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Abstract. Malaria is a disease that occurs worldwide, especially in tropical regions where a high
prevalence is observed. Difficulties are encountered especially in developing countries where
resources in terms of equipment and trained personnel are limited. Until today, microscopic
analysis is the standard method for diagnosing Plasmodium falciparum, which is the causative
agent of malaria. In this paper, we proposed a malaria detection and diagnosis system using a
deep learning technique which is a convolutional neural network called YOLOv5. Model learning
was performed using a combination of two given image sources, Delgado Dataset B and Dijkstra
Dataset, as a dataset containing thin smear images. We then evaluated the performance of the
model by comparing it with other state-of-the-art results on deep learning. We obtained for the
detection, a mean Average Precision of 96.71%.
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1 Introduction

Malaria is a parasite disease that causes fever and digestive disorders. It is transmitted to hu-
mans by the bite of an infected mosquito (female anopheles), and more rarely by a blood transfusion
or transmission from mother to child during pregnancy. At the global level, the number of malaria
cases is estimated at 241 million in 2020 in 85 malaria-endemic countries. The World Health Organi-
zation African Region alone accounts for about 95% (228 million) of the estimated cases in 2020 [1].
Six of these countries alone accounted for nearly 55% of cases: Nigeria (27%), the Democratic Re-
public of Congo (12%), Uganda (5%), Mozambique (4%), Angola (3.4%), and Burkina Faso (3.4%)
[2]. In 2020, according to figures from the ”Programme National de Lutte Contre le Paludisme au
Burkina Faso”, more than 11 million cases of malaria were recorded in the country’s health facilities,
resulting in nearly 4,000 deaths [3]. The peak of malaria cases is usually observed between July and
August. The number of cases remains high until October, and even beyond that in some localities
where the epidemic curve begins to decline in February or March [4]. Several methods exist for the
diagnosis of malaria, namely the Rapid Diagnostic Test (RDT), Polymerase Chain Reaction (PCR)
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techniques, Moop-mediated isothermal Amplification (LAMP) techniques, and Quantitative Buffy
Coat (QBC). The detection of malaria parasites by light microscopy on Giemsa-stained blood films
remains the reference method for malaria diagnosis [5], due to its accessibility even in developing
countries. This method involves the observation of Plasmodium parasites on a blood smear stained
with a chemical called Giemsa. The main limitations of this technique are that it is time-consuming,
the results obtained are difficult to reproduce and the need for qualified personnel. In the rest of the
article, we will first see the related work. Then we unveil the proposed method which is subdivided
into 3 parts namely the datasets used, the algorithm used, and the implementation. The results and
the discussion are presented by a third party and we end with the conclusion.

2 Related Works

Several works have been done on the detection of Plasmodium in blood. We chose to present
some of them which took place between 2015 and June 2022, thus representing the state of the art.
Previous work on the computational diagnosis of malaria has been reviewed [6], which the authors
recommend to further improve the accuracy of detection. However, most of these attempts are based
on manual engineering of feature extraction techniques, which requires skill and expertise. Table
?? presents a summary of the algorithms used. Devi et al [7], in their work, proposed a hybrid
classification system for Plasmodium falciparum detection. These individual classifiers are SVM,
kNN, and Naive Bayes. Their techniques thus use classical machine learning algorithms that have
limitations on processing large data.

Table 1: Summary table of work in the domain of Plasmodium detection.

Authors Algorithms Data Result

S. S. Devi et al. [7]
SVM, kNN

and Naive Bayes
200 thin

smear images 98.38% of precision

Mehedi Masud et al. [8] CNN 27.558 red cells 97% of precision
M. Umer et al. [9] CNN 27.558 red cells 98.5% of precision

Abdurahman et al. [10]
YOLOV3

and YOLOV4
948 thick

smear images

6.14% YOLOV3-MOD-2,
96.32% YOLOV4-MOD
of Precision

Mohamed Sawadogo et al. [11] YOLOV3
236 thick

smear images 92,22% mAP

Feng Yang et al. [12]
Cascading
YOLOv2

2.567 thin
smear images 79.22% mAP

Oliver S. Zhao et al. [13] SSD
1.364 thin

smear images 90.4% mAP

Their classification accuracy is 98.38% for SVM, 97.35% for kNN, and 97.23% for Naive
Bayes. The tasks are therefore limited to the classification into two classes of erythrocytes already
isolated from blood smear images. The work of Mehedi Masud et al [8] and M. Umer et al [9] was
based on the classification of infected or uninfected erythrocytes. These studies used preprocessed



images. To further reduce data preprocessing, object detection algorithms were later used. In the
work of Abdurahman et al [10], Mohamed Sawadogo et al [11], Feng Yang et al [12], and Oliver S.
Zhao et al [13], object detection algorithms were tested and their results give an average accuracy of
96.32%, 92.22%, 79.22%, and 90.4% respectively. These algorithms have a low accuracy compared
to simple classification algorithms but offer the advantage of detecting several objects in an image.
We have therefore chosen to work with object detection algorithms, in particular with Yolo in its
version 5.

