
Green Software Process Based on Sustainability

Dimensions: The Empirical Investigation

Jamaiah Yahaya1, Komeil Raisian2, Siti Rohana Ahmad Ibrahim3, Aziz Deraman4
{jhy@ukm.edu.my1, Raisiank@hotmail.com2, srai.gurlz@gmail.com3, a.d@umt.edu.my4}

Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia

Bangi, Selangor, Malaysia 1, Faculty of Information Science and Technology, Universiti Kebangsaan

Malaysia, Bangi, Selangor, Malaysia 2, Faculty of Information Science and Technology, Universiti

Kebangsaan Malaysia, Bangi, Selangor, Malaysia 3, School of Informatics & Applied Mathematics,

Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia4

Abstract. Green and sustainability issues are being considered as the alternative effort to

ensure the long-time usage and durable of a software. The overall target for green software

is to produce sustainable software products with minimal negative impact on the

environment. In general, sustainability in software is associated with the ability to operate

in a longer time and viable in their environments. Issues regarding sustainability are usually

based on economy, social, and environmental view. In order to achieve and maintain

sustainability in software, software process should undergo and comply with green.

Previous studies emphasis on green hardware in respect to energy consumption, power

consumption, waste reduction and disposal. However, it seems lack of studies on green

software even though software has impact indirectly to the environment and to the software

itself. This paper presents the empirical study conducted in Malaysia to investigate the

sustainable practices in software process toward achieving green process and environment.

One hundred and two (102) participants were involved in this survey and most of them

were software engineers and software developers. The results reveal that the sustainability

practices are important and relevant for green software process.

Keywords: software process, green software process, empirical study, sustainability

practices

1 Introduction

Green and sustainability issues are being considered as the alternative effort to ensure the

long-time usage and durable of a software. The overall target for green software is to produce

sustainable software products with minimal negative impact on the environment. In general,

sustainability in software is associated with the ability to operate in a longer time and viable in

their environments. Issues regarding sustainability are usually based on economy, social,

technical and individual view [1]. Previous studies emphasis on green hardware in respect to

energy consumption, power consumption, waste reduction and disposal. However, it seems lack

of studies on green software even though software has impact indirectly to the environment and

to the software itself. Several studies touch on green exclusively but limited integration with

sustainability dimension. It is believed that integration between sustainability and green may

have potential to make software more tolerate and applicable for the new generation that demand

INCITEST 2019, July 18, Bandung, Indonesia
Copyright © 2019 EAI
DOI 10.4108/eai.18-7-2019.2287944

for greener environment. It also beneficial to improve and enhance the studies of software

engineering in future.

Today’s modern and largely digitised world is concerned with the development of more

recent and practical software. This has led to scientific development in software engineering

which was defined as systematic, disciplined and quantifiable methodologies that deal with the

development, operation and maintenance. In recent years, creating computing or information

technology products and eco-friendly software have become the target of the hardware and

software industries. The concept of the eco-friendly target basically revolves around decreasing

carbon utilisations, saving energy and minimising dangerous waste.

Green software development is a moderately new study arena in green computing. The

industry of software development is now receiving demands to incorporate green software

development. Software assumes an expanding part of our lives and its environment and

sustainability effects are becoming increasing vital. Therefore, green software necessities

require consideration, as well as a conventional quality within software development.

This paper will discuss further on the background works in the related areas. Section 3

discusses the empirical study conducted in Malaysia. The discussion will cover the

questionnaire design, questionnaire validation and data collection. Section 4 presents the results

and discussion. While section 5, the last section presents the conclusions and future work.

2 Background Work

The background work covers two main areas which are the software process and the green

measurements based on sustainability dimensions for software process.

