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Abstract : This investigation reports on the promising results obtained from the novel use 

of inertial sensing data for augmenting electroencephalography (EEG)-based subject-

independent classification of emotions generated by virtual reality stimuli in four classes. 

31 users were shown various virtual reality scenes to elicit responses in the four-quadrant 

emotional space according to Russell’s Circumplex Model of Affect. Prior studies in 

emotion classification can be broadly grouped according to two main delineations of 

investigative methods: (1) whether the classification is binary (i.e. two-class classification) 

or otherwise (e.g. three-class, four-class classification or more) and (2) whether the training 

and testing occurs within the same participant (also known as subject-dependent 

classification) or across different participants (also known as subject-independent 

classification). Due to the significantly higher level of difficulty in conducting 

ternary/quaternary, subject-independent classification, the large majority of emotion 

modeling studies that report high accuracy rates adopts the binary, subject-dependent 

approach to classification. However, this study attempts the more challenging four-class 

classification, subject-independent classification. The EEG signals, accelerometer, and 

gyroscopic data were acquired through a wearable brain-computer interface device called 

Muse. Raw as well as power spectral density features were extracted from the EEG signals, 

and together with the first known use of inertial sensing data for emotion classification, 

were used as input to a deep neural network. Classification results show that without inertial 

sensing data, inter-subject classification was indeed highly challenging even for a deep 

learning system with only slightly better than random for 4-class classification at 26-27%. 

However, the augmentation of inertial sensing data improved the classification accuracy to 

40-47%. As such, this work demonstrates the potential of using inertial sensing as an 

additional modality for emotion modeling. 
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1 Introduction 
The next big field of artificial intelligence research is touted to lie within the still nascent domain 

of emotion engineering [1]. The premise of emotion engineering is that using emotion 

recognition, made possible through wearable sensors such as those now commonly found on 

numerous brands of smartwatches, our moods can be regulated. For example, if a worker is 

detected to be experiencing stress via emotion recognition through sensors on his or her 

smartwatch, an app on their smartphone could play some relaxing music through their earphones 

to help alleviate some of the worker’s stress. 

Emotion classification is typically conducted in a binary fashion, i.e. whether the arousal 

level is high or low, or whether the valence is positive or negative [2]. Although some useful 

modeling of user emotions is achieved, nonetheless such classification has rather obvious 

limitations. For example, was a high arousal detected as a result of a happy or a horrific 

encounter, or was a negative valence detected as a result of being bored or frightened? As such 
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rather than binary classification, a four-class classification into the four distinct quadrants of 

happy, scared, bored and calm provides more specific and useful information compared to two-

class classification. 

Morever, the generalizability of most emotion classification studies are limited to the 

modeling being specific to the user. In most cases, the trained emotion classifier can only be 

used to detect future emotions of the same user and cannot be readily transferred for use on 

another use. This is known as subject-dependent emotion classification [2]. A more useful 

approach particularly if such technology is to be widely deployed for everyday use in emotion 

engineering applications where users may not be bothered or have time to train their own 

emotion classifier for use but rather an off-the-shelf, ready-to-use emotion recognition device, 

would be subject-independent emotion classifier. 

The current approaches to emotion recognition involve acquisition of sensory data from 

different modalities including facial expression, heart rate, galvanic skin response and 

brainwaves [3,4]. Brainwave data or electroencephalography (EEG) is typically the method of 

choice for multi-class emotion classification due to its richer set of data acquired through the 

multiple electrodes located on the skull of the user. Nonetheless, even using EEG data, four-

class, subject-independent emotion classification is still extremely challenging. 

Inertial sensors refer to the range of sensors that rely on the principle of inertia to conduct its 

measurements. Two very common forms of inertial sensors are accelerometers and gyroscopes. 

Accelerometers measure linear acceleration along a particular axis where the most common 

approach measures across the three dimensions of x,y,z space. Gyroscopes on the hand indicate 

the orientation in the x,y,z three-dimensional space. Inertial sensors particularly accelerometers 

and gyroscopes that are commonly found in smartphones and other portable devices are fast 

becoming the sensors of choice for a wide range of mobile applications including health and 

fitness tracking apps as well as mobile games [5]. 

This paper represents the first known report on the use of inertial sensing for emotion 

classification from stimuli delivered via an immersive virtual reality (VR) environment. This 

first section has provided an overview of the investigation; the second section will provide a 

brief literature review of relevant work; the third section will explain the methods adopted in 

this study; the fourth section will discuss and analyze the outcomes of the data collected from 

this investigation; the fifth section will conclude this repot and provide some brief future lines 

of investigations. 

