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 Abstract.  We  introduce  a  novel  approach  for  structured  prediction  aimed  at 
 reconstructing  3D  polygonal  models  from  both  single  and  multiple  images 
 capturing  a  scene.  Building  upon  recent  advancements  in  single-view 
 reconstruction,  we  embrace  the  indoor  Manhattan  hypothesis  category  –  an 
 intricate  set  of  potential  outputs  characterised  by  complex  internal  constraints  – 
 integrated  into  a  structured  prediction  framework.  Our  methodology  is 
 adaptable  for  learning  in  both  single-view  and  multiview  scenarios.  It  is 
 demonstrated  that  this  chosen  hypothesis  category  enables  the  optimization  of 
 diverse  high-level  loss  functions,  including  metrics  such  as  the  relative  depth 
 error.  Our  achieved  outcomes  surpass  the  current  state-of-the-art,  showcasing 
 an enhancement of over 50% in a specific metric. 
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 1  Introduction 

 Reconstruction  of  3D  models  from  images  is  a  central  problem  in  computer  vision. 
 There  is  a  deep  literature  concerning  reconstruction  from  multiple  views  of  a  scene, 
 with  particular  focus  on  the  geometry  of  multiple  cameras.  More  recently  the  recovery 
 of  3D  information  from  a  single  image  has  received  attention  [1,2].  In  this  context  the 
 geometric  constraints  leveraged  by  multiple–view  reconstructors  are  unavailable,  so 
 inference  must  rely  on  photometric  cues.  To  capture  the  complex,  high–dimensional 
 patterns  involved  in  this  challenging  inference  task,  practitioners  have  leveraged  a 
 range of machine learning techniques. 

 Within  a  single–view  reconstruction,  few  authors  have  cast  learning  as  a  single 
 optimisation  with  respect  to  a  clearly  defined  loss  function  [1–4],  while  most 
 approaches  to  multiple–view  reconstruction  do  not  consider  learning  from  training 
 data  at  all.  In  contrast,  this  paper  casts  reconstruction  fundamentally  as  a  learning 
 problem,  with  the  goal  being  to  learn  a  prediction  function  of  mapping  observed 
 features to 3D reconstructions. 
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 Building  on  recent  advances  in  single–view  reconstruction,  we  adopt  as  our 
 hypothesis  class  the  set  of  indoor  Manhattan  models  [3,5,4],  under  which  scenes  are 
 approximated  by  a  floor  and  ceiling  plane  together  with  a  sequence  of  vertical  walls. 
 This  representation  brings  a  variety  of  attractive  features  such  as  a  simple 
 parameterization,  efficient  and  exact  inference,  decomposability  of  loss  functions,  and 
 a balance between expressiveness and robustness. 

 For  learning  we  use  the  tools  of  structured  prediction,  in  particular  the  structural 
 SVM  [6].  The  use  of  these  tools  is  part  of  a  long  trend  towards  statistically  rigorous, 
 well–understood  convex  optimization  techniques  in  computer  vision.  Recent 
 successful  applications  include  detection  [7],  segmentation  [8],  and  scene 
 classification  [9].  In  the  domain  of  reconstruction,  structured  prediction  ideas  have 
 been  applied  to  several  simple  model  classes  such  as  stereo  disparities  [10]  and 
 cuboids [11]. 

 The  application  of  structured  prediction  to  the  indoor  Manhattan  class  of  models 
 constitutes  one  of  the  most  complex  output  spaces  yet  considered  within  this 
 framework.  The  indoor  Manhattan  model  enforces  hard  geometric  constraints  that  lack 
 simple  expressions  in  terms  of  image  coordinates.  These  constraints  are 
 context–dependent,  being  tied  to  quantities  such  as  camera  rotation  and  the  location  of 
 vanishing  points.  We  have  learnt  several  valuable  lessons  of  general  relevance  from 
 this complex prediction task, to which we dedicate the final section of this paper. 

 The  contributions  of  this  paper  are  thus  (i)  a  unified  learning  framework  for 
 single–  and  multiple–view  reconstruction,  using  the  indoor  Manhattan  model  and  the 
 tools  of  structured  prediction;  (ii)  the  reduction  of  two  image–level  loss  functions  to  a 
 form  amenable  to  efficient  optimization;  (iii)  an  efficient  separation  procedure  for 
 identify  the  “most–violated  constraint”  during  learning,  (iv)  an  empirical 
 demonstration  of  structured  prediction  in  perhaps  the  most  complex  output  space  yet 
 considered  within  this  framework;  and  (v)  a  series  of  practical  observations 
 concerning the application of structured prediction techniques. 