2.1 Software Process

Software Development Life Cycle or SDLC is a well-known and oldest software

development model. It was developed based on the systematic implementation and maintenance

through break down process in different stages incorporating requirements definition, system

and software designs, implementation and unit testing, also operation and maintenance [2]. Each

process in SDLC consists of defined activities to support and fulfil the stages. Study conducted

by Shenoy and Eeratta showed that current implementation of SDLC may encounter some

problems in promoting green environment [3]. The problem is that certain important decisions

taken in these phases like use of paper, generation of e-Waste, power consumption and increased

carbon foot print by means of travel, air-conditioning and many more may harm the environment

directly or indirectly.

There is lack of models that define how a software can be developed and maintained in an

environment friendly way [3]. Study by [3] aimed to build environmentally-friendly software

and improved the development process and moved towards greener of development and

sustainable software. They proposed an enhanced model for software development life cycle

and proposed measurements of carbon emissions of power reduction and paper usage to help

organizations moving towards greener and sustainable in software development. In addition,

through this model, the researcher claimed that electronic waste could be gradually reduced in

terms of the cost reduction during software development process in organisation. Therefore, the

products developed are environmentally friendly and give added value to consumers. The model

presents the integration of best practice for green software development based on electronic

waste and power reduction.

Previous studies have revealed that SDLC is considered as a software process model that

can guarantee to produce good quality software [3-4]. At the same time, there are several other

models for software process with specific objectives. Among the most widely used development

models are Waterfall Model, V Model, Incremental Model, Rapid Application Development

(RAD) Model, Agile Model, Iterative Model and Spiral Model. Each of these models has a goal

of having a good quality assurance in software development process [2][5]. No matter what

model is chosen for developing software, this activity involves complex processes that are often

exposed to errors. Thus, requires to manage and re-examine the activities to reduce errors and

maintain sustainability. The sustainable of software products and process are measured with

minimal negative impact on the environment.

In order to look in more significant at each stage, the following will explain and discuss in

more detail the fundamental of software process that contained in all software process models:

collecting or analysis requirement, design, implementation and coding, testing and operation

and maintenance [5][8].

2.1.1 Collecting or Analysis Requirements

This stage is the basic to the success of software development project. Requirements and

specification are gathered and collected for proper and detail documentation. This is a procedure

of iterative with high communication occurring among the stakeholders, end users and

developer team [6]. Several methods [7] can be utilized for requirements collection such as: -

• Determine and obtain stakeholder’s requirements by utilizing interviews, questionnaire

and surveys.

• Multiple utilisation cases in order to define activity within the exacting system or also

known as observation.

• Prototypes can be developed and used to demonstrate the user’s final product overview

and function.

In an enterprise environment, this implies investigating users, making sense of what they

need and after that designing what a successful result would resemble in the proposed software.

In requirement phase, functional and non-functional requirements must be specified and detail.

2.1.2 Design

Prerequisites of technical design are set up in this stage to guide the development team. The

business requirements are utilised to characterise how the application will be composed.

Requirements of technical are detailed into tables of database, new input/output are

characterised and designed, hardware, system requirements, algorithm, component design,

quality specification and also security procedure. The GUI interface designs take place to meet

the functional and non-functional requirements. Several issues and steps can be considered

during this stage to improve and achieve green.

2.1.3 Implementation and Coding

This stage is the real coding and unit testing of the procedure within the development team.

This phase involves coding, programming and unit testing. Issues such as efficient code,

programming languages and testing procedures are relevant to be considered in this phase for

green process. The completed software product hereby is input to the testing phase.

2.1.4 Testing

While the software or application is in testing phase, various testing types will be executed

incorporating system testing and integration. User acceptance test is the last testing part and is

executed via the end user to guarantee the system is accordance to their expectations. Based on

this activity, defects might be found and more activity might be needed in the requirement

specification, design or coding. The test case data and procedures are significant to be deliberate

to achieve green.

2.1.5 Operation and Maintenance

The size of the software will distinguish the complexity of the implementation of

deployment [2]. Several deployment methods are applied to ensure the deployment of new

software or application are smooth and does not interfere the current business operation.

Trainings are also included for various level of users as well as the technical team.

