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Abstract. The objective of this study is to develop a solution to predict daily water consumption
in order to optimize the water management system in the city of Bobo-Dioulasso. To achieve
this, neural networks are used to predict consumption using historical consumption data and daily
temperature in the city as the parameters. Four neural network algorithms were implemented for
this study: Multi-Layer Perceptron (MLP), simple recurrent neural network, Long Short-Term
Memory (LSTM) recurrent neural network, and Gated Recurrent Unit (GRU) recurrent neural
network. The study focused on the eight distribution zones of the National Water and Sanitation
Authority in the city. In view of the results, certain algorithms stood out from others in terms of
prediction. The GRU network algorithm performed better on nearly half of the training data, fol-
lowed by the MLP algorithm. The resulting models allow for the prediction of daily consumption
on D-day, given the consumption and temperature of D-day-1. This work was carried out using
tools such as the Jupyter NoteBook environment and the Python language.
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1 Introduction

The management of drinking water becomes increasingly complex over the years in view of
the considerable increase in demand for domestic, industrial. uses. This strong demand is the result
of the growth in the number of populations in urban and rural areas, resulting in limited access to
water resources. This complexity leads us to have other management methods and techniques that
can facilitate the management of the system.

To face this complexity, predicting water demand is an effective means of managing the system.
For that, knowledge of information on water use (i.e. data) in the past is necessary for prediction.
Indeed, from the modeling of coagulant dosage in treatment stations [3], to water monitoring through
sensors [2], to solving water management problems [1] specifically in consumption, it is necessary
to have a sufficient amount of historical data to facilitate prediction. The availability of prediction
tools is also necessary in search of a solution.
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Managing the distribution system is not an easy task because the methods used by managers of
the National Water and Sanitation Office (ONEA) are traditional and do not meet the needs expressed
following new developments. The classic method used is a statistical estimation (ONEA, 2019) to
have the daily volume of water necessary for each distribution zone. These methods are therefore
outdated and less reliable, and new methods must be proposed that can meet current needs. Among
these new available methods, we have neural networks.

Compared to classical statistical methods, neural networks have a great capacity for solving
prediction problems. Thanks to their complex structure composed of artificial neurons, neural net-
works have a great capacity for analyzing data in order to make predictions. They have a structure
composed of several layers, which in turn are composed of a certain number of neurons. The neu-
rons in each layer are connected in such a way as to work based on the information received. The
more neurons increase, the more neural networks gain in solving complex problems. Each neuron
performs a simple processing or calculation but this complex power results from their interaction
[7].

Depending on the desired objective, there are different models of neural networks whose data
processing requires the interaction of the different neurons that make up the model. The models
used in our study are those whose processing is based on quantitative data. This choice of model is
therefore due to the fact that the data collected from ONEA are quantitative data.

The remainder of this document will include a description of the methods used, data collection,
data processing and presentation of results followed by a discussion.

2 Method Description

The neural network models used in the search of solutions are four (04) in number, including
multi-layer perceptrons, simple recurrent networks, LSTM networks, and GRU networks.

2.1 The Multi-Layer Perceptron (MLP)

The MLP is a neural network with layers whose activation functions of the same layer are
identical [7]. The MLP network consists of three layers; the input layer, the hidden layer, and the
output layer (see figure 1). Each layer has an activation function, which helps process the received
information. This information processing is carried out using the backpropagation method ([4]),
which allows for the processing of information from the input to the output layer, as well as from
the output to the input layer.



Fig. 1. The architecture of a multi-layer perceptron.

2.2 Simple recurrent neural networks

Recurrent neural networks are a type of cyclic neural network that perform exceptionally well
in processing sequential data (such as time series data, video and audio streams).

Simple recurrent neural networks are a basic version of recurrent networks. Similar to multi-
layer perceptrons, recurrent network algorithms use the backpropagation algorithm ([5]) to process
sequential data. Their operation is very similar to that of MLP algorithms by associating the time
steps all running in a recurrent way.

