
Comparison of Joblib and Pymp for Parallel Fingerprint
Recognition

ZERBO Ali 1, OUEDRAOGO Moı̈se2, SERE Abdoulaye3, DIARRA Mamadou
{alizerbo98@gmail.com1, moisewedra@gmail.com2, abdoulayesere@gmail.com 3 }

Université Nazi BONI 1, 2, 3, Burkina Faso

Abstract. Fingerprint recognition is a cornerstone technology in security and identification sys-
tems, valued for its reliability and uniqueness. As the complexity of fingerprint data increases,
efficient computational techniques become crucial to ensure fast and accurate processing. Paral-
lel computing emerges as a promising solution, distributing computational tasks across multiple
processors to enhance performance and reduce processing times. This study compares two par-
allel computing libraries, Joblib and Pymp, to assess their effectiveness in optimizing fingerprint
recognition algorithms. Joblib is renowned for its ease of integration, memory efficiency, and
caching support, making it suitable for machine learning tasks and data preprocessing. Pymp,
on the other hand, offers a straightforward API for parallelizing loops and managing shared re-
sources, ideal for tasks that require shared memory. Implementing fingerprint recognition pro-
cesses with both libraries, we measured their performance in terms of execution time, resource
utilization, and ease of use. Contrary to expectations, our results show that Pymp surpasses
Joblib in speed, even with a moderate dataset of 407 fingerprint images, thanks to its efficient
CPU resource management and flexible parallel loop execution. This comparative analysis pro-
vides valuable insights into the strengths and limitations of each library, guiding the selection of
suitable parallel processing tools for fingerprint recognition tasks. Future research will explore
hybrid methods that combine the advantages of both libraries to further improve the efficiency of
fingerprint recognition systems.

Keywords: Fingerprint Recognition, Parallel Computing, Joblib, Pymp, CPU.

1 Introduction

Fingerprint recognition is a cornerstone of modern biometric systems, extensively employed in
sectors such as security, law enforcement, personal identification, and access control. The reliability
and efficiency of these systems are paramount for ensuring secure and rapid identification processes.
As the volume of fingerprint data and the complexity of recognition algorithms grow, the need
for efficient computational strategies becomes increasingly critical. Parallel computing emerges as

JRI 2023, December 18-20, Ouagadougou, Burkina Faso
Copyright © 2024 EAI
DOI 10.4108/eai.18-12-2023.2348107



a potent solution to address these computational challenges by distributing tasks across multiple
processing units, thereby enhancing processing speed and efficiency.1

Parallel computing leverages the concurrent execution of processes to optimize computational
tasks, making it highly suitable for data-intensive applications like fingerprint recognition. This
approach not only reduces processing time but also improves the handling of large datasets, which
is a common requirement in biometric applications. Among the various tools available for parallel
computing in Python, Joblib and Pymp are two prominent libraries that offer distinct advantages
[1, 2].

Joblib is widely recognized for its simplicity and efficiency, particularly in the context of data
preprocessing and machine learning tasks.2 It is designed to facilitate parallel processing with min-
imal effort, making it a popular choice among practitioners who require efficient execution of large-
scale computations. Joblib’s ability to cache results and avoid recomputations further enhances its
utility in iterative processes commonly found in biometric systems [3].

Pymp, in contrast, is known for its user-friendly interface and lightweight nature, making it an
attractive option for developers seeking straightforward implementation of parallel tasks. Pymp pro-
vides an easy-to-use syntax for parallelism, enabling quick and efficient parallel execution without
the overhead of more complex parallel computing frameworks. Its flexibility and ease of integration
with existing Python codebases make it a viable alternative for various parallel processing needs [4].

This study aims to conduct a comprehensive comparison of Joblib and Pymp in the context of
fingerprint recognition. By evaluating these libraries based on execution time, resource utilization,
and scalability, we seek to provide valuable insights into their performance characteristics. The
comparison is conducted through a series of experiments using a standardized fingerprint dataset,
allowing for a detailed analysis of each library’s strengths and limitations.

The structure of this paper is as follows: First, we provide an overview of fingerprint recog-
nition systems and the role of parallel computing in enhancing their performance. Next, we delve
into the methodologies and features of Joblib and Pymp, highlighting their respective implementa-
tion strategies. We then describe the experimental setup, including the dataset used, the fingerprint
recognition algorithms implemented, and the evaluation metrics employed. The results of the ex-
periments are presented and analyzed in detail, providing a clear picture of the performance of each
library under various conditions. Finally, we discuss the implications of our findings, offering prac-
tical recommendations for developers and researchers aiming to optimize fingerprint recognition
systems through parallel computing.

By providing a detailed comparison of Joblib and Pymp, this study contributes to the broader
understanding of parallel computing in biometric applications. Our findings aim to guide practi-
tioners in selecting the most suitable parallel processing library for their specific needs, ultimately
enhancing the efficiency and accuracy of fingerprint recognition systems. Through this research, we
hope to pave the way for further advancements in the application of parallel computing to biometric
technologies.

1For more information on parallel computing techniques, see Smith et al., 2018.
2Refer to the official Joblib documentation for a detailed overview: https://joblib.readthedocs.io/



2 Background

2.1 Fingerprint Recognition Systems

Fingerprint recognition systems have become a vital component in modern security and identi-
fication technologies. These systems utilize unique patterns of ridges and valleys present in human
fingerprints to accurately identify and verify individuals. The process of fingerprint recognition typ-
ically involves several key steps: image acquisition, preprocessing, feature extraction, and matching
[5].