2.2 Green measurements based on Sustainability Dimensions

The general recognition about a software is that it is normally green and software barely

has an environmental impact. Can software be greener than before? Green and sustainability are

being considered as the alternative effort to ensure the long usage and durable of a software. As

mentioned before that the main goal for green software is to produce sustainable software

products with minimal negative impact on the environment. Therefore, as proposed by Calero

and Piattini, green software can be classified into green in software and green by software [26].

Green by software covers aspects such as grid management, cloud management, data centres,

dematerialisation and etc. Green in software is identified as how to create software in a more

sustainable manner which incorporates issues such as process, product, life cycle and

governance [26].

 In general, sustainability in software is associated with the ability to operate in a longer

time and viable in their environments. Literature study shows that current studies in software

process do not focus on integration of sustainability measurements towards achieving green

process. Previous studies revealed that sustainability measurements can be identified as

economic, social, and environmental dimension. It permits a simple perception of reconciliation

and understanding of environment, social and economic issues [23]. The main and fundamental

dimensions for sustainability need to be embedded as the prerequisites for sustainability and

green software process [24]. Referring to sustainability in software, the economic dimension is

concerned with preserving capital and value. The social dimension is concerned with

maintaining communities and the environmental dimension seeks to improve human welfare by

protecting natural resources [25].

Green and sustainability software process is the art of developing green and sustainable

software with green and sustainable software engineering process. Therefore, it is the art of

defining and developing software products in a way so that the negative and positive impacts

on sustainable development that result and/or are expected results are continuously assessed,

documented and used for further optimisation of the software [8][9]. Number of works in green

software development in general, but not much consideration on embedded green measurements

in term of sustainability. The sustainability practices toward green software process can be

summarised as shown in Table 1.

Table 1. Sustainability practices in SDLC phases
SDLC Phases Sustainability Practices Source of References

Requirement

Engineering

i) Collect requirements through electronic

means.

Agarwal et al. [10],

Shenoy et al. [3]

ii) Consider software durability

iii) Provide power down capability

iv) Feasibility studies must assess the impact

of the project on the environment

Design

i) Designs must include specific measures

and practices that relate to environments.

ii) Start designing with simple initial design.

iii) Fewer utilizing devices and hardware

Agarwal et al. [10],

Shenoy et al. [3]

iv) Use of virtualized systems

v) Avoid frequent change

Coding

i) Implementing pair programming (two

programmers working together)

Williams et al. [11], Shenoy et

al. [3], Schindler [12]

ii) The focus should shift to writing energy

efficient codes that minimize the use of

system resources.

iii) Do not use duplicated code

iv) Use automatic code generation

Testing

i) The system resource usage metrics need

to be added to the list of test cases that

need to be passed.

Agarwal et al. [10], Shenoy et

al. [3]

ii) Use Automatic Testing

iii) Should concern reuse test

Implementation

i) Auditing and reporting the organization’s

energy consumption and savings.

Mohankumar & Anand [13],

Agarwal et al. [10]

ii) Modifying supply chain, production

activities and organization flow.

iii) Creating more efficient business

operators, buildings and system.

iv) Helping the decision-making process by

analyzing modeling, and simulating of

environmental impacts that may occur.

3 The Empirical Study

The approach started with: 1) adapting and designing the questionnaire from the previous

literature, 2) questionnaire content validation, 3) distributing the questionnaire and data

collection, 4) data analysis, and 5) results and findings. The objectives of this survey were to

study the current green practices in software process among software practitioners in the

industry and second was to identify essential sustainability software process towards green

environment.

3.1 Questionnaire Design

The design of the instrument was based on closed ended questions that allowed the

respondents to provide an exact answer for each question. All the questionnaire items were

adapted from previous related studies, which related to the context of each factor. Additionally,

the recommendations made by experts were used to improve the questionnaire. The

questionnaire was written in English.

