv

at
io

n 
T

im
e 

[m
s]

OpenFlow
OpenCoding

(c) node number:50

Figure 10. Average Rule Activation Time of OLSR, OpenFlow, MORE and OpenCoding versus number of flows with different node
numbers

13EAI
European Alliance
for Innovation

EAI Endorsed Transactions on

Wireless Spectrum
12 2015 - 01 2016 | Volume 2 | Issue 7 | e2



D. Zhu et al.

the sake of scalability, reliability and robustness, it has
been realized that the logically-centralized controller
must be physically distributed [44] in Software-Defined
Networks. Because of the lossy and unreliable wireless
channels, the transmission delay will be unacceptable
if the distance between controller and router is long.
Therefore, it is more necessary to distribute multiple
controllers in software-defined wireless mesh networks.

Nonetheless, the controllers located in a distributed
way may compete for common resources (such as com-
munication channels). To this end, an optimal con-
troller placement strategy and a carefully designed
scheduling strategy to avoid collision should be devel-
oped. On designing such a strategy, two essential
questions should be concerned. First, given a wireless
network topology, how many controllers are needed
in order to achieve a desirable performance? Second,
where should the controllers be located? When we
design the optimal deployment strategy, we need to
consider the dynamics of traffic, the density distri-
bution of mobile customers and routers, and realistic
constraints (e.g., geo-restriction and information avail-
ability), deployment costs, the coverage and quality of
service for mobile customers, and applications. We will
develop scenarios for validate the optimal deployment
of controllers. In addition, there are other questions to
be solved: How to synchronize the information among
the controllers and how do the mesh routers connect to
the controllers? We will answer these questions in the
future work.

6.2. Security
There has been limited research effort to date on the
security issues associated with SDN. Nonetheless, as
SDN is a new network architecture, it also brings
some new targets for potential attacks. Our developed
OpenCoding could operate in hostile environments and
all modules and devices could increase the possibility
of being compromised. Therefore, this calls for the
framework to systematically explore possible attacks
against OpenCoding and develop mitigation schemes
[45]. Based on security objectives (e.g., availability,
integrity, etc.), the adversary can launch attacks against
various against various components (e.g., mesh routers,
communication networks, and controller) associated
with data and control planes.

Some vulnerabilities of SDN are listed below. At
the controller level, authentication and authorization is
a critical issue. When there is multiple organizations
and applications accessing the network resources, if
the resources are not enough to be allocated to all
the applications, the demand of application with
higher privilege should be satisfied with less delay.
That is to say, a security model should be designed
to isolate the applications with different privileges.

Meanwhile, privacy preservation is another critical
issue. Since the controller obtains the global view of
network traffic information, adversaries may try to
compromise the controller or overhear and analyze
the traffic through the controller to get these critical
information. Therefore, a privacy preservation strategy
is also necessary.

At the data transmission level, there are numerous
attacks that can be launched to disrupt the effectiveness
of networks. As an example, one potential attack is
denial-of-service or jamming attacks. The adversary
launches an attack by originating a large number of
new traffic flows. As the computation and bandwidth
resources of controller is limited, this type of attack may
be devastating. Moreover, as we know, because of the
mixing nature, network coding is vulnerable to network
attacks such as pollution attacks [46]. The security
problem of OpenCoding should also be considered in
future work.

7. Conclusions

In this paper, we proposed a novel OpenCoding proto-
col, which integrates the software-defined networking
technique with intra-flow network coding technique
for WMNs. Our developed protocol makes a full use
of the broadcast nature of the wireless transmission
medium and the global intelligence of SDN controller,
which enables the ability of improving the network
performance (e.g., throughput, end-to-end delay, and
fairness). Similar to the known OpenFlow protocols for
wired software-defined networks, OpenCoding decou-
ples the data plane and the control plane in wireless
mesh routers, and leaves only network coding functions
in each router for easy deployment and management of
WMNs. Benefited from a global view of the controlled
network, OpenCoding can ensure the fairness of flows.
Through a simulation study, our evaluation data shows
that OpenCoding outperforms intra-flow network cod-
ing protocols such as MORE, and OpenFlow. As ongoing
work, we are implementing OpenCoding in a real-
world test-bed to further evaluate its performance gain.

