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Abstract. We introduce a novel approach for structured prediction aimed at
reconstructing 3D polygonal models from both single and multiple images
capturing a scene. Building upon recent advancements in single-view
reconstruction, we embrace the indoor Manhattan hypothesis category — an
intricate set of potential outputs characterised by complex internal constraints —
integrated into a structured prediction framework. Our methodology is
adaptable for learning in both single-view and multiview scenarios. It is
demonstrated that this chosen hypothesis category enables the optimization of
diverse high-level loss functions, including metrics such as the relative depth
error. Our achieved outcomes surpass the current state-of-the-art, showcasing
an enhancement of over 50% in a specific metric.
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1 Introduction

Reconstruction of 3D models from images is a central problem in computer vision.
There is a deep literature concerning reconstruction from multiple views of a scene,
with particular focus on the geometry of multiple cameras. More recently the recovery
of 3D information from a single image has received attention [1,2]. In this context the
geometric constraints leveraged by multiple—view reconstructors are unavailable, so
inference must rely on photometric cues. To capture the complex, high—dimensional
patterns involved in this challenging inference task, practitioners have leveraged a
range of machine learning techniques.

Within a single—view reconstruction, few authors have cast learning as a single
optimisation with respect to a clearly defined loss function [1-4], while most
approaches to multiple-view reconstruction do not consider learning from training
data at all. In contrast, this paper casts reconstruction fundamentally as a learning
problem, with the goal being to learn a prediction function of mapping observed
features to 3D reconstructions.
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Building on recent advances in single—view reconstruction, we adopt as our
hypothesis class the set of indoor Manhattan models [3,5,4], under which scenes are
approximated by a floor and ceiling plane together with a sequence of vertical walls.
This representation brings a variety of attractive features such as a simple
parameterization, efficient and exact inference, decomposability of loss functions, and
a balance between expressiveness and robustness.

For learning we use the tools of structured prediction, in particular the structural
SVM [6]. The use of these tools is part of a long trend towards statistically rigorous,
well-understood convex optimization techniques in computer vision. Recent
successful applications include detection [7], segmentation [8], and scene
classification [9]. In the domain of reconstruction, structured prediction ideas have
been applied to several simple model classes such as stereo disparities [10] and
cuboids [11].

The application of structured prediction to the indoor Manhattan class of models
constitutes one of the most complex output spaces yet considered within this
framework. The indoor Manhattan model enforces hard geometric constraints that lack
simple expressions in terms of image coordinates. These constraints are
context—dependent, being tied to quantities such as camera rotation and the location of
vanishing points. We have learnt several valuable lessons of general relevance from
this complex prediction task, to which we dedicate the final section of this paper.

The contributions of this paper are thus (i) a unified learning framework for
single— and multiple—view reconstruction, using the indoor Manhattan model and the
tools of structured prediction; (ii) the reduction of two image—level loss functions to a
form amenable to efficient optimization; (iii) an efficient separation procedure for
identify the “most—violated constraint” during learning, (iv) an empirical
demonstration of structured prediction in perhaps the most complex output space yet
considered within this framework; and (v) a series of practical observations
concerning the application of structured prediction techniques.

In the remainder of this paper we present background material (Section 2),
followed by the indoor Manhattan model itself (Section 3), and our learning
framework (Section 4). We then present results for multiple—view reconstruction
(Section 5) followed by single-view reconstruction (Section 6), then we round off
with practical lessons learnt (Section 7) and concluding remarks (Section 8).

2 Background

This paper deals with several major research areas (multiple—~view reconstruction,
single—view reconstruction, and structured prediction), so here we present only key
contributions and those results of particular relevance to our own work.

Multiple view reconstruction has a long history in the literature, beginning at least
as early as the seminal work of Marr et al. [12]. Low—level approaches estimate the
depth of each pixel by solving for stereo disparity (for a survey see [13]), while
high—level approaches attempt to recover polyhedral models of various kinds [14,15].
The present work follows the spirit of the latter approach.