2 Background 
 Emotion classification is commonly conducted using still images, video, and music or some 

combination such as the use of music videos [6]. However, even though virtual reality (VR) is 

fast becoming one of the key disruptive technologies in the entertainment and computer game 

industry, there have been very limited number of studies that have been conducted emotion 

classification using VR environments. The potential of emotion classification serving as an 

enabler to new genres of entertainment and computer games is vast considering that the real-

time ability to passively and non-invasively detect the VR user’s state of emotion would open 

up the possibility of unique subsequent experiences that are tailored specifically for the user’s 

responses to the current content being delivered to the user via VR. Affectively-based 

personalized entertainment programs and emotion-based procedurally generated game content 

would now provide user-driven programming that could potentially increase the replay value 

of entertainment programs and computer games very significantly [7]. This premise is 

particularly enticing for the VR industry where the last missing piece of the VR simulated 

experience becoming as real as the non-simulated, real-life experience is the infusion of 

emotions [8]. VR systems today have graphics that are practically indistinguishable from real-

life yet they are completely lacking the emotional aspect completely. 

 A recent study which used both EEG and electrocardiography (ECG) was conducted using 

VR for binary, subject-independent emotion classification. Classification accuracies of 75% 

and 71% were obtained, using Support Vector Machines (SVMs) as the classifier, were obtained 

for arousal and valence classification respectively [9]. Some early work proposing the use deep 

learning to detect only the specific emotional quadrant of high arousal, positive valence 

experienced from VR stimuli based on the presence of goosebumps and galvanic skin response 

has also been reported although no actual classification results were presented [10]. 

Inertial sensing is most commonly used to in human activity recognition applications [11]. 

Accelerometers especially those found in smartphones and smartwatches make up the large 



majority of inertial sensing studies [12] while gyroscopes have also been used [13] but much 

less frequently compared to accelerometers. Recent studies have shown that a deep learning 

approach to human activity recognition using data obtained from wearable sensors such as 

accelerometers and gyroscopes is able to produce highly promising classification results [14-

16]. 

 Based on the literature review of related research and to the best of our knowledge, no attempt 

has yet been made to investigate the use of inertial sensing systems for emotion recognition in 

VR. As such, this forms the basis for this investigation which will leverage on the promising 

findings that have been reported from the use of deep learning approaches for human activity 

recognition using inertial sensors. Furthermore, this investigation also presents the first reported 

results from a four-class, subject-independent emotion classification approach using VR stimuli. 

3 Material and Methods 

3.1 Hardware Requirements 

To deliver the immersive VR stimuli, an off-the-shelf VR Box as shown in Fig. 1(a) was used 

since it could accommodate the content delivery and app-based EEG acquisition via 

smartphones. For EEG acquisition, the Muse headset as shown in Fig. 1(b) from Interaxon was 

used. The Muse headset provides EEG as well as inertial sensing data from its buil-in 

accelerometer and gyroscope. In order for the participants to have an immersive experience 

while wearing the VR Box, an earphone with noise cancelling capability was used to reduce any 

unwanted external interference which may disturb the participants’ attention towards the VR 

experience. 

 

Fig. 1. (a) VR Box (left), (b) Muse EEG headset (right). 

3.2 Dataset Preparation 

In order to collect the data from the Muse EEG headset, a 3rd party software known as Muse 

Monitor developed specifically for Interaxon’s Muse EEG headset was used. The R language is 

used to run the machine learning classifiers and also for classification analysis. The Muse 

Monitor was configured to record the EEG and inertial sensing data at 0.5s intervals. 

3.3 VR Stimuli 

In order to facilitate the immersion experience and to stimulate the senses of the participants 

according to the Russell’s Circumplex Model of Affect, Youtube 360 videos were identified and 

analyzed to ensure that each of the video would fit into 1 of the 4 quadrants of the AVS model. 

In order to have an easier grasp of the complex emotions that was observed from the AVS model, 

each of the quadrants were generalized with the following labelling: Quadrant 1 is Happy, 

Quadrant 2 is Angry, Quadrant 3 is Bored, and Quadrant 4 is Relaxed. 

 

 

 

 

 



 

 

 

 

 

 

 

Fig. 2. Generalized AVS Model. 

16 videos were collected from Youtube (4 from each quadrant) and were then sliced and 

stitched together where there are resting periods during initial video as well as transitioning to 

another quadrant of videos. The videos were presented in 20s block duration per video. Fig 2 

below illustrates the setup of the stimuli video for the participants. 

3.4 Experimental Setup 

 
Fig. 3. Participant wearing the equipment for the experiment. 

31 participants were chosen to participate in this study. The participants were all briefed with 

regards to the experimental protocol and were asked to indicate their consent to participate in 

the study. The environment of the experimental setup was prepared to ensure the safety of the 

participants as well as to avoid any interference from external sources such as noise and objects 

which may hinder the participants’ free movement. The full experimental setup of the hardware 

including the Muse EEG headset as well as the VR Box as worn by the participants is shown in 

Fig. 3. 
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3.5 Feature Extraction 

 

Fig. 4. Muse electrodes according to the standard 10-20 system. 