Fully recurrent neural networks (FRNNs) establish connections between all neurons’ outputs
and inputs. This topology represents the most general neural network structure, as it can encom-
pass all other network configurations by selectively nullifying connection weights to simulate the
absence of specific inter-neuron connections. The accompanying illustration on the right may lead
to potential misinterpretations, as practical neural network structures are often visually organized
into ’layers,’ giving the impression of distinct, separate layers. However, what may initially appear
as layers actually signifies different time steps within the same fully recurrent neural network. The
illustration’s leftmost component reveals the recurrent connections, denoted as the ’v’ labeled arc,
which are temporally ’unfolded’ to create the layer-like appearance.



Fig. 2. Schema of a RNN. [8]

2.3 Long Short-Term Memory (LSTM)

The LSTM is a highly complex type of neural network with two memories, one long-term
and one short-term. This network structure consists of four interacting elements that allow for the
addition and removal of information. These elements are gates that represent the network’s layers,
including the Input Gate, Forget Gate, Memory, and Output Gate. The key feature of LSTMs is their
ability to manage long-term dependencies.

The equations of the LSTM model are defined by the set of the following equations ([6]):

Ft = σ
(
bF + xtUF +ht−1W F)

It = σ
(
bI + xtU I +ht−1W I)

Ot = σ
(
bO + xtUO +ht−1W O)

Ft = σ
(
bF + xtUF +ht−1W F)

ct = Ftct−1 + Ittanh(b+ xtU +ht−1W )

ht = tanh(ct)Ot

ŷ = g
(
bŷ +htW ŷ)

Where F corresponds to the ”forget gate,” the gate responsible for updating the memory cell c.
I and O correspond to the ”input” and ”output” gates, allowing the input and output of information
in the LSTM based on the input data x and ht-1, which represents the hidden state, the output vector
of the LSTM at time step t-1. The vectors U and W correspond to the weights associated with the
input data and recurrent weights associated with the hidden layer at time step t-1. g represents an
activation function used to obtain ŷt, the LSTM’s prediction or classification at time step t.



Fig. 3. Schema of a LSTM. [8]

2.4 Gated Recurrent Unit (GRU)

The GRU model is a simplified version of the LSTM network model. It also has the capability
to manage long-term temporal dependencies, but its structure includes two gates; the Gate reset and
the Gate update. Its uniqueness lies in its ability to reduce the learning time of a model, making it
faster in computations. The figure 4 shows the diagram of a GRU.



Fig. 4. Schema of a GRU. [6]

3 Data collection

The data used are daily water consumption of data that were collected from the National Water
and Sanitation Office (ONEA) of Bobo-Dioulasso. In fact, the Bobo-Dioulasso area and its sur-
roundings are served with drinking water by ONEA. For effective water management, the Office
has divided the city and its environs into eight (8) water distribution zones. The data on the amount
of water distributed for each zone constitute the study data for the period from November 2018 to
November 2021. In addition to consumption data, temperature data were of great interest in this
study. To do this, temperature data for the Bobo-Dioulasso area for the same period from Novem-
ber 2018 to November 2021 were collected from the official platform of the agency responsible for
meteorology in Burkina Faso.

The data made available to us has undergone a cleaning process in order to obtain reliable and
consistent data. At the end of this cleaning, nine variables were retained for the remainder of the
study, namely data on:

• The distribution of KUA

• The distribution of LOW SARFALAO,

• The distribution of HIGH SARFALAO,

• The distribution of BAMA,



• The distribution of BELLE VILLE,

• The distribution of LAFIABOUGOU,

• The distribution of BOLO VERS VILLE,

• The distribution of BELLE VILLE QUILTING,

• Maximum temperature.

After statistical analysis, we obtain the results (summaries) in the table 1 :

Table 1: Statistics on the parameters used.