Coughlan and Yuille [16] first introduced the Manhattan world assumption, in
which reconstructed surfaces are restricted to three mutually—orthogonal orientations.
Furukawa et al. [17] applied this idea within a multiple view stereo context. Lee et al.
[3] proposed the indoor Manhattan assumption, which places further restrictions on
reconstructed models.

Single-view reconstruction from line drawings also has a long history in the
literature ([18], for example). Reconstructing single real-world images was re—
introduced to the community by Hoiem et al. [1], who employed decision trees to
classify image segments into orientation classes in a multiple segmentation approach.
Saxena et al. [2] employed energy minimisation to recover pixel-wise depths.
Barinova et al. [19] reconstructed piece—wise planar outdoor scenes using an EM
algorithm. Hedau et al. [11] modeled indoor scenes as the interior of a cuboid, and
cast learning within a structured prediction framework. We also use structured
prediction, though our hypothesis class is far more expressive.

Lee et al. [3] were the first to reconstruct indoor Manhattan scenes. They devised a
combinatorial search over line segments using a branch—and-bound algorithm. Flint et
al. [5] refined this to an exact dynamic programming solution, and in later work [4]
extended the indoor Manhattan assumption to the multiple view domain. The authors
of [4] did describe a learning algorithm based on bootstrapping, though its statistical
consistency was given little attention. The present work relies extensively on this
thread of research, though in contrast to past work our focus is entirely on learning in
a statistically rigorous framework. We provide comparisons with these approaches.

Extending binary and multi—label classification to general output spaces is a major
research programme within the machine learning community; an excellent
introduction is given by Bakir et al. [20]. Our approach uses the structured support
vector machine, first proposed by Tsochantaridis et al. [6] and improved upon by
Joachims et al. [21].

In this work, we present a novel unified learning framework designed for the
reconstruction of polygonal models from both single and multiple views of a scene.
Our approach introduces a distinctive loss function within a structured prediction
framework, emphasizing a single optimization process with clear and well-defined
objectives. Notably, we focus on the indoor Manhattan class of models, leveraging its
parametrization and inference algorithm to enhance re- construction accuracy. The
versatility of our framework is demonstrated through its application to both
multiple-view and single-view reconstructions, showcasing its adaptability to various
scenarios. Experimental results indicate a significant improvement over existing
methods, emphasizing the effectiveness and unique- ness of our proposed approach in
the domain of computer vision and scene understanding.

3 Model

In this section we describe three components of the model that we are trying to learn
(and, at test time, infer): a hypothesis class, a feature space, and a loss function. In our
setup these are, respectively, the class of indoor Manhattan models, a log—linear



Bayesian likelihood, and either the relative depth error or a labelling error (we
describe both).

camera

) ® (©

Fig.1: (a-b) Examples of indoor Manhattan environments. The red line illustrates the seam
representation. (c) An indoor Manhattan environment viewed from above.

3.1 Hypothesis Class

This paper is concerned with the hypothesis class consisting of indoor Manhattan
reconstructions, which are 3D polygonal models characterised by infinite floor and
ceiling planes with vertical walls extending between them (as originally proposed by
Lee et al. [3]). Indoor Manhattan environments are a sub—class of general Manhattan
environments; examples are shown in Figure 1. This is an attractive hypothesis class
because

1. it captures many regularities within man—-made environments;

2. the geometric primitives (floor/wall/ceiling) are immediately useful for semantic—
level scene understanding;

3. it is expressive enough to represent approximately or exactly a surprisingly wide
variety of environments;

4. there is a simple and convenient parameterization;

5. an efficient inference algorithm exists [5].

An indoor Manhattan model is much like an architectural floor—plan, and can be
specified as a set of 2D line segments representing walls together with the position of
the floor and ceiling plane (Figure 1). In this paper we adopt an image—domain
parameterization due to its convenience for inference and learning. Following Flint et
al. [4] we represent hypotheses as a path running from the left edge to the right edge
of the image, which we will refer to as a seam. A seam S consists of a sequence of
pairs of scalars,

S={s,,0,}..," . @

where s; is the y—coordinate at which the path intersects image column i, o; is the
orientation of the wall in that column, and W is the image width. Remarkably, this
simple parameterization specifies a unique metric 3D model up to scale [4].