 The Muse EEG headset records the brainwaves detected via the scalp of the participant’s 

head. It preprocesses the raw barinwaves into the 5 common power spectral densities of the 

human brain namely, Alpha (8Hz to 12Hz), Beta (12Hz to 38Hz), Delta (0.5Hz to 3Hz), Theta 

(3Hz to 8Hz) and Gamma (38Hz to 42Hz) using Fast Fourier Transform. The raw brainwave of 

the original signals along with inertial sensor information obtained from its accelerometer and 

gyroscope were also acquired. Muse electrodes records the brain activities on AF7, AF8, TP9 

and TP10 and reference at Fpz based on the standard 10-20 system. Fig 4 below illustrates the 

location of the electrodes attached onto the scalp of the human head. Postprocessing using linear 

interpolation was utilized to handle missing values in the acquired dataset. 

 

Fig. 5. Muse electrodes according to the standard 10-20 system. 

Upon acquisition of the respective signals from Muse, postprocessing was conducted to 

address artefacts were introduced into the dataset which impacts the overall performance during 

the classification process. The biggest concern in the data collection was the gap within the 



signal recordings of the data where it shows NA (Not Available) or missing datapoints. The 

process of approximation or “Interpolation” was calculated using R where the method of 

“Linear” was selected to do the interpolation. The extracted features were then fed into a deep 

neural network to conduct the emotion classification. Fig 5 shows the overall process of the 

experiment. 

4 Results and Discussion 

A preliminary test conducted on the parameter setup for the deep neural networks used for 

classification yielded architectures that performed best when utilizing two hidden layers with 

200 hidden nodes within each layer. 10-fold cross-validation was used for each of the deep 

neural networks tested and were run using for 10 epochs for each experiment. The initial weights 

of the deep neural networks were set using the uniform adaptive method. Cross-entropy was set 

as the error function for training and testing.  Rectified linear unit (ReLU) transfer functions set 

with a 50% dropout ratio and applying an adaptive learning rate were implemented for all the 

hidden layer nodes. The output layer used a softmax transfer function. 

Short-Time Fourier Transform (STFT) was used to decompose the raw signal from each 

electrode into 5 bands (delta, theta, alpha, beta, gamma) giving a total of 20 features obtained 

from EEG data. Inertial sensing data was obtained in three axes (x,y,z) from both the 

accelerometer and gyroscope of the Muse headset giving a total of 6 features obtained from 

inertial sensors. The raw EEG signal from each of the four electrodes was also made available 

to the classifier as an additional input features. Therefore, each deep neural network was able to 

receive up to a grand total of 30 input features from both the EEG and inertial sensing data 

depending on the which experimental setup was being tested shown in table 1. 

Table 1.  Ten-fold cross-validation classification. 

Setup 

No. 

4-Quadrant Subject-Independent Classification 

Setup Description Accuracy (%) 

1 5-band STFT EEG only 26.07 

2 Raw EEG only 26.46 

3 Inertial Sensing only 40.21 

4 5-band STFT EEG + Raw EEG 40.40 

5 Raw EEG + Inertial Sensing 40.92 

6 5-band STFT EEG + Inertial Sensing 41.16 

7 
5-band STFT EEG + Raw EEG + 

Inertial Sensing 
47.44 

Table 1 shows the classification accuracies obtained from seven different combinations of 

features used as input to the deep neural network. The classifier produced the highest 

classification accuracy of 47.44% when all 30 features were used comprising the inertial 

sensing, raw and STFT EEG data.  

The second and third best performing systems were also setups that utilized inertial sensing 

data to augment either the STFT or raw EEG data producing accuracies of 41.16% and 40.92% 

respectively. The two worst systems with accuracies of only slightly better than random for a 

four-class classification problem at 26.07% and 26.46% were the setups that exclusively used 

either STFT EEG or raw EEG data only and which excluded the use of inertial sensing data. 

 



 

Fig. 6. Distribution of inertial sensor data against stimuli quadrant 

A plot of the distribution of acquired signals obtained from each of the 6 inertial sensors is 

presented below in Fig. 6. As can be seen from the plots, there are observable although fairly 

small differences in the distribution of the values when comparing against the different axes and 

different sensors. It is perhaps these small but observable differences that are able to be used by 

the deep neural networks to make an improved distinction between the different quadrants that 

represent the 4 distinct emotional responses to the VR stimuli. 

5 Conclusion and Future Work 
This paper investigated the first use of inertial sensing for detecting emotions experienced 

through immersive virtual reality stimuli in a four-class, subject-independent approach. 

Augmenting raw and power spectral densities of EEG data obtained from using a wearable BCI 

device with accelerometer and gyroscopic data enabled a deep learning neural network to 

produce classification rates of 47% compared to only 26% obtained from non-augmented setups 

that used either only EEG raw or power spectral densities. As such, this study has demonstrated 

promising results from the use of inertial sensing as a method to augment existing EEG-based 

emotion classification systems, particularly when such inertial sensing data can be deployed for 

immersive VR environments. 

Useful avenues of further investigation leading from this current explorative study include 

the use of additional modalities such as galvanic skin response as well as ECG data to further 

augment inertial sensing and EEG data. Other deep learning approaches such as Long-Short 

Term Memory architectures that are able to capture the dynamics of the emotional response may 

also be beneficial in further improving the classification accuracies. 
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