 In  the  remainder  of  this  paper  we  present  background  material  (Section  2), 
 followed  by  the  indoor  Manhattan  model  itself  (Section  3),  and  our  learning 
 framework  (Section  4).  We  then  present  results  for  multiple–view  reconstruction 
 (Section  5)  followed  by  single–view  reconstruction  (Section  6),  then  we  round  off 
 with practical lessons learnt (Section 7) and concluding remarks (Section 8). 

 2  Background 

 This  paper  deals  with  several  major  research  areas  (multiple–view  reconstruction, 
 single–view  reconstruction,  and  structured  prediction),  so  here  we  present  only  key 
 contributions and those results of particular relevance to our own work. 

 Multiple  view  reconstruction  has  a  long  history  in  the  literature,  beginning  at  least 
 as  early  as  the  seminal  work  of  Marr  et  al.  [12].  Low–level  approaches  estimate  the 
 depth  of  each  pixel  by  solving  for  stereo  disparity  (for  a  survey  see  [13]),  while 
 high–level  approaches  attempt  to  recover  polyhedral  models  of  various  kinds  [14,15]. 
 The present work follows the spirit of the latter approach. 



 Coughlan  and  Yuille  [16]  first  introduced  the  Manhattan  world  assumption,  in 
 which  reconstructed  surfaces  are  restricted  to  three  mutually–orthogonal  orientations. 
 Furukawa  et  al.  [17]  applied  this  idea  within  a  multiple  view  stereo  context.  Lee  et  al. 
 [3]  proposed  the  indoor  Manhattan  assumption,  which  places  further  restrictions  on 
 reconstructed models. 

 Single–view  reconstruction  from  line  drawings  also  has  a  long  history  in  the 
 literature  ([18],  for  example).  Reconstructing  single  real–world  images  was  re– 
 introduced  to  the  community  by  Hoiem  et  al.  [1],  who  employed  decision  trees  to 
 classify  image  segments  into  orientation  classes  in  a  multiple  segmentation  approach. 
 Saxena  et  al.  [2]  employed  energy  minimisation  to  recover  pixel–wise  depths. 
 Barinova  et  al.  [19]  reconstructed  piece–wise  planar  outdoor  scenes  using  an  EM 
 algorithm.  Hedau  et  al.  [11]  modeled  indoor  scenes  as  the  interior  of  a  cuboid,  and 
 cast  learning  within  a  structured  prediction  framework.  We  also  use  structured 
 prediction, though our hypothesis class is far more expressive. 

 Lee  et  al.  [3]  were  the  first  to  reconstruct  indoor  Manhattan  scenes.  They  devised  a 
 combinatorial  search  over  line  segments  using  a  branch–and–bound  algorithm.  Flint  et 
 al.  [5]  refined  this  to  an  exact  dynamic  programming  solution,  and  in  later  work  [4] 
 extended  the  indoor  Manhattan  assumption  to  the  multiple  view  domain.  The  authors 
 of  [4]  did  describe  a  learning  algorithm  based  on  bootstrapping,  though  its  statistical 
 consistency  was  given  little  attention.  The  present  work  relies  extensively  on  this 
 thread  of  research,  though  in  contrast  to  past  work  our  focus  is  entirely  on  learning  in 
 a statistically rigorous framework. We provide comparisons with these approaches. 

 Extending  binary  and  multi–label  classification  to  general  output  spaces  is  a  major 
 research  programme  within  the  machine  learning  community;  an  excellent 
 introduction  is  given  by  Bakir  et  al.  [20].  Our  approach  uses  the  structured  support 
 vector  machine,  first  proposed  by  Tsochantaridis  et  al.  [6]  and  improved  upon  by 
 Joachims  et al.  [21]. 

 In  this  work,  we  present  a  novel  unified  learning  framework  designed  for  the 
 reconstruction  of  polygonal  models  from  both  single  and  multiple  views  of  a  scene. 
 Our  approach  introduces  a  distinctive  loss  function  within  a  structured  prediction 
 framework,  emphasizing  a  single  optimization  process  with  clear  and  well-defined 
 objectives.  Notably,  we  focus  on  the  indoor  Manhattan  class  of  models,  leveraging  its 
 parametrization  and  inference  algorithm  to  enhance  re-  construction  accuracy.  The 
 versatility  of  our  framework  is  demonstrated  through  its  application  to  both 
 multiple-view  and  single-view  reconstructions,  showcasing  its  adaptability  to  various 
 scenarios.  Experimental  results  indicate  a  significant  improvement  over  existing 
 methods,  emphasizing  the  effectiveness  and  unique-  ness  of  our  proposed  approach  in 
 the domain of computer vision and scene understanding. 