The adapted process during this design activity started with chosen the proper items based

on the previous researches which they used the same items for the identified factors. The items

were selected in regard to the aim of this research and context. In this survey we focused on

identifying green aspects related to SDLC activities and phases based on sustainability practices

as shown in Table 1.

One of the designs in this questionnaire is related to software SDLC practices that must be

performed in order to produce high green software. The classified software processes are

Requirement, Design, Coding, Testing and Implementation process and the practices are related

to sustainability dimensions and measures. The scale to answer these questions are using the 5-

point numerical scale which ranges from 1 to 5. Numerical value of 1 represent Not Important,

2 represents Less Important, 3 represents for Neutral, 4 represents for Important and 5 means

Most Important.

3.2 Questionnaire Validation

The questionnaire was validated using two-step methods before distributed to the

respondents to ensure that the items were free of errors, easy to understand, and content

appropriateness of the items. In the first step, the questionnaire was validated by three experts

who were university academic staff or researchers in the same field. The questionnaire was

validated according to its language, clarity, content and its contradictions or duplications if any.

The recommendations and feedbacks from the experts were followed and corrected before

the pilot study was conducted. During the pilot study, the reliability test using Cronbach Alpha

test was carried out. The Cronbach Alpha test showed that the items in the questionnaire have

relatively high internal consistency.

3.3 Distributing and Data Collection

3.3.1 Sampling and Respondents

The list of possible software organisations from private and government companies that

have related software background was identified. The sample of respondents was also gathered

through members of research centres and working in software development. Out of 220

contacted respondents, 148 (67%) had participated while 72 (33%) refused to participate. A total

of 102 questionnaires or 69% of the respondents were considered as valid respondents of this

survey. It is considered adequate and acceptable based on [14] and [15]. In this study, an online

questionnaire was made by utilising google document and messaged the respondents to consent

and complete the questionnaire. Table 2 shows the detail of respondent rate of this survey.

Table 2. Respondents Rate

Detail Number Percentage (%)

Number of respondents willing to

participate

148 100%

Valid questionnaires 102 69%

Unreturned questionnaires 28 19%

Incomplete questionnaires 18 12%

3.3.2 Demographic

Table 3 shows the demographic of the respondents. It shows that 62 (or 60.7%) of the total

respondents are engaged as software developers and software engineers. At the same time

almost 26% are IT professionals and researchers related to computing.

 Table 3. Respondents Background

Position in the Organisation Frequency Percentage (%)

Board of Directors 2 2.0

IT Professional 15 14.7

Researcher 12 11.7

Project Manager 7 6.8

Software Developer 26 25.5

Software Engineer 36 35.4

Others 4 3.9

Total 102 100%

Cross analysis to investigate characteristic of respondents based on their experiences in

software development activities were also carried out. Table 4 shows the result. Out of 102

respondents, nearly 5% have over 20 years of experience in software development. Majority of

them (43.1%) have between 6 to 10 years’ experience and 25.5% have experience between 11

to 20 years (see also Figure 1 for graphical representation).

Table 4. Respondents’ experience in software development

Years of Experience Frequency Percentage (%)

< 1 8 7.8

1-5 19 18.6

6-10 44 43.1

11-20 26 25.5

21-29 5 4.9

Total 102 100%

Fig. 1. Years of experience in software development by respondents

4 Results and Discussion

This section addresses software practitioners’ opinions and experiences regarding their

familiarity of the software process methodology and activity. The sustainable software

development life cycle is a framework defining tasks performed at each phase in development

process.

In this survey, respondents were asked whether they were aware with sustainable software

process and product. Most respondents (or 61%) claimed that they are familiar with sustainable

SDLC practices, while 39% admitted otherwise as shown in Figure 2. According to Scheuer

[17] and Kossek et al. [18], studies showed that increased in green experience adoption related

to a shift in familiarity of that particular aspect which in this study related to green SDLC

software process. Familiarity plays a main role in adoption practices.