Table 2: Comparison of various malaria datasets.

Malaria Datasets Plasmodium species Type Type Number
of diagnosis of images of images

NIH Dataset [14] Plasmodium falciparum Thin smear Binary 27 558
Nigeria dataset [15] Plasmodium falciparum Thick smear Multi-class 2 986
MaMic Image Dataset [16] Plasmodium falciparum Thin smear Binary 16 991
Malaria-655 [17] Plasmodium falciparum Thin smear Multi-class 4 363

vivax, malariae, ovale
MP-IDB [18] Plasmodium falciparum, Thin smear Multi-class 840

vivax, malariae, ovale
IML-Malaria Dataset [19] Plasmodium vivax Thin smear Multi-class 38 449
UGANDA 2703 Dataset [20] Plasmodium falciparum Thick smear Multi-class 2 703
Cachar distric dataset [7] Plasmodium falciparum Thin smear Multi-class 120

and vivax
MORU Bangkok Dataset [12] Plasmodium vivax Thin smear Multi-class 2 567
Delgado Dataset B [21] Plasmodium falciparum Thin smear Multi-class 331
Abbas and Dijkstra Dataset [22] Plasmodium falciparum Thin smear Multi-class 883
Broad Institute Dataset [23] Plasmodium vivax Thin smear Multi-class 1 300

In addition, the data used for training and testing the selected algorithms are included. Table 2
shows a summary of these data. These data can be categorized in several ways. For example, we have
categorized them according to the species of Plasmodium detected in the thin smear image. Thus
NIH Dataset, Nigeria dataset, MaMic Image Dataset, UGANDA 2703 Dataset, Delgado Dataset B,
and Abbas and Dijkstra Dataset are composed only of images containing Plasmodium falciparum
while MORU Bangkok Dataset and Broad Institute dataset are composed only of Plasmodium vivax.
The other datasets are composed of a mixture of plasmodial species namely Malaria-655, MP- IDB,
and the Cachar district dataset. Our study is based on Plasmodium falciparum and for a broad
consideration of datasets, we consider the combination of at least two datasets namely Delgado
Dataset B [21] and Abbas and Dijkstra Dataset [22].



3 Proposed Method

3.1 YOLOv5

The ”You Only Look Once”, or YOLO is a family of models is a one-step detection algorithm
and is a series of end-to-end deep learning models designed for fast object detection, developed by
Joseph Redmon et al. Published by Glenn Jocher who also is the inventor of the Mosaic data aug-
mentation, explained in YOLOv4 [24]. Our model [25] is composed of nine (9) layers of standard
convolutions interspersed by eight (08) layers C3 or CSP, a layer of SPPF, two (02) layers of Up-
Sample that allow the oversampling of data, four (04) layers Concat that allow concatenation of a
list of tensors and a final layer Detect for detection. The C3 or CSP layers each group three (03)
standard convolution layers. The SPPF layer consists of two convolution layers and a Maxpooling
layer.

3.2 Data

The quality of a model training is related to the quantity and quality of the images used. We
worked with two data sources. First, a dataset containing 331 digital images [21] of Giemsa-stained
peripheral blood smears (MGG). These were compiled during the daily work in the central laboratory
of the Hospital Clinic of Barcelona from five patients diagnosed with malaria infection. In addition, a
dataset containing 883 Giemsa-stained images [22] from 17 malaria-infected patients was collected.
We then proceeded to the labeling of the images with the open-source software CVAT 1. We were
assisted during the labeling process by a medical expert from the ”Centre National de Recherche
et de Formation sur le Paludisme”. Figure 1 shows an example of the labeling process with the
CVAT tool where we can see the infected red cells framed in yellow and the uninfected red cells in
red. In summary, our labeled data set is composed of 564 smear images, 1,984 objects representing
infected erythrocytes, and 24,431 objects representing healthy erythrocytes. The separation is done
as follows: 85% of images in the training set, 10% in the validation set, and 5% in the test set.

4 Implementation

The dataset, after the preparation of the training data, is used as input for our model. The
model is then tested after the training phase, using images from the test dataset and we analyze
the results based on the evaluation metrics. The hyperparameters must be configured before any
training. The number of classes is set to 03 (three) and placed the NMS threshold at 0.7. Model
training was performed on 1200 epochs using the stochastic gradient downward method (SGD) as
the optimization algorithm. The training took about 3h 44m 58s hours. We used the Kaggle platform
which provides us with 19.6GB of free storage and 16GB of RAM and a Tesla P100-PCIE-16GB
GPU. For every 100th iteration of learning, a checkpoint for reuse in case of a sudden process stop
and patience of 600 epochs are used to control the learning improvement. At the end of the training,
we obtained a pre-trained model. We developed a web platform with the Django framework that

1https://cvat.org/

https://cvat.org/


Fig. 1. Labeling with the CVAT tool.

allows us to predict images and that can be used by medical staff in medical centers. Figure 2 shows
a screenshot of the web platform.