 3  Model 

 In  this  section  we  describe  three  components  of  the  model  that  we  are  trying  to  learn 
 (and,  at  test  time,  infer):  a  hypothesis  class,  a  feature  space,  and  a  loss  function.  In  our 
 setup  these  are,  respectively,  the  class  of  indoor  Manhattan  models,  a  log–linear 



 Bayesian  likelihood,  and  either  the  relative  depth  error  or  a  labelling  error  (we 
 describe  both). 

 Fig.1:  (a-b)  Examples  of  indoor  Manhattan  environments.  The  red  line  illustrates  the  seam 
 representation. (c) An indoor Manhattan environment viewed from above. 

 3.1  Hypothesis Class 

 This  paper  is  concerned  with  the  hypothesis  class  consisting  of  indoor  Manhattan 
 reconstructions,  which  are  3D  polygonal  models  characterised  by  infinite  floor  and 
 ceiling  planes  with  vertical  walls  extending  between  them  (as  originally  proposed  by 
 Lee  et  al.  [3]).  Indoor  Manhattan  environments  are  a  sub–class  of  general  Manhattan 
 environments;  examples  are  shown  in  Figure  1.  This  is  an  attractive  hypothesis  class 
 because 

 1.  it captures many regularities within man–made environments;
 2.  the  geometric  primitives  (floor/wall/ceiling)  are  immediately  useful  for  semantic–

 level scene understanding;
 3.  it  is  expressive  enough  to  represent  approximately  or  exactly  a  surprisingly  wide

 variety of environments;
 4.  there is a simple and convenient parameterization;
 5.  an efficient inference algorithm exists [5].

 An  indoor  Manhattan  model  is  much  like  an  architectural  floor–plan,  and  can  be 
 specified  as  a  set  of  2D  line  segments  representing  walls  together  with  the  position  of 
 the  floor  and  ceiling  plane  (Figure  1).  In  this  paper  we  adopt  an  image–domain 
 parameterization  due  to  its  convenience  for  inference  and  learning.  Following  Flint  et 
 al.  [4]  we  represent  hypotheses  as  a  path  running  from  the  left  edge  to  the  right  edge 
 of  the  image,  which  we  will  refer  to  as  a  seam  .  A  seam  S  consists  of  a  sequence  of 
 pairs of scalars, 

 S={s  i  ,o  i  }  i=1 
 W  .  (1) 

 where  s  i  is  the  y  –coordinate  at  which  the  path  intersects  image  column  i  ,  o  i  is  the 
 orientation  of  the  wall  in  that  column,  and  W  is  the  image  width.  Remarkably,  this 
 simple parameterization specifies a unique metric 3D model up to scale [4]. 

 While  we  do  not  here  have  space  for  a  full  discussion  of  the  geometry  of  indoor 
 Manhattan  models,  there  are  two  properties  of  the  seam  representation  that  will  be 



 relevant  in  the  following  sections.  Firstly,  images  of  indoor  Manhattan  environments 
 can  be  rectified  so  that  vertical  lines  in  the  world  project  to  vertical  lines  in  the  image 
 [5].  Secondly,  the  mapping  from  seam  to  3D  reconstruction  decomposes  in  the 
 following  manner.  We  said  earlier  that  a  seam  S  specifies  a  unique  3D  reconstruction. 
 Let  a  (  x,y  ;  S  )  be  the  orientation  of  the  3D  surface  projecting  to  pixel  (  x,y  ).  Flint  et  al. 
 [5]  showed  that  a  is  functionally  dependent  only  on  the  pair  (  s  x  ,o  x  )  for  column  x  .  That 
 is, we may write 

 a  (  x,y  ;  S  ) =  a  ̃ (  x,y  ;  s  x  ,o  x  )  .  (2) 

 Similarly,  letting  d  (  x,y,  ;  S  )  be  the  distance  from  the  camera  to  the  surface  projecting  to 
 (  x,y  ) we may write 

 d  (  x,y  ;  S  ) =  d  ̃   (  x,y  ;  s  x  ,o  x  )  .  (3) 

 3.2  Feature Space 

 We  adopt  the  probabilistic  model  formulated  by  Flint  et  al.  [4],  which  relates  indoor 
 Manhattan  reconstructions  to  single–view  image  features,  multiple–view 
 photo–consistency  terms,  and  a  reconstructed  point  cloud.  From  our  perspective  these 
 are  simply  features  and  any  subset  may  be  omitted  if  inappropriate  for  a  given 
 application. Under this model the prior on reconstructions is 

 log  P  (  S  ) = −  n  ·  λ  +  O  (1) .  (4) 

 where  n  is  a  vector  containing  the  number  of  walls  in  S  of  various  categories  (concave, 
 convex,  occluding)  and  λ  is  a  hyper–parameter.  We  may  interpret  (4)  as,  roughly,  that 
 reconstructions with more walls are less likely. 