While we do not here have space for a full discussion of the geometry of indoor
Manhattan models, there are two properties of the seam representation that will be



relevant in the following sections. Firstly, images of indoor Manhattan environments
can be rectified so that vertical lines in the world project to vertical lines in the image
[5]. Secondly, the mapping from seam to 3D reconstruction decomposes in the
following manner. We said earlier that a seam S specifies a unique 3D reconstruction.
Let a(x,y;S) be the orientation of the 3D surface projecting to pixel (x,y). Flint et al.
[5] showed that a is functionally dependent only on the pair (s,,0,) for column x. That
is, we may write

a(x,y;S) = a"(X,y;5,0;) - @)
Similarly, letting d(x,y,;S) be the distance from the camera to the surface projecting to

(x,y) we may write

d(x,y;S) = d (X,Y;5,,0,) - 3)
3.2 Feature Space

We adopt the probabilistic model formulated by Flint et al. [4], which relates indoor
Manhattan reconstructions to single-view image features, multiple-view
photo—consistency terms, and a reconstructed point cloud. From our perspective these
are simply features and any subset may be omitted if inappropriate for a given
application. Under this model the prior on reconstructions is

logP(S) = —n - A+ O(1) . (4)

where n is a vector containing the number of walls in S of various categories (concave,
convex, occluding) and A is a hyper—parameter. We may interpret (4) as, roughly, that
reconstructions with more walls are less likely.

Flint et al. [4] showed that for a variety of features 6 (including single—view and
multiple-view) there are reasonable choices of likelihood that can be written

logP(H | S) = Zx=1w HG(X’SX) . (5)

where 11 is a real matrix computed deterministically from 8 and m,(i,j) is the element at
row i, column j. It is easy to show that for each sensor model described in [4] the
log—likelihood is linear in the hyper—parameters k, i.e.

logP(8 | )= Yx=1" Ko Ve(X,5,) . (6)

Assuming conditional independence between features, the posterior is
P(S| @) « P(S) [1--" P(6:] S) - (7)

logP(S| @) = —n- A+ ¥i)" et vilx,8,) + O(1) . (8)



Table.1: The composition of our single— and multiple—view feature space. We omit colour and
Gabor features from the multiple-view feature space for training efficiency.’

Feature Dimensionality Multi-view ?  Single—view? Reference

Stereo photo—consistency 4 yes no Flint et al
(4]

Point cloud 2 yes no Flint et al.
(4]

Line sweeps 1 yes yes Lee et al.
(3]

RGB+HSV 6 no yes

Gabor responses* 12 no yes

So far, this model closely follows that described in [4]; our contribution is to place this
model into a statistically rigorous learning framework. To do this we need to rewrite
the above in terms of a joint feature function ¥(®,S) and a parameter vector w. The
decomposability of indoor Manhattan models into payoff matrices permits precisely
such a formulation. Defining

-n A
w
Ez:] Ul(ﬁE,Sw) K1
¥(6,9) = _ w=
» . .
[ 01 Vn(2; 82)] [Fon |
9)
we see that (8) can be written as
logP(S v ©) = w,¥(06,5)+ 0(1). (10)

where we have adopted Hilbert space notation with (-) denoting an inner
product. Since w contains all free parameters in the model, the goal of learning will
be to optimise w with respect to a training set {(©,,S;)}.



Features The precise make—up of the feature space depends on the available sensor
modalities. We define separate feature spaces for the single— and multiple— view
contexts; these are summarised in Table 2.

3.3 Loss Functions

Next we define a loss function A(S,S) measuring the cost of predicting some
reconstruction S when in fact the true reconstruction is S. In the context of learning
one often faces a trade—off between choosing a loss that leads to tractable
optimization, and choosing a loss that measures the quantity that one “really” cares
about. For example, Hoiem et al. [1] learn a per—segment orientation classifier, then
pass this as input to a separate 3D reconstruction system [22]. However, what one
“really” cares about is some loss defined on the output of the entire system rather than
the output of individual components, since some segment— level mistakes are
insignificant to the overall reconstruction quality, while others are catastrophic. This is
not a criticism of the authors’ choice, but an illustration of the trade—off faced when
choosing a loss. In this paper we show how to learn efficiently with respect to a loss
defined on the final reconstruction.