8; 8%

19; 19%

44; 43%

26; 25%

5; 5%

< 1 1-5 6-10 11-20 21-29

 Fig. 2. The familiarity of sustainable SDLC among respondents

In this survey, respondents were asked regarding software SDLC practices and activities

that must be performed in order to produce high green software. The questionnaire classified

the software processes into: Requirement, Design, Coding, Testing and Implementation. The

respondents were asked to answer the questions and gave answer based on Likert scale 1 to 5

where 1 = not important, 2=less important, 3=neutral, 4=important, 5=most important. The

mean value for each practice was obtained from the analysis, as it represents the most selected

answers on average. The 5-point numerical scale was used for these questions and the scale was

then mapped into equal intervals. The interval ranges were calculated using the following

formula shown in (1). Formula (1) is adapted from Ismail, Abedlazeez and Hussin [16].

Interval ranges = (n-1) / n; (1)

where n is the maximum number in the used scale, which is equal to 5. Thus, the interval size

of the consideration level between one through seven is 0.8, as the interval values are depicted

in Table 5.

Table 5. Degree of importance and interval values

Degree of Importance (DI) Interval Values

Not Important (NI) 1.00 – 1.80

Less Important (LI) 1.81 – 2.60

Neutral (N) 2.61 – 3.40

Important (I) 3.41 – 4.20

Most Important (MI) 4.21– 5.00

5.1 Current sustainable practices in SDLC

Table 6 shows the mean values obtained by current sustainable practices for each phase of

the SDLC process. Results from the study indicate that most of these SDLC processes obtained

high consideration among respondents, whereby the mean values are in the range of Important

to Most Important based on the Interval Values in Table 5.

0

10

20

30

40

50

60

70

YES No

The analysis shows and verifies that almost all sustainability practices are considered

important and very important towards green software process. This was revealed by the

respondents of this survey as shown in Table 6.

5.2 Sustainability Dimensions and Measurements in Software Process

This section discusses the responds and feedbacks obtained through the survey regarding

the importance of sustainability dimensions and measurements in software process from

respondent’s perspectives. The respondents were asked about the sustainability practices from

sustainability dimensions which needed in order to achieve green process. The dimensions are

environment, social and economic as discussed in Section 2.

Table 7 shows the results obtained by calculating the mean score by each sustainability

dimensions and measurements. The mean scores are then been mapped into Degree of

Importance and Interval Values (see Table 5). The results show that mostly the sustainable

measurements and practices obtain high consideration during development with the mean values

of Most Important and Important achieved.

Table 6. Degree of importance of SDLC practices by respondents

SDLC

Phases

Practices Mean

Degree of

Importance

Requirement

Collect requirements through electronic means
 4.20

Important

Consider software durability
 4.28

Most Important

Provide power down capability
 4.20

Important

Feasibility studies must assess the impact of the

project on the environment
 4.22

Most Important

Design Designs must include specific measures and

practices that relate to environments
 4.32

Most Important

Start designing with simple initial design
 4.18

Important

Using fewer hardware devices
 4.23

Most Important

Use of virtualised systems
 4.25

Most Important

Avoid frequent changes
 4.25

Most Important

Coding Implementing pair programming (two

programmers working together)
 4.35

Most Important

The focus should shift to writing energy efficient

codes that minimise the use of system resources.
 4.22

Most Important

Do not use duplicated code
 4.22

Most Important

Use automatic code generation
 4.32

Most Important

Testing The system resource usage metrics need to be

added to the list of test cases that need to be passed
 4.14

Important

Use Automatic Testing
 4.04

Important

Should concern reuse test
 4.19

Important

Implementation

Auditing and reporting of the organisation’s

energy consumption and savings
 4.23

Most Important

Modifying supply chain, production activities and

organisation flow
 4.14

Important

Creating more efficient business operators,

buildings and system
 4.01

Important

Helping the decision-making process by

analysing modelling and simulating of

environmental impacts that may occur

 4.23
 Most Important

Table 7. Sustainability dimension and measures in organisations by respondents

Dimension Measurements and Practices Mean

Score

Degree of

Importance

S
o

ci
al

 S
u

st
ai

n
ab

il
it

y

Employee support, cohesiveness, and shifting patterns of

teamwork are also salient and relevant in green process.