 Flint  et  al.  [4]  showed  that  for  a  variety  of  features  θ  (including  single–view  and 
 multiple–view) there are reasonable choices of likelihood that can be written 

 log  P  (  θ  |  S  ) =  ∑  x=1 
 W  π  Ө  (x,s  x  ) .  (5) 

 where  π  θ  is  a  real  matrix  computed  deterministically  from  θ  and  π  θ  (  i,j  )  is  the  element  at 
 row  i  ,  column  j  .  It  is  easy  to  show  that  for  each  sensor  model  described  in  [4]  the 
 log–likelihood is linear in the hyper–parameters  κ  ,  i.e. 

 logP(  θ  | S)=  ∑  x=1 
 w  κ  Ө  v  Ө  (x,s  x  ) .  (6) 

 Assuming conditional independence between features, the posterior is 

 P  (  S  |  Θ  ) ∝  P  (  S  )  ∏  i=1 
 n  P  (  θ  i  |  S  ) .  (7) 

 log  P  (  S  |  Θ  ) = −  n  ·  λ  +  ∑  i=1 
 n  ∑  x=1 

 w  ν  i  (  x,s  x  ) +  O  (1)  .  (8) 



 Table.1:  The  composition  of  our  single–  and  multiple–view  feature  space.  We  omit  colour  and 
 Gabor  features  from  the  multiple–view  feature  space  for  training  efficiency.’ 

 Feature Dimensionality           Multi–view ?      Single–view?        Reference 

 Stereo photo–consistency     4  yes  no  Flint  et  al. 
 [4] 

 Point cloud  2  yes  no  Flint  et  al. 
 [4] 

 Line sweeps  1  yes  yes  Lee  et al. 
 [3] 

 RGB+HSV  6  no  yes 

 Gabor responses  4  12  no  yes 

 So  far,  this  model  closely  follows  that  described  in  [4];  our  contribution  is  to  place  this 
 model  into  a  statistically  rigorous  learning  framework.  To  do  this  we  need  to  rewrite 
 the  above  in  terms  of  a  joint  feature  function  Ψ  (  Θ,S  )  and  a  parameter  vector  w  .  The 
 decomposability  of  indoor  Manhattan  models  into  payoff  matrices  permits  precisely 
 such a formulation. Defining 

 (9) 

 we see that (8) can be written as 

 .  (10)  𝑙𝑜𝑔𝑃  𝑆 ∨ Θ( ) =  𝑤 , Ψ Θ,  𝑆 ( ) +  𝑂  1 ( )

 where  we  have  adopted  Hilbert  space  notation  with  ⟨·  ,  ·⟩  denoting  an  inner 
 product.  Since  w  contains  all  free  parameters  in  the  model,  the  goal  of  learning  will 
 be to optimise  w  with respect to a training set {(  Θ  i  ,S  i  )}. 



 Features  The  precise  make–up  of  the  feature  space  depends  on  the  available  sensor 
 modalities.  We  define  separate  feature  spaces  for  the  single–  and  multiple–  view 
 contexts; these are summarised in Table 2. 

 3.3  Loss Functions 

 Next  we  define  a  loss  function  ∆  (  S,  Ŝ)  measuring  the  cost  of  predicting  some 
 reconstruction  Ŝ  when  in  fact  the  true  reconstruction  is  S  .  In  the  context  of  learning 
 one  often  faces  a  trade–off  between  choosing  a  loss  that  leads  to  tractable 
 optimization,  and  choosing  a  loss  that  measures  the  quantity  that  one  “really”  cares 
 about.  For  example,  Hoiem  et  al.  [1]  learn  a  per–segment  orientation  classifier,  then 
 pass  this  as  input  to  a  separate  3D  reconstruction  system  [22].  However,  what  one 
 “really”  cares  about  is  some  loss  defined  on  the  output  of  the  entire  system  rather  than 
 the  output  of  individual  components,  since  some  segment–  level  mistakes  are 
 insignificant  to  the  overall  reconstruction  quality,  while  others  are  catastrophic.  This  is 
 not  a  criticism  of  the  authors’  choice,  but  an  illustration  of  the  trade–off  faced  when 
 choosing  a  loss.  In  this  paper  we  show  how  to  learn  efficiently  with  respect  to  a  loss 
 defined on the final reconstruction. 