The relative depth error has been the gold standard within the reconstruction
community for more than a decade [23], and measures the average deviation between
reconstructed and ground truth depths. In our notation,

Dgepin(S,5) = UN X, { [d(p; S) — d(p; S)|/d(p; S) } , (1)

44 orientations, 3 scales

where N is the number of pixels. Another reasonable choice is the labelling error, used
widely within the semantic segmentation literature,

Alabe]]ing(S! S) =UN Zp{ a(p! S) # a(p) S) } ) (12)

where [p] is 1 if p is true and 0 otherwise. An attractive characteristic of the indoor
Manbhattan class is that both of these losses can be optimised exactly. The algorithmic
details are left to Section 4; the key result we establish here is that
Agepeh and Ajypeping CaN be written in a form resembling the payoff formulation (5) for the
feature likelihoods.

First we invoke the independence established in (3):

Adeplh(g, S)=1/N3Y " Zy=1H {la(x, y; §) — d(x, y; S)|}/{d(x, y; S)} . (13)



Defining a real matrix &g,
84X, J) = Xy {1A(x, y; 89 — d(x, y; SIIAA(x, y; S)} (14)

we see that we can write Ay, in the form

Adepth(g) S):l/N ZX:1W SS(X, §X) . (15)

There is a similar form for Aj,eing, Which we omit here due to space constraints.

Choosing a Loss Function Neither of the above losses is unequivocally the “correct”
loss; the choice will depend on the application. One might expect a strong correlation
between the losses, and indeed one can show analytically that

Adepth(S,S) = 0 <= Alabelling(S,5) = 0 . (16)

However, in our experiments we found only a weak correlation between these losses
away from the origin. For example, the scatter plot shown in Figure 2 shows a
significant number of outliers that score very well on Ay, but poorly on Aypeping, and
vice versa.

4 Learning

We turn now to the problem of learning within the model described above. Our
learning task is to identify a prediction function f mapping observed features © to
reconstructions S. We seek the loss minimizer
= argminE{A(f(@), S)}
f , 17)
which we approximate in the framework of empirical risk minimization as

f= argming Y, A((f(®y), S) , (18)

where k indexes a training set. To perform this optimization we turn to the tools of
structured prediction [20], and in particular the structured SVM [6]. First we need to
define f. In this paper we consider predictors of the form

fA®) = argmaxg, {w, ¥(®,S) . (19)



Comparing (10) we see that each predictor of the form (19) is simply implementing
MAP inference under some set of hyper—parameters w. We now turn to the
optimization problem itself. Following the standard approach [20] we cast the learning
problem as a constrained optimisation problem,

ming,g Y2 W]+ C Xet" € (20)
s.t.Vk, S#Sk: {w,¥(®,S)) —w,¥(©,,S)=A(S,S,) - &.

Tsochantaridis et al. [6] described an algorithm for solving this minimisation that is
now used extensively within machine learning and computer vision. To apply this
algorithm here we must solve two inference problems:

1. Prediction. This is the maximisation described in (19).
2. Separation. The algorithm described in [6] requires a user—supplied procedure to
find the “most—violated constraint” at each iteration. That is,

argmaxs, w, ¥ (0y, S) + A(S, Sy) . (21)

Our solutions to both of the above build on the algorithm presented by Flint et al.
[5,4], which is a dynamic programming solution to problems of the form

argmaxs, Zx H(Xs Sx) - Zj Y(], S) . (22)

4.1 Inference (Prediction)

We showed in Section 3 that (22) can be written in the form (19), so the prediction
problem is a straightforward application of [5]. This is as expected since, as we have
already remarked, (19) is equivalent to MAP inference on indoor Manhattan
reconstructions, which was precisely the subject of [5].