4.26 Most Important

Process and practices are supported by tools in software

development activities (requirement, analysis, design,

implementation and maintenance)

4.00 Important

The tool supports the structure of the organisation which

intend to the development process.

3.19 Neutral

Tools are needed in the requirement engineering to support

and automate the process.

4.29 Most Important

Tools are needed in development practices to create

strategies and methods in ensuring the development

performance.

4.00 Important

Tools are required in development life cycle to develop

and test components for consistency with common and

varies features.

4.25 Most Important

Tools are required in software product architecture to

portray the development without violating the product

scope and definition.

2.91 Neutral

Employ development aids that help project coordination. 4.11 Important.

E
co

n
o

m
ic

al

S
u

st
ai

n
ab

il
it

y

The main goal of software process model lies in reducing

the business cost.

4.29 Most Important

High productivity and high product quality results could

be traced back to observable patterns of teamwork.

4.28 Most Important

The usability aspect is necessary in software development. 3.23 Neutral

Usability is a complex development and process. 4.01 Important

Various functions in software are integrated based on

usability development.

4.16 Important

Usability development requires more times and efforts. 3.96 Important

Confident with usability development. 3.22 Neutral

Consistency with usability development 3.90 Important

Easy to learn related to usability 4.19 Important

E
n

v
ir

o
n

m
en

t
S

u
st

ai
n

ab
il

it
y

Software performance depends on the basic computing

resources (such as CPU and memory).

4.19 Important

Software needs faster CPUs and increased memory. 3.99 Important

Memory usage is one of main requirements for software

development based on environmental sustainability.

4.31 Most Important

The size of total storage space for each software is

important concern for developers.

4,25 Most Important

Short-term and long-term storage usage in necessary

during development.

4.20 Important

Energy consumption have direct impacts related to

resources during development and use of software.

2.87 Neutral

The functional Co2 emission with respect to

environmental sustainability in software development

process.

4.20 Important

The functionality aspect of the software 2.93 Neutral

Sustainability dimension and measures were introduced and asked to the respondents

regarding the applicability and considerations in software development process. Following the

sustainable SDLC process principles base on [3][10], software needs to be developed and

modified in order to avoid of degradation and increase in maintenance activities and lead to

carbon footprint. This to ensure and also employ for long time operations of the particular

software. Thus, longer lifetime would be essential element in order to achieve green and

sustainable software. The results show that these practices gained high consideration by

respondents in this survey.

During design phase of software process, the initial aim has to be to achieve simplicity in

design. The developers must be able to find out the design in easy way without much definition

and this helps to use lower paper works. Complicated design might lead to higher documentation

activity and utilising computer devices and also re-design which may lead to fuel consumption

on travelling, higher power consumption, and other resources usage. In complicated and

difficult design, effort must be provided to decrease the complexity. This is needed to maintain

sustainability and green in process [3]. The use of virtualise system, hardware and cloud may

lead to shared reusable resources and reduce power consumption and lesser garbage of hardware

[10]. Reduce reimplementation of same modules or elements may accelerate the development

process to bring plug-in architecture and software reusability [19]. The results of this survey too

align with these thoughts.

Following coding stage of software process, pair programming might be useful and

applicable for maintaining sustainable and green process. Pair programming aims at removing

knowledge silos and improving code quality (including discoverability and readability) [20].

Furthermore the efficiency in code which means less resources used during development but

the software must not get less performance in terms of latency, processing speed and others [21].

Automation of repetitive implementation tasks can be considered as very critical part of

sustainability implementation because they reduce time taken to achieve the tasks and minimal

manual errors. Hardware-specific codes and programs should be discouraged in green process

[3]. These practices were revealed essential consideration by previous studies, and this survey

has discovered the same findings.