 The  relative  depth  error  has  been  the  gold  standard  within  the  reconstruction 
 community  for  more  than  a  decade  [23],  and  measures  the  average  deviation  between 
 reconstructed and ground truth depths. In our notation, 

 ∆  depth  (  S,  Ŝ) = 1/N Σ  p  { |d(p; Ŝ) − d(p; S)| /  d(p; S) } ,  (11) 
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 where  N  is  the  number  of  pixels.  Another  reasonable  choice  is  the  labelling  error,  used 
 widely within the semantic segmentation literature, 

 ∆  labelling  (S, Ŝ) = 1/N ∑  p  { a(p; Ŝ) ≠ a(p; S) }  ,                                (12) 

 where  [  p  ]  is  1  if  p  is  true  and  0  otherwise.  An  attractive  characteristic  of  the  indoor 
 Manhattan  class  is  that  both  of  these  losses  can  be  optimised  exactly  .  The  algorithmic 
 details are left to Section 4; the key result we establish here is that 
 ∆  depth  and  ∆  labelling  can  be  written  in  a  form  resembling  the  payoff  formulation  (5)  for  the 
 feature likelihoods. 

 First we invoke the independence established in (3): 

 ∆  depth  (Ŝ, S)=1/N ∑  x=1 
 w  ∑  y=1 

 H  {| ̃d(x, y; ŝ  x  ) − d(x, y; S)|}/{d(x, y; S)} .   (13) 



 Defining a real matrix  δ  S  , 

 δ  s  (x, j) =  ∑  y=1 
 H  {| ̃d(x, y;  ŝ  x  ) − d(x, y; S)|}/{d(x, y; S)}  .  (14) 

 we see that we can write  ∆  depth  in the form 

 ∆  depth  (Ŝ, S)=1/N  ∑  x=1 
 W  δ  s  (x,  ŝ  x  )  .  (15) 

 There is a similar form for  ∆  labelling  , which we omit  here due to space constraints. 

 Choosing  a  Loss  Function  Neither  of  the  above  losses  is  unequivocally  the  “correct” 
 loss;  the  choice  will  depend  on  the  application.  One  might  expect  a  strong  correlation 
 between the losses, and indeed one can show analytically that 

 ∆  depth  (  S,Ŝ  ) = 0 ⇐⇒  ∆  labelling  (  S,Ŝ  ) = 0  .  (16) 

 However,  in  our  experiments  we  found  only  a  weak  correlation  between  these  losses 
 away  from  the  origin.  For  example,  the  scatter  plot  shown  in  Figure  2  shows  a 
 significant  number  of  outliers  that  score  very  well  on  ∆  depth  but  poorly  on  ∆  labelling  ,  and 
 vice versa. 

 4  Learning 

 We  turn  now  to  the  problem  of  learning  within  the  model  described  above.  Our 
 learning  task  is  to  identify  a  prediction  function  f  mapping  observed  features  Θ  to 
 reconstructions  S  . We seek the loss minimizer 

 ,  (17) 
 which we approximate in the framework of empirical risk minimization as 

 f  *  =  argmin  (  f)  ∑  k  ∆  ( (  f  (Θ  k  ), S  k  ) ,  (18) 

 where  k  indexes  a  training  set.  To  perform  this  optimization  we  turn  to  the  tools  of 
 structured  prediction  [20],  and  in  particular  the  structured  SVM  [6].  First  we  need  to 
 define  f  . In this paper we consider predictors of  the form 

 f  w  (  Θ  ) = argmax  (S)  〈w , Ψ(Θ, S)  .  (19) 



 Comparing  (10)  we  see  that  each  predictor  of  the  form  (19)  is  simply  implementing 
 MAP  inference  under  some  set  of  hyper–parameters  w  .  We  now  turn  to  the 
 optimization  problem  itself.  Following  the  standard  approach  [20]  we  cast  the  learning 
 problem as a constrained optimisation problem, 

 min  (w,ξ)  ½ ||w||  2  + C ∑  k=1 
 n  ξ  (20) 

 s.t. ∀k, S ≠ Sk : 〈w , Ψ(Θ, S)〉− w, Ψ (Θ  k  , S) ≥ ∆(S,  S  k  ) − ξ  k  . 