4.2 Loss—Augmented Inference (Separation)

It turns out that the separation problem can also be solved using the dynamic
programming algorithm mentioned above, as the following proposition shows.
Proposition 1. Let (0,,S,) be a training instance with payoff matrices {m;} as defined in
(5). Let

Tlaug = 8Sk+ Y 4T, . (23)

Then the solution to (22) with m = m,,, is identical to the solution to (21).



Proof. Direct equivalence of the expressions to be maximised. First substitute (10) and
(15) into (22):

logP(S | ©) + ¥yt 8slx.5,) - (24)

Further substituting (5) and defining y as in [4] gives

Zi Zx =1w it (X’ SX) - Zj Y(]’ S) + Zx =1W 651( (X: Sx ) . (25)
Finally we see that substituting (23) gives

Yo" maug (x, sx ) - ¥ v(Gs S) - (26)

5 Multiple View Results

We evaluated our approach on the data—set proposed in [4], which consists of 18
sequences of six environments averaging 59 seconds in duration. We sampled
key—frames at regular intervals. Each “instance” in our training and hold—out sets
consists of one base frame together with four auxiliary frames.

We compared it with the bootstrapping approach described in [4]. Our metrics
differ from theirs in two ways. Firstly, they compute relative depth error using the
maximum of the ground truth and estimated depths in the denominator, whereas we
always use the ground truth in the denominator. These metrics are separated by at
most a monotonic transform but the latter is more convenient



Table.2: Multiple—view reconstruction performance on held—out data, compared with Flint et al.
[4]. For unavoidable reasons we use slightly different metrics so our figures differ from those
published in [4]. See main text for explanation.

Depth Error (%) Labelling Error (%)

Sequence This Paper*  Flint et al. This Paper’  Flint et al.
ground 4.9 66.6 2.9 10.4
foyerl 6.1 6.6 3.1 3.1

foyer2 4.3 5.4 3.7 4.0
corridor 14.6 52.9 9.5 19.2

mcr 34.0 67.6 15. 16.2
kitchen 16.8 23.6 5.2 6.1
Average 13.4 37.1 6.7 9.8

Table.3:Single-view reconstruction performance on held-out data, compared with Flint et al.[5]

Depth Error (%) Labelling Error (%)
Sequence This Paper*  Flint et al. This Paper’  Flint et al.
ground 17.3 24.5 7.8 12.2
foyerl 25.1 31.0 15.1 22.2
foyer2 29.1 30.1 15.9 18.6
corridor 31.7 33.6 19.3 24.8
mcr 70.1 45.9 26.7 20.8
kitchen 25.1 26.2 7.7 119
Average 33.1 31.9 15.4 18.4

represent in our framework. Secondly, when we compute labelling error we
differentiate vertical and horizontal surfaces only, whereas they also differentiate the
two vertical orientations. The latter approach makes a side-by—side comparison
difficult because the two vertical orientations are symmetric and their labels can
always be interchanged.

The performance of these two algorithms are summarised in Table 2. Our approach
significantly out—performs the bootstrapping algorithm. Anecdotally we noticed that
much of the improvement resulted from a reduction in catastrophic failures. This
makes sense because we would expect the learning algorithm to concentrate on



reducing those mistakes that result in the largest loss. Some example predictions are
shown in Figure 4; many more are included in additional material.
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Fig.2: The effect of the loss function on training. We train two predictors, one with respect to
Ageprn and one with respect t0 Ajpaing, then evaluate both on all held-out instances. Each data
point shows the error obtained by one predictor on held—out instances. The differing
distribution of errors shows that the two predictors trade off errors as expected.

6 Single View Results

We evaluated our system for single—view reconstruction using the same data—set
described in the previous section. We used the single—view features summarised in
Figure 2. We compared our approach to the single—view approach of Flint et al. [5],
which uses the same dynamic programming algorithm that we rely upon, but uses
hand-tuned features.