Acknowledgement. This work is sponsored in part by the
following funds: the National Natural Science Foundation of
China under Grant 61373115, Grant 61402356 and Grant
61502381, the Fundamental Research Funds for the Central
Universities under Grant xjj2015065, and the China Post
Doctoral Science Foundation under Grant 2015M570836.
This work was also supported in part by US National Science
Foundation (NSF) under grant: CNS 1350145. Any opinions,
findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the funding agencies.

14
EAI

European Alliance
for Innovation

EAI Endorsed Transactions on

Wireless Spectrum
12 2015 - 01 2016 | Volume 2 | Issue 7 | e2



Towards Effective Intra-flow Network Coding in Software Defined Wireless Mesh Networks

References

[1] Akyildiz, I. and Wang, X. (2005) A survey on wireless
mesh networks. IEEE Communications Magazine 43(9):
S23–S30.

[2] Ortiz, S. (2013) Software-defined networking: On the
verge of a breakthrough? IEEE Computer 46(7): 10–12.

[3] Hu, F., Hao, Q. and Bao, K. (2014) A survey on
software-defined network and openflow: From concept
to implementation. Communications Surveys Tutorials,
IEEE 16(4): 2181–2206.

[4] Dely, P., Kassler, A. and Bayer, N. (2011) Openflow
for wireless mesh networks. In 2011 Proceedings of 20th
International Conference on Computer Communications
and Networks (ICCCN) (IEEE): 1–6.

[5] Abolhasan, M., Lipman, J., Ni, W. and Hagelstein, B.

(2015) Software-defined wireless networking: central-
ized, distributed, or hybrid? IEEE Network 29(4): 32–38.

[6] Huang, H., Li, P., Guo, S. and Zhuang, W. (2015)
Software-defined wireless mesh networks: architecture
and traffic orchestration. IEEE Network 29(4): 24–30.

[7] Ahlswede, R., Cai, N., Li, S.Y. and Yeung, R.

(2000) Network information flow. IEEE Transactions on
Information Theory 46(4): 1204 –1216.

[8] Biswas, S. and Morris, R. (2005) Exor: Opportunistic
multi-hop routing for wireless networks. SIGCOMM
Computer Communication Review 35(4): 133–144.

[9] Chachulski, S., Jennings, M., Katti, S. and Katabi,

D. (August 2007) Trading structure for randomness in
wireless opportunistic routing. In Proceedings of ACM
SIGCOMM Conference.

[10] Bioglio, V., Grangetto, M., Gaeta, R. and Sereno, M.

(2013) A practical random network coding scheme for
data distribution on peer-to-peer networks using rateless
codes. Performance Evaluation 70(1): 1–13.

[11] Clausen, T., Jacquet, P., Adjih, C., Laouiti, A., Minet,

P., Muhlethaler, P., Qayyum, A. et al. (2003) Optimized
link state routing protocol (olsr) .

[12] McKeown, N., Anderson, T., Balakrishnan, H.,
Parulkar, G., Peterson, L., Rexford, J., Shenker, S.

et al. (2008) Openflow: Enabling innovation in campus
networks. SIGCOMM Computer Communication Review
38(2): 69–74.

[13] Zhu, D., Yang, X., Zhao, P. and Yu, W. (2015)
Towards effective intra-flow network coding in software
defined wireless mesh networks. In Proceedings of IEEE
International Conference on Computer Communication and
Networks (ICCCN) (IEEE): 1–8.

[14] Chowdhury, K.R. and Akyildiz, I.F. (2008) Cognitive
wireless mesh networks with dynamic spectrum access.
IEEE Journal on Selected Areas in Communications (JSAC)
26(1): 168–181.

[15] Hong, Y.W., Huang, W.J., Chiu, F.H. and Kuo,

C.C.J. (2007) Cooperative communications in resource-
constrained wireless networks. IEEE Signal Processing
Magazine 24(3): 47–57.

[16] Bhatia, R. and Li, L.E. (2007) Throughput optimization
of wireless mesh networks with mimo links. In
Proceedings of 26th IEEE International Conference on
Computer Communications (INFOCOM) (IEEE): 2326–
2330.