 Tsochantaridis  et  al.  [6]  described  an  algorithm  for  solving  this  minimisation  that  is 
 now  used  extensively  within  machine  learning  and  computer  vision.  To  apply  this 
 algorithm here we must solve two inference problems: 

 1.  Prediction.  This is the maximisation described in  (19). 
 2.  Separation.  The  algorithm  described  in  [6]  requires  a  user–supplied  procedure  to 

 find the “most–violated constraint” at each iteration. That is, 

 argmax  (S)  w, Ψ (Θ  k  , S) + ∆(S, S  k  ) .  (21) 

 Our  solutions  to  both  of  the  above  build  on  the  algorithm  presented  by  Flint  et  al. 
 [5,4], which is a dynamic programming solution to problems of the form 

 argmax  (S)  ∑  x  π(x, s  x  ) -  ∑  j  γ(j; S)  .  (22) 

 4.1  Inference (Prediction) 

 We  showed  in  Section  3  that  (22)  can  be  written  in  the  form  (19),  so  the  prediction 
 problem  is  a  straightforward  application  of  [5].  This  is  as  expected  since,  as  we  have 
 already  remarked,  (19)  is  equivalent  to  MAP  inference  on  indoor  Manhattan 
 reconstructions, which was precisely the subject of [5]. 

 4.2  Loss–Augmented Inference (Separation) 

 It  turns  out  that  the  separation  problem  can  also  be  solved  using  the  dynamic 
 programming algorithm mentioned above, as the following proposition shows. 
 Proposition 1.  Let  (  Θ  k  ,S  k  )  be a training instance  with payoff matrices  {  π  i  }  as defined in 
 (5)  . Let 

 π  aug  = δ  S  k  + ∑  xi  π  i  .  (23) 

 Then the solution to  (22)  with π  =  π  aug  is identical  to the solution to  (21)  . 



 Proof.  Direct  equivalence  of  the  expressions  to  be  maximised.  First  substitute  (10)  and 
 (15) into (22): 

 log  P  (  S  |  Θ  ) +  ∑  x=1 
 w  δ  S  k  (  x,s  x  ) . 

 Further substituting (5) and defining  γ  as in [4]  gives 

 (24) 

 ∑  i  ∑  x =1 
 w  πi (x, sx )  - ∑  j  γ(j; S) + ∑  x =1 

 w  δ  Sk  (x, s  x  ) . 

 Finally we see that substituting (23) gives 

 (25) 

 ∑  x=1 
 w  πaug (x, sx )  - ∑  j  γ(j; S) .  (26) 

 5  Multiple View Results 

 We  evaluated  our  approach  on  the  data–set  proposed  in  [4],  which  consists  of  18 
 sequences  of  six  environments  averaging  59  seconds  in  duration.  We  sampled 
 key–frames  at  regular  intervals.  Each  “instance”  in  our  training  and  hold–out  sets 
 consists of one base frame together with four auxiliary frames. 

 We  compared  it  with  the  bootstrapping  approach  described  in  [4].  Our  metrics 
 differ  from  theirs  in  two  ways.  Firstly,  they  compute  relative  depth  error  using  the 
 maximum  of  the  ground  truth  and  estimated  depths  in  the  denominator,  whereas  we 
 always  use  the  ground  truth  in  the  denominator.  These  metrics  are  separated  by  at 
 most a monotonic transform but the latter is more convenient 



 Table.2:  Multiple–view  reconstruction  performance  on  held–out  data,  compared  with  Flint  et  al. 
 [4].  For  unavoidable  reasons  we  use  slightly  different  metrics  so  our  figures  differ  from  those 
 published in [4]. See main text for explanation. 

 Depth Error (%)  Labelling Error (%) 

 Sequence  This Paper  2  Flint  et al.  This Paper  3  Flint  et al. 

 ground  4.9  66.6  2.9  10.4 
 foyer1  6.1  6.6  3.1  3.1 
 foyer2  4.3  5.4  3.7  4.0 
 corridor  14.6  52.9  9.5  19.2 
 mcr  34.0  67.6  15.  16.2 
 kitchen  16.8  23.6  5.2  6.1 
 Average  13.4  37.1  6.7  9.8 

 Table.3:Single-view reconstruction performance on held-out data, compared with Flint et al.[5] 

 represent  in  our  framework.  Secondly,  when  we  compute  labelling  error  we 
 differentiate  vertical  and  horizontal  surfaces  only,  whereas  they  also  differentiate  the 
 two  vertical  orientations.  The  latter  approach  makes  a  side–by–side  comparison 
 difficult  because  the  two  vertical  orientations  are  symmetric  and  their  labels  can 
 always be interchanged. 