Mean Standard deviation Min Max

KUA 8044.157 1320.111 360.0 10000.0
LOW SARFALAO 5326.553 744.506 528.0 6000.0
HIGH SARFALAO 1804.199 553.291 8.0 2500.0
BAMA 18543.119 2903.644 225.0 21000.0
BELLE VILLE 1730.155 899.705 70.0 3000.0
LAFIABOUGOU 6313.376 1195.902 2.0 7000.0
BOLO VERS VILLE 5065.460 1059.768 195.0 6000.0
BELLE VILLE QUILTING 2445.469 230.131 135.0 3000.0



4 Data processing

Data processing is a process of model learning that involves cleaning and normalization to
make data of good quality. Cleaning is the stage of the process that takes up more than half of
the data processing time. It makes the data reliable, consistent, and valuable. Normalization, on
the other hand, allows data to be placed on the same scale without the differences in value ranges
being distorted and without any loss of information. In this case the Z-score normalization is the
normalization method used, it consists of subtracting the average of the data from the raw value and
dividing it by the standard deviation (equation 1).

Before the normalization phase, data is separated into training data and test data. However, the
proportion of data does not have a defined rule, as researchers have suggested for similar studies
ratios of 75% and 25% or 80% and 20%, respectively, for learning and testing [1]. In this study, data
from each zone and temperature underwent the processing process, from cleaning to normalization,
passing through the separation of data into proportions.

Xnorm =
Xi − X̄

σx
(1)

where:

• Xnorm : normalized value

• Xi : gross value

• X̄ : average of the data

• σx : standard deviation

5 Results and discussions

Upon completion of data processing, we obtain data ready for model training. Thus, models
were trained on the various data obtained using the four neural network algorithms mentioned earlier.
The data from each zone was passed through each of the four algorithms, and models were obtained
after these trainings.

5.1 Prediction results of Belle ville

The data on consumption in the Belle ville area and the temperature in the locality are the two
input parameters for each of the algorithms. Of all the models obtained, the GRU algorithm achieves
better results and Figure 5 shows the variations in the predicted data and those of the observations.



Fig. 5. Variation of observations and predicted values of Belle ville

5.2 Prediction results of Lafiabougou

The forecast of consumption on D-day required the use of the temperature and consumption of
the previous day (D-day-1) as input parameters for each of the models obtained after learning the
different algorithms.

The figure 6 illustrates the variation of observed values and predicted values of the same model

Fig. 6. Variation of observations and predicted values of LAFIABOUGOU



Fig. 7. Variation of observations and predicted values of Bolo vers ville

5.3 Prediction results of bolo vers ville

Among all the algorithms employed for modeling on Bolo vers ville data, the best model is
attained using the GRU algorithm with input parameters consisting of consumption data from the
area and temperature data. Figure 7 displays the variation between the predicted and observed data.



5.4 Prediction results of HIGH SARFALAO

The data used being the temperature and daily consumption in the HIGH SARFALAO area, the
forecast model obtained takes as input parameters the temperature and consumption of the previous
day (D-day-1) and the output of the model is the consumption of the D-day.

The variations of the actual data and the predicted data are also represented in the figure 8 :

Fig. 8. Variation of observations and predicted values of high Sarfalao



5.5 Discussions

The entire training process revolved around eight (8) datasets, each containing 1091 rows,
using four (4) neural network algorithms, including MLP, RNN, GRU, and LSTM. Multiple rounds
of experiments were conducted on each algorithm, during which the evaluation criteria consisted of
the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE).

At the end of validation, the models are ready to make predictions on the data. The relevance
of these models is based on the difference between the predicted and observed data, which is de-
termined by the RMSE and MAE errors. Some algorithms outperformed the others, such as the
GRU, MLP, and LSTM algorithms. In the case of the GRU algorithm, it achieved superior results on
most of the data. The average MAE errors obtained during validation are the lowest, with values of
0.1389 for high Sarfalao, 0.0708 for Belle ville, and 0.0341 for Lafiabougou data. As for the MLP
algorithm, it yielded the lowest average RMSE errors of 0.0804 for BAMA data and 0.0884 for Bolo
vers ville. These two algorithms are ranked as the best in terms of MAE errors. Overall, the GRU
algorithm provides better predictions for most of the data used.