Test automation must be encouraged as it will reduce manual errors in order to implement

testing activity based on sustainable SDLC and emphasise on test reuse cases and standardise

the testing process. This develops efficiency in testing through productivity and decreases power

consumed by additional resources in manual testing process [3]. In order to achieve sustainable

process in testing, resource profiling and performance test must also be improved because

otherwise there might be demand for extra memory, processor cycles and hardware. The

improve computer hardware and other resources are needed to maintain sustainability and green

in software process [3][10].

In this survey, the implementation and deployment practice obtain high consideration with

Most Important and Important among respondents. This finding is also supported by previous

study [13][3]. Previous studies have revealed that software implementation especially in large

system such as Enterprise Resource Planning requires appropriate steps such as creating and

modifying efficient business operators, supply chain and decision-making process. In

sustainable development, teams are able to be proactive about changes in their ecosystem. Their

ability to be proactive is enabled by their attention to doing the work that is of the highest value

to customers or users with high quality and reliability and an eye toward continual improvement

despite increasing complexity. In addition, in this phase the actual software is prepared for being

installed in the production environment. The size of the installation package plays a major role,

larger the size of installation, more the time taken for installation in the production environment.

This also adds an overhead of storage and maintenance and demands lot of disk space for

storage. It is also suggested to use of a common artefact model for documentation during

development as well as during implementation and maintenance phase, facilitating collaboration

in the initial development process and improving reuse or refactoring in the maintenance

process. All these will improve sustainability and achieve green in organisation environment

[3][22].

5 Conclusions and Future Work

Software engineering has been recognised today as a principle and important role of our

life that may have impact in term of social, economy and environment. Software engineers are

starting to realise the significance of designing sustainability regarding software processes. The

field of sustainable and green software are still young. Thus, in this modern society with new

generation demand, researchers’ efforts are mainly focused on green and sustainable software

process and further toward green software product itself. The aim of this study is to understand

the related potential factors for improving the recent trend of sustainability dimension towards

green life cycle and software process.

Most studies previously work on green ICT or green IT that in lined to the impacts of

hardware towards green environment. Yet our work focuses regarding the impacts of building

software products from process point of view. In this way, the arrangement was to recognise

current issues in sustainable software practices and further to explore the measurements of

sustainability for green software process. This paper has presented the empirical study

conducted in Malaysia that investigated software process from sustainability dimension’s view

which may lead to green software process. For future work, we will propose a model to

coordinate sustainability and green in software development process.

Acknowledgments. This research is funded by Universiti Kebangsaan Malaysia, The Research

University Grant (AP-2017-005/3).

References

[1] Calero, C. and Piattini, M.: Green in software engineering, Springer International Publishing

(2015).

[2] Sommerville, I: Software Engineering, 10th edition, Essex, England (2016).

[3] Shenoy, S. & Eeratta, R.: Green software development model: An approach towards sustainable

software development, India Conference (INDICON), 2011 Annual IEEE, December (2011)

[4] Stoica, M., Mircea, M. & Ghilic-Micu, B.: Software Development: Agile vs. Traditional

Informatica Economica, Vol. 17(4), pp.64-76 (2013).

[5] Ruparelia, N.B.: Software development lifecycle models. ACM SIGSOFT Softw. Eng. Notes

(2010).

[6] Kalinowski, M., Curty, P. Paes, A., Ferreira, A., Spinola, R., Fernandez, D.M. Felderer, M. and

Wagner, S: Supporting Defect Causal Analysis in Practice with Cross-Company Data on Causes

of Requirements Engineering Problems, International Conference on Software Engineering

(ICSE) - Software Engineering in Practice (SEIP), Buenos Aires, Argentina, May (2017).

[7] Mylopoulos, J., Chung, L. and Nixon, B.: Representing and using non-functional requirements;

A process-oriented approach. IEEE Transactions on software engineering, Vol. 18(6), pp.483-

497.(1992).