 The  performance  of  these  two  algorithms  are  summarised  in  Table  2.  Our  approach 
 significantly  out–performs  the  bootstrapping  algorithm.  Anecdotally  we  noticed  that 
 much  of  the  improvement  resulted  from  a  reduction  in  catastrophic  failures.  This 
 makes  sense  because  we  would  expect  the  learning  algorithm  to  concentrate  on 

 Depth Error (%)  Labelling Error (%) 

 Sequence  This Paper  2  Flint  et al.  This Paper  3  Flint  et al. 

 ground  17.3  24.5  7.8  12.2 
 foyer1  25.1  31.0  15.1  22.2 
 foyer2  29.1  30.1  15.9  18.6 
 corridor  31.7  33.6  19.3  24.8 
 mcr  70.1  45.9  26.7  20.8 
 kitchen  25.1  26.2  7.7  11.9 
 Average  33.1  31.9  15.4  18.4 



 reducing  those  mistakes  that  result  in  the  largest  loss.  Some  example  predictions  are 
 shown in Figure 4; many more are included in additional material. 

 Fig.2:  The  effect  of  the  loss  function  on  training.  We  train  two  predictors,  one  with  respect  to 
 ∆  depth  and  one  with  respect  to  ∆  labelling  ,  then  evaluate  both  on  all  held–out  instances.  Each  data 
 point  shows  the  error  obtained  by  one  predictor  on  held–out  instances.  The  differing 
 distribution of errors shows that the two predictors trade off errors as expected. 

 6  Single View Results 

 We  evaluated  our  system  for  single–view  reconstruction  using  the  same  data–set 
 described  in  the  previous  section.  We  used  the  single–view  features  summarised  in 
 Figure  2.  We  compared  our  approach  to  the  single–view  approach  of  Flint  et  al.  [5], 
 which  uses  the  same  dynamic  programming  algorithm  that  we  rely  upon,  but  uses 
 hand–tuned features. 

 Performance  for  each  algorithm  is  summarised  in  Figure  3.  When  measured  by 
 labelling  error,  our  approach  out–performs  the  hand–tuned  weights,  but  on  the  depth 
 error metric our approach is inferior. While investigating this result we 



 Fig.3: Evolution of w during training. Each series shows the value of one component of w. After an 
 exploration phase the model converges  . 

 found  that  our  learning  algorithm  assigns  small  weights  to  all  but  the  line–sweep 
 features,  which  are  the  same  features  used  by  [5].  This  suggests  that  the  hand–  tuned 
 weights  are  in  fact  close  to  optimal  within  this  feature  space,  though  one  would  expect 
 that  with  additional  feature  engineering  our  learning  algorithm  would  be  able  to 
 leverage further salient information and reduce the error rate. 

 7  Discussion 

 The  hypothesis  class  considered  in  this  paper  is  among  the  most  complex  (in 
 terms  of  internal  constraints  on  the  output  space)  studied  within  the  structured 
 prediction  framework.  In  this  section  we  turn  to  some  practical  lessons  learnt 
 that may be of value to other practitioners  . 

 Condition  in  the  joint  feature  space,  not  the  input  feature  space.  gi  A  common 
 pre–processing  operation  for  statistical  learning  is  to  transform  the  observed  features 
 Θ  to  zero  mean  and  unit  variance.  However,  for  structured  prediction  tasks  it  is  the 
 joint feature space  Ψ  that should be conditioned: 

 Ψ′ = (Ψ −µ) / σ  2  .  (27) 

 Ideally  one  would  sample  from  the  joint  feature  space  to  determine  the  conditioning 
 transformation,  but  the  distribution  of  inputs  and  outputs  is  generally  unknown  in  an 
 empirical  risk  minimization  setting.  Instead,  we  use  the  training  set  as  a  proxy.  We 
 compute  the  empirical  mean  and  variance  of  {Ψ(Θ  k  ,  S  k  )}  at  the  outset,  then  apply  the 
 transformation (27) after each feature computation. 