[17] Kodialam,M. and Nandagopal, T. (2005) Characterizing
the capacity region in multi-radio multi-channel wire-
less mesh networks. In Proceedings of the 11th Annual
International Conference on Mobile Computing and Net-
working (ACM): 73–87.

[18] ONF (2012) Software-defined networking: The new
norm for networks. ONF White Paper .

[19] Yeganeh, S., Tootoonchian, A. and Ganjali, Y. (2013)
On scalability of software-defined networking. IEEE
Communications Magazine 51(2): 136–141.

[20] Hu, Y., Wang, W., Gong, X., Que, X. and Cheng, S.

(2014) On reliability-optimized controller placement
for software-defined networks. Communications, China
11(2): 38–54.

[21] Congdon, P.T., Mohapatra, P., Farrens, M. and
Akella, V. (2014) Simultaneously reducing latency and
power consumption in openflow switches. IEEE/ACM
Transactions on Networking (ToN) 22(3): 1007–1020.

[22] Khan, A. and Dave, N. (2013) Enabling hardware
exploration in software-defined networking: A flexible,
portable openflow switch. In Proceedings of 2013
IEEE 21st Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM): 145–
148.

[23] Biswas, J., Lazar, A., Huard, J.F., Lim, K., Mahjoub,

S., Pau, L.F., Suzuki, M. et al. (1998) The ieee
p1520 standards initiative for programmable network
interfaces. IEEE Communications Magazine 36(10): 64–
70.

[24] Doria, A., Salim, J.H., Haas, R., Khosravi, H., Wang, W.,
Dong, L., Gopal, R. et al. (2010) Forwarding and control
element separation (ForCES) protocol specification. Tech.
rep.

[25] Lakshman, T., Nandagopal, T., Ramjee, R., Sabnani,

K. and Woo, T. (2004) The softrouter architecture. In
Proceedings of ACM SIGCOMM Workshop on Hot Topics
in Networking, 2004.

[26] Yu, W., Chellappan, S., Xuan, D. and Zhao, W. (2004)
Distributed policy processing in active-service based
infrastructures. International Journal of Communication
Systems (IJCS) 19(7): 727–750.

[27] Galis, A., Plattner, B., Smith, J.M., Denazis, S.,
Moeller, E., Guo, H., Klein, C. et al. (2000) A flexible
ip active networks architecture. In Proceedings of Second
International Working Conference on Active Networks, ed.
H. Yasuda (Springer-Verlag): 1–15.

[28] Bernardos, C., De La Oliva, A., Serrano, P., Banchs,
A., Contreras, L., Jin, H. and Zu?niga, J. (2014) An
architecture for software defined wireless networking.
IEEE Wireless Communications 21(3): 52–61.

[29] Riggio, R., Gomez, K.M., Rasheed, T., Schulz-Zander,
J., Kuklinski, S. and Marina, M.K. (2014) Programming
software-defined wireless networks. In Proceedings of
2014 10th International Conference on Network and Service
Management (CNSM): 118–126.

[30] Guimaraes, C., Corujo, D. and Aguiar, R. (2014)
Enhancing openflow with media independent manage-
ment capabilities. In Proceedings of 2014 IEEE Interna-
tional Conference on Communications (ICC): 2995–3000.

[31] Yang, F., Gondi, V., Hallstrom, J., Wang, K.C. and
Eidson, G. (2014) Openflow-based load balancing for

15
EAI

European Alliance
for Innovation

EAI Endorsed Transactions on

Wireless Spectrum
12 2015 - 01 2016 | Volume 2 | Issue 7 | e2



D. Zhu et al.

wireless mesh infrastructure. In Proceedings of IEEE
International Conference on Consumer Communications
and Networking Conference (CCNC): 444–449.

[32] Zeng, D., Li, P., Guo, S. and Miyazaki, T. (2014)
Minimum-energy reprogramming with guaranteed
quality-of-sensing in software-defined sensor networks.
In Proceedings of 2014 IEEE International Conference on
Communications (ICC): 288–293.

[33] Santos, M., de Oliveira, B., Margi, C., Nunes, B.,
Turletti, T. and Obraczka, K. (2013) Software-defined
networking based capacity sharing in hybrid networks.
In Proceedings of 2013 21st IEEE International Conference
on Network Protocols (ICNP): 1–6.