[8] Dick, M., Naumann, S.& Kuhn, N.: A model and selected instances of green and sustainable

software, IFIP Adv. Inf. Commun. Technol., Vol. 328, pp. 248–259 (2010)

[9] Naumann, S., Dick, M., Kern, E. and Johann, T.: The GREENSOFT Model: A reference model

for green and sustainable software and its engineering,” Sustain. Comput. Informatics Syst., Vol.

1(4), pp. 294–304 (2011)

[10] Agarwal, S. Nath, A. and Chowdhury, D.: Sustainable approaches and good practices in green

software engineering. International journal of research and reviews in computer science

(IJRRCS), Vol. 3(1) (2012).

[11] Williams, L., Rubin, K. and Cohn, M.: Driving process improvement via comparative agility

assessment, IEEE AGILE conference, pp. 3-10 (2010).

[12] Schindler, C.: Agile Software Development Methods and Practices in Austrian IT-Industry:

Results of an Empirical Study, 2008 International Conference on Computational Intelligence for

Modelling Control & Automation, Vienna, Austria (2008).

[13] Mohankumar, M. and M. Anand, M. K.: A Green IT Star Model Approach for Software

Development Life Cycle, International Journal of Advanced Technology in Engineering and

Science, Vol. 3(1) (2015).

[14] Saunders, M.N.K., Lewis, P. & Thornhill, A.: Research Methods for Business Students (7th

Edition), Pearson (2015).

[15] Fisher, C.: Researching and Writing a Dissertation: An essential guide for business students, 3rd

Edition, Pearson Education Canada (2007).

[16] Ismail, W. , Abedlazeez, N. and Hussin, Z.: Epistemological Beliefs of Students at High Schools:

A Survey Study in Malaysia, OIDA International Journal of Sustainable Development, Vol. 02

(08), pp.39-46 (2011).

[17] Scheuer, C.W.: Adoption of residential green building practices: Understanding the role of

familiarity, PhD thesis, University of Michigan (2007).

[18] Kossek, E.E., Lautsch, B.A & Eaton, S.C.: Flexibility Enactment Theory: Implications of

flexibility type, control, and boundary management for work-family effectiveness. Lawrence

Erlbaum Associates Publishers (2005).

[19] Wolfinger, R.: Plug-in architecture and design guidelines for customizable enterprise

applications. In Companion to the 23rd ACM SIGPLAN conference on Object Oriented

programming systems languages and applications, pp. 893-894. ACM (2008).

[20] Sedano, T., Ralph, P. & Péraire, C.: Sustainable Software Development through Overlapping

Pair Rotation, Conference: 10th International Symposium on Empirical Software Engineering

and Measurement (ESEM 2016) (2016).

[21] Toomin, M., Begel, A. & Graham S.L.: Managing duplicated code with linked editing. In visual

language and human centric computing, 2004 IEEE Symposium on, pp. 173-180 (2004),

[22] Penzenstadler, B.: What does Sustainability mean in and for Software Engineering? January

2013, in 1st International Conference on ICT for Sustainability (ICT4S) (2013).

[23] Carter, C.R. & Easton, L.: Sustainable supply chain management: evolution and future

directions. Intl. journal of physical distribution & logistics management, 41(1), pp. 46-62 (2011).

[24] Anthony, B. J., & Majid, M. A., & Romli, A.: An empirical study on predictors of green

sustainable software practices in Malaysian electronic industries. Journal of Information and

Communication Technology, Vol 17, issue 2, pp. 347-391 (2018).

[25] Lago, P., Koçak, S.A., Crnkovic, I. & Penzenstadler, B.: Framing Sustainability as a Property of

Software Quality, Communications of the ACM, Vol. 58(10), pp. 70-78 (2015).

[26] Calero, C. & Piattini, M.: Green in Software Engineering, Springer International Publishing

Switzerland (2015).