 Condition  the  loss  terms.  For  any  η  >  0,  the  minimization  problem  (20)  is  equivalent 
 (under the substitution  w  ′  =  ηw  ,  ξ  ′  =  ηξ  ) to: 

 min  (w’,ξ’)  = ½  ||w||  2  + ηC  ∑  k=1 
 n  ξ’  k 



 s.t. ∀k, S ≠ Sk :  〈w , Ψ(Θ  k  , S  k  )〉- 〈w′ , Ψ (Θ  k  , S)〉≥ η∆(S, S’k ) − ξ  k  ′ .         (28) 

 Although  any  η  >  0  preserves  the  correctness  of  the  optimization  algorithm,  we  found 
 that  choosing  η  =  Var(  ∆  )  improved  numerical  stability,  since  this  means  the  loss  terms 
 will  have  roughly  unit  variance.  Unfortunately,  we  cannot  use  the  training  set  to 
 estimate  Var(  ∆  )  since  the  loss  for  the  ground  truth  reconstruction  is  always  zero. 
 Instead  we  computed  ∆  (  Θ  k  ,S  j  )  for  each  k  ̸=  j  in  the  training  set.  This  is  not  an  ideal 
 estimate, but we found that it worked well in practice. 

 2  This column represents the predictor trained with respect to  ∆  depth  . 
 3  This column represents the predictor trained with respect to  ∆  labelling  . 

 Check  that  the  hypothesis  class  contains  the  ground  truth.  The  algorithm 
 described  in  [6]  implicitly  assumes  that  the  hypothesis  class  Y  contains  the  ground 
 truth labels  S  k  . This means that if  S  +  is the maximizer  of (21) then 

 〈w , Ψ(Θ  k  , S  k  )〉- 〈w , Ψ(Θ  k  ,  S  +  )〉- ∆(S  +  , S  k  ) ≤ 0  ,  (29) 

 since otherwise we would have 

 〈w , Ψ(Θ  k  , S  k  ) + ∆(S  k  , S  k  )>〈  w , Ψ(Θ  k  , S  +  )+ ∆(S  +  , S  k  ) ,                 (30) 

 contradicting  S  +  as  the  maximizer  of  (21).  However,  our  output  space  contains 
 fundamentally  real–valued  quantities  such  as  polygon  vertices,  which  are  recovered 
 only  to  some  finite  precision  by  the  inference  algorithm,  and  since  our  ground  truth 
 labels  were  acquired  by  manual  labelling,  they  sometimes  exceed  the  maximum 
 precision  of  the  inference  algorithm.  In  this  case  we  effectively  have  S  k  ∉  Y  (although 
 there  is  always  some  S  ′  ∈  Y  close  to  S  k  ),  so  it  is  possible  that  S  +  violates  (29).  Our 
 workaround  here  is  simply  to  check  the  condition  (29)  each  time  we  solve  the 
 separation  problem  and,  if  violated,  substitute  S  k  for  S  +  .  This  is  justified  by  the 
 observation  that  if  (29)  is  violated  for  S  +  then  it  is  violated  for  all  S  ∈  Y.  One  could 
 think  of  this  as  learning  with  respect  to  the  hypothesis  class  Y  ∪{  S  k  }  but  evaluating 
 with  respect  to  Y.  This  is  not  an  ideal  solution  but  we  found  it  to  work  well  in  practice. 
 Unfortunately  this  patch  has  the  side–effect  of  hiding  bugs  in  the  inference  algorithm, 
 so care is warranted. 



 Fig.4:  Multiple–view  reconstructions  predicted  by  our  system  (held–out  samples).  The  first  two 
 rows  represent  the  predictors  trained  on  ∆  depth  and  ∆  labelling  respectively,  the  third  row  is  from  [4], 
 and the fourth row is ground truth. 

 8  Conclusion 

 We  have  presented  a  unified  learning  framework  for  reconstructing  polygonal  models 
 from  single  and  multiple  views  of  a  scene.  We  have  chosen  to  work  with  the  indoor 
 Manhattan  class  of  models  in  order  to  leverage  the  parameterization  and  inference 
 algorithm  recently  proposed  for  this  hypothesis  class  [5,4].  Our  approach  to  learning 
 performs  a  single  optimisation  with  respect  to  a  clearly  defined  loss  function. 
 Experiments  show  our  system  out–performing  the  state–of–  the–art  for  multiple–view 
 reconstruction (by a large margin) and on one metric for single–view reconstruction. 

 In  the  future  work  will  extend  this  approach  to  learn  geometry  together  with  scene 
 classifiers  and  context–aware  object  detectors,  optimising  with  respect  to  a  single  joint 
 loss function. 
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