Performance for each algorithm is summarised in Figure 3. When measured by
labelling error, our approach out—performs the hand—tuned weights, but on the depth
error metric our approach is inferior. While investigating this result we
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Fig.3: Evolution of w during training. Each series shows the value of one component of w. After an
exploration phase the model converges.

found that our learning algorithm assigns small weights to all but the line-sweep
features, which are the same features used by [5]. This suggests that the hand— tuned
weights are in fact close to optimal within this feature space, though one would expect
that with additional feature engineering our learning algorithm would be able to
leverage further salient information and reduce the error rate.

7 Discussion

The hypothesis class considered in this paper is among the most complex (in
terms of internal constraints on the output space) studied within the structured
prediction framework. In this section we turn to some practical lessons learnt
that may be of value to other practitioners.

Condition in the joint feature space, not the input feature space. gi A common
pre—processing operation for statistical learning is to transform the observed features
O to zero mean and unit variance. However, for structured prediction tasks it is the
joint feature space ¥ that should be conditioned:

W= (W -p) /o> (27)

Ideally one would sample from the joint feature space to determine the conditioning
transformation, but the distribution of inputs and outputs is generally unknown in an
empirical risk minimization setting. Instead, we use the training set as a proxy. We
compute the empirical mean and variance of {¥(®,, S,)} at the outset, then apply the
transformation (27) after each feature computation.

Condition the loss terms. For any 1 > 0, the minimization problem (20) is equivalent
(under the substitution w' = nw, & = pé) to:

ming, ey = % || + NC 3" &%



s.t. Yk, S#Sk: w,®¥(0, S)) - W ,¥(®,S) >nA(S, S’k) - & . (28)

Although any n > 0 preserves the correctness of the optimization algorithm, we found
that choosing n = Var(A) improved numerical stability, since this means the loss terms
will have roughly unit variance. Unfortunately, we cannot use the training set to
estimate Var(A) since the loss for the ground truth reconstruction is always zero.
Instead we computed A(@,,S;) for each k &~ j in the training set. This is not an ideal
estimate, but we found that it worked well in practice.

* This column represents the predictor trained with respect to Agepp.
¥ This column represents the predictor trained with respect to Ajyyeliing-

Check that the hypothesis class contains the ground truth. The algorithm
described in [6] implicitly assumes that the hypothesis class Y contains the ground
truth labels S,. This means that if S*is the maximizer of (21) then

(w,¥(0,S)) - {w,¥O,S") -A(S5",S,)<0, (29)
since otherwise we would have

(w, (O, S + A(Sy, S)> {w, (O, SH)+A(S, Sy), (30)

contradicting S* as the maximizer of (21). However, our output space contains
fundamentally real-valued quantities such as polygon vertices, which are recovered
only to some finite precision by the inference algorithm, and since our ground truth
labels were acquired by manual labelling, they sometimes exceed the maximum
precision of the inference algorithm. In this case we effectively have S, & Y (although
there is always some S € Y close to S,), so it is possible that S* violates (29). Our
workaround here is simply to check the condition (29) each time we solve the
separation problem and, if violated, substitute S, for S’. This is justified by the
observation that if (29) is violated for S then it is violated for all S € Y. One could
think of this as learning with respect to the hypothesis class Y U{S,} but evaluating
with respect to Y. This is not an ideal solution but we found it to work well in practice.
Unfortunately this patch has the side—effect of hiding bugs in the inference algorithm,
so care is warranted.



Fig.4: Multiple—view reconstructions predicted by our system (held—out samples). The first two
rows represent the predictors trained on Age,, and Aj,yeing respectively, the third row is from [4],
and the fourth row is ground truth.

8 Conclusion

We have presented a unified learning framework for reconstructing polygonal models
from single and multiple views of a scene. We have chosen to work with the indoor
Manhattan class of models in order to leverage the parameterization and inference
algorithm recently proposed for this hypothesis class [5,4]. Our approach to learning
performs a single optimisation with respect to a clearly defined loss function.
Experiments show our system out—performing the state—of— the—art for multiple—view
reconstruction (by a large margin) and on one metric for single-view reconstruction.

In the future work will extend this approach to learn geometry together with scene
classifiers and context—aware object detectors, optimising with respect to a single joint
loss function.
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