[34] Li, S.Y., Yeung, R. and Cai, N. (2003) Linear network
coding. IEEE Transactions on Information Theory 49(2):
371–381.

[35] Ho, T., Medard, M., Koetter, R., Karger, D., Effros,

M., Shi, J. and Leong, B. (2006) A random linear
network coding approach to multicast. IEEE Transactions
on Information Theory 52(10): 4413–4430.

[36] Chou, P.A., Wu, Y. et al. (2007) Network coding for the
internet and wireless networks. IEEE Signal Processing
Magazine 24(5): 77.

[37] Radunović, B., Gkantsidis, C., Key, P. and Rodriguez,

P. (2010) Toward practical opportunistic routing with
intra-session network coding for mesh networks.
IEEE/ACM Transactions Networking (ToN) 18(2): 420–
433.

[38] Khreishah, A., Khalil, I.M. and Wu, J. (2012)
Distributed network coding-based opportunistic routing
for multicast. In Proceedings of the Thirteenth ACM
International Symposium on Mobile Ad Hoc Networking
and Computing, MobiHoc ’12 (New York, NY, USA:

ACM): 115–124.
[39] Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado,

M., McKeown, N. and Shenker, S. (2008) Nox: towards
an operating system for networks. ACM SIGCOMM
Computer Communication Review 38(3): 105–110.

[40] Tran, Q.M. and Dadej, A. (2014) Optimizing topology
update interval in mobile ad-hoc networks. In Proceeding
of 2014 IEEE 79th Vehicular Technology Conference (VTC
Spring): 1–5.

[41] Naserian, M., Tepe, K. and Tarique, M. (2005) Routing
overhead analysis for reactive routing protocols in wire-
less ad hoc networks. In Proceedings of IEEE International
Conference on Wireless And Mobile Computing, Networking
And Communications (WiMob), 3: 87–92 Vol. 3.

[42] Henderson, T.R., Lacage, M., Riley, G.F., Dowell, C.

and Kopena, J. (2008) Network simulations with the ns-3
simulator. SIGCOMM demonstration 15: 17.

[43] MIT Roofnet (http://pdos.csail.mit.edu/roofnet/
doku.php).

[44] Nunes, B., Mendonca, M., Nguyen, X.N., Obraczka, K.

and Turletti, T. (2014) A survey of software-defined
networking: Past, present, and future of programmable
networks. IEEE Communications Surveys Tutorials 16(3):
1617–1634.

[45] Bhattarai, S., Rook, S., Ge, L., Wei, S., Yu, W. and
Fu, X. (2014) On simulation studies of cyber attacks
against lte networks. In Proceedings of IEEE International
Conference on Computer Communication and Networks
(ICCCN) (IEEE): 1–8.

[46] Zhu, D., Yang, X. and Yu, W. (2015) Spais: A novel
self-checking pollution attackers identification scheme
in network coding-based wireless mesh networks.
Computer Networks 91: 376 – 389.

16EAI
European Alliance
for Innovation

EAI Endorsed Transactions on

Wireless Spectrum
12 2015 - 01 2016 | Volume 2 | Issue 7 | e2

http://pdos.csail.mit.edu/roofnet/doku.php
http://pdos.csail.mit.edu/roofnet/doku.php

	1 Introduction
	2 Background and Related Work
	2.1 Wireless Mesh Networks
	2.2 SDN and OpenFlow
	2.3 Intra-flow Network Coding

	3 OpenCoding
	3.1 Architecture
	3.2 The Design of OpenCoding
	Basic Idea
	Network State Measurement and Management
	Controller
	Source
	Forwarders
	Destination

	3.3 Fairness Optimization for OpenCoding

	4 Overhead Analysis
	4.1 Overhead for Routing Discovery and Maintenance
	4.2 Overhead of Flow Table Request and Distribution

	5 Performance Evaluation
	5.1 Methodology
	5.2 Results
	Throughput
	End-to-end Delay
	Rule Activation Time


	6 Discussion
	6.1 Controller Design
	6.2 Security

	7 Conclusions