Fig. 2. Screenshot of our web platform.

5 Results and Discussion

5.1 Results

Deep learning techniques use various metrics to compare performance, accuracy, and others.
To measure the quality of detection, we used the Confusion Matrix [26] shown in Figure 3, which
is a summary of the prediction results of a model. The four (04) basic elements of the Confusion
Matrix are true positives (TP) which denote infected erythrocytes; false negatives (FN) which denote



infected erythrocytes detected as uninfected erythrocytes; false positives (FP) which are uninfected
erythrocytes detected as infected erythrocytes and true negatives (TN) which are uninfected erythro-
cytes.

Fig. 3. Confusion Matrix. [26]

The most commonly used metrics for comparing object detection algorithms are :

• the Precision (P): is the ratio of correctly predicted positive samples(VP) to predicted positive
samples(VP+FP). It represents confidence in the detection of Plasmodium. It is calculated
according to formula 1 :

P =
V P

V P+FP
[27] (1)

• the Recall (R): is the ratio of correctly predicted positive samples (VP) to the total number of
samples that are actually positive (VP+FN) and is also called the detection rate. The detection
rate reflects the ability of the model to recognize Plasmodium. It is calculated according to
formula 2 :

R =
V P

V P+FN
[27] (2)

• the mean Average Precision (mAP): is the average of the average accuracies (AP) of each
class. It compares the ground truth bounding box to the detected box and returns a score. The
higher the score, the more accurate the model is in its detection. In computer vision, mAP is
a popular evaluation metric used for object detection (i.e. localization and classification). It is
calculated according to formula 3 :

mAP =
1
n

k=n

∑
k=1

APk[27] (3)

where n is the Number of classes and APk, the average precision of class k.

The results obtained are measured according to the metrics that we have previously described,
namely mAP, precision, and recall. This is useful to know the performance of our model and also to
be able to compare it to other works.



We measured the performance of our model using mAP, precision, and recall. The Wandb tool,
allowed us to observe the following values:

• the mAP: we obtain an mAP of 96.71% ;

• the precision: here we have obtained 94.83% as precision ;

• the recall: we get a recall of 91.26%.

Figure 4 shows the evolution of mAP during model training where the y-axis represents the percent-
age of accuracy and the x-axis the number of epochs.

Fig. 4. mAP value evolution.

5.2 Discussion

Comparing works is difficult because the same methods are not used, nor are the same data
used, and also the evaluation metrics. Nevertheless, a comparison can be made on the basis of works
using similar machine learning techniques. Table 3 compares the performance of our detection
method with the methods examined in the state of the art. These works have a priori the same goal
as ours, but the difference is in the approach techniques and the data used. Our model is more
efficient compared to these works and this can be explained by the fact that we use a more recent
object detection algorithm.



We proposed a detection model using YOLOv5, a deep learning technique that is a convolu-
tional neural network. YOLOv5 has the advantage of meeting the speed of execution and satisfactory
performance. We subsequently evaluated the performance of the model by comparing it with other
state-of-the-art deep learning results. From this evaluation, we found our model to be as efficient in
Plasmodium detection. Nevertheless, improvements are still possible through the parameterization
of YOLOv5, and the quantity and quality of data used.

Table 3: Performance table of some models.

Works Algorithms Data mAP

Zhao et al. [13] SSD300 Plasmodium vivax 90.4%
Yang et al. [12] Cascaded YOLO Plasmodium vivax 79.22%
Our model YOLOv5(x) Plasmodium falciparum 96.71%

6 Conclusion

In this research, we worked on the detection and diagnosis of malaria using machine learning
techniques. To do this, we first made a case for the need for such work, which benefits our health
centers and the fight against malaria. The image processing pipeline of the system consists of three
main steps: first the labeling of the images, then the parameterization of the object detection al-
gorithm, and finally the model training for detecting and classifying infected and uninfected cells.
We use a combination of two different sources of datasets namely Delgado Dataset B and Dijkstra
Dataset for a total of 564 thin smear images. The object detection algorithm YOLO with its version
5 was used for training and detection. The results obtained in particular the mAP are up to 96.71%.
Our system can be used in resource-limited areas without requiring specific expertise on malaria.
Following the detection process, we have developed a web platform that allows the exploitation of
the pre-trained model. In the future, we plan to improve our model by comparing the results of our
system with the field results obtained by medical experts.
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