The table 2 presents the various best values obtained for Mean Absolute Errors (MAE) after
training with different algorithms.

Table 2: Table recapitulating the MAE error values of the different algorithms after evaluation.

Data
Model MAE

MLP Simple RNN LSTM GRU
KUA 0,0856 0,0847 0,0849 0,0861
LAFIABOUGOU 0,0838 0,0957 0,0801 0,0341
LOW SARFALAO 0,0906 0,0841 0,0834 0,0841
HIGH SARFALAO 0,1515 0,1659 0,1584 0,1389
BAMA 0,0804 0,0855 0,0512 0,0870
BELLE VILLE 0,2272 0,2265 0,2260 0,0708
BOLO VERS VILLE 0,0884 0,0934 0,0908 0,0908
BELLE VILLE QUILTING 0,0978 0,4493 0,4271 0,0173



6 Application

At the end of the training of the various models, we exported the models in files which allowed
us to carry out a phase of simulation starting from the random data of consumption and temperature.
During this phase, we implemented a small interface (figure 9 et 10) allowing us to facilitate the
simulation. This figure is composed as follows:

• a drop-down list to select a given model,

• a consumption data entry area,

• a temperature entry zone,

• a button to press to ”start prediction”,

• an area that displays the result of the prediction,

This phase ended with the setting up of a table (confer table 3) containing the prediction of the
consumption of D-day from the random data of the D-day-1



Fig. 9. Prediction interface

Fig. 10. BELLE VILLE prediction interface



Table 3: Simulation result of the different models.

Day J-1 Day J
consumption Temperature consumption

KUA 8000 34 7914
LOW SARFALAO 4500 34 5320
HIGH SARFALAO 2500 34 2191
BAMA 19000 34 18701
BELLE VILLE 2000 34 1892
LAFIABOUGOU 5500 34 5688
BOLO VERS VILLE 4500 34 4711
BELLE VILLE QUILTING 1500 34 1644

7 Conclusion and perspectives

Conclusion

This task was the place for us to apply algorithms in the field of water. The results obtained
allowed us to compare the performance of the different algorithms on each of the eight (8) data
used. At the end of the work, the models allow predicting daily water consumption, a solution that
shows the importance of neural networks in the hydraulic field. The solution thus makes it possible
to optimize water management and save resources for a better future.

Through this study, we have covered the essentials of the technologies of the machine learning
which are used more and more nowadays. These technologies have importance in the human’s life
because they help to improve these living conditions. Several of them are increasingly essential in
changes in certain areas of life. This is the case of our field of study which see the intervention of
these technologies in the improvement and optimization of its management. The tools used in the
implementation allowed us to learn of advantages on their importance and to know their capacity in
the implementation place forecasting models.

Perspectives

Although we conducted a study to find solutions for improving water management through
technology, it is worth noting that these solutions are proposed with the aim of optimizing the man-
agement of drinking water. Indeed, during the data collection process from ONEA, we were able
to identify the management issues and offer implementable solutions. Thus, the implementation of
a data storage system is proposed to gather consumption data from distribution areas. This system
will facilitate data input for forecasting models, providing readily usable data. Furthermore, a study
can be conducted to predict the quantity of water consumed while taking into account demographic
factors, which can be a contributing factor to limited access to drinking water. Regarding long-term
solutions, once the distribution system is optimized, it would be prudent to establish a water leak
control system, as water leaks represent a considerable loss of a resource with limited access.



References

[1] Dr Pezon , Christelle and Nansi, Juste and Bassono, Richard. De l’accès aux systèmes de
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