2.1.1 Image Acquisition

Image acquisition is the first step in fingerprint recognition, where a fingerprint image is cap-
tured using sensors such as optical, capacitive, or ultrasonic devices. The quality of the captured
image significantly impacts the subsequent stages of recognition. High-resolution images with clear
ridge patterns are essential for accurate feature extraction and matching [6].

2.1.2 Preprocessing

Preprocessing aims to enhance the quality of the fingerprint image and make it suitable for
feature extraction. This stage involves noise reduction, contrast enhancement, and normalization.
Techniques such as histogram equalization and Fourier transformation are commonly used to im-
prove image quality and enhance ridge structures [7].

2.1.3 Feature Extraction

Feature extraction is a crucial stage where distinctive patterns, known as minutiae, are identified
from the preprocessed fingerprint image. Minutiae points, such as ridge endings and bifurcations,
are extracted to create a unique fingerprint template. This template is used for comparison during
the matching process. The accuracy of the recognition system heavily depends on the precision of
the feature extraction method employed [8].

2.1.4 Matching

Matching involves comparing the extracted features from the input fingerprint with those stored
in a database to find a match. Various algorithms, including correlation-based, ridge-based, and
minutiae-based techniques, are used to perform the matching process. The efficiency and accuracy
of the matching algorithm determine the overall performance of the fingerprint recognition system
[9].

2.2 Parallel Computing

Parallel computing is a method of computation in which many calculations or processes are
carried out simultaneously. Large problems can often be divided into smaller ones, which can then



be solved concurrently. Parallel computing is employed in various fields to reduce computational
time and handle large-scale data processing efficiently [10].

2.2.1 Overview of Parallel Computing

Parallel computing architectures are classified into several categories, including shared mem-
ory, distributed memory, and hybrid models. Shared memory architectures involve multiple pro-
cessors accessing the same memory space, whereas distributed memory architectures consist of
processors with their own local memory. Hybrid models combine both approaches to leverage the
advantages of each [11].

2.2.2 Parallel Computing in Fingerprint Recognition

In fingerprint recognition, parallel computing can significantly enhance processing speed and
accuracy. Tasks such as image preprocessing, feature extraction, and matching can be parallelized
to reduce computational time. By distributing these tasks across multiple processors, parallel com-
puting ensures efficient handling of large fingerprint databases and complex recognition algorithms
[12].

2.3 Joblib and Pymp

Python, being a versatile and widely-used programming language, offers various libraries for
parallel computing. Among these, Joblib and Pymp are notable for their ease of use and efficiency.

2.3.1 Joblib

Joblib is a library designed to provide lightweight pipelining in Python. It is particularly ef-
fective for tasks involving large arrays or datasets, which are common in scientific computing and
data analysis. Joblib’s caching mechanism helps avoid recomputation, making it highly efficient
for iterative algorithms. It also supports parallel processing through multiprocessing, enabling the
distribution of computational tasks across multiple CPU cores [3].

2.3.1 Pymp

Pymp is another parallel computing library for Python that focuses on simplicity and ease of
integration. It provides a straightforward API for parallelism, allowing developers to parallelize tasks
with minimal code modifications. Pymp supports multi-threading and is well-suited for applications
that require lightweight parallel processing without the overhead of more complex frameworks [4].

2.4 Comparative Studies and Research Gap

Previous studies have explored various aspects of parallel computing in fingerprint recogni-
tion. However, there is a lack of comprehensive comparisons between different parallel computing
libraries in this specific context. This study aims to fill this gap by evaluating the performance of



Joblib and Pymp in fingerprint recognition tasks, providing insights into their strengths and limita-
tions [1, 2].

2.5 Performance Evaluation

To evaluate the performance of Joblib and Pymp in the context of fingerprint recognition, we
conducted a series of experiments. The experiments involved parallelizing the feature extraction
step for a dataset of fingerprint images. We measured the execution time and resource utilization for
both libraries under various configurations. The results indicate that while both libraries significantly
reduce computational time compared to serial execution, Joblib outperforms Pymp in handling larger
datasets due to its efficient memory management and caching capabilities.3 However, Pymp provides
a more straightforward implementation with less overhead, making it ideal for smaller-scale tasks.

3 Methodolody

To evaluate the performance and efficiency of Joblib and Pymp in parallel feature extraction
for fingerprint recognition, we designed an experimental setup with the following components:

3.1 Dataset

We used a publicly available fingerprint dataset consisting of 407 fingerprint images [13].
These images were divided into two sets: a training set of 100 images and a testing set of 307
images. Each image had a resolution of 512x512 pixels.

3.2 Preprocessing

Preprocessing involved steps such as normalization, segmentation, and enhancement to im-
prove the quality of the fingerprint images for feature extraction. We applied histogram equalization
to normalize the contrast, followed by a Gabor filter to enhance the ridge structures in the finger-
prints.4

The preprocessing steps are as follows:

3.2.1 Normalization

Inorm(x,y) =
I(x,y)−µ

σ
(1)

where I(x,y) is the original pixel value, µ is the mean pixel value, and σ is the standard deviation
[14].

3See Johnson et al., 2020 for a comparative study on Joblib’s caching capabilities.
4For details on histogram equalization and Gabor filtering, refer to Gonzalez and Woods, 2008.



3.2.2 Segmentation

Iseg(x,y) =

{
Inorm(x,y) if (x,y) ∈ fingerprint region
0 otherwise

(2)

3.2.3 Enhancement

Ienh(x,y) = Iseg(x,y)∗G(x,y,θ , f ) (3)

where G(x,y,θ , f ) is the Gabor filter with orientation θ and frequency f , and ∗ denotes convolution
[15].

3.3 Feature Extraction

Feature extraction is a crucial step in the fingerprint recognition process. We employ the Gen-
eralised Hough Transform (GHT) method, which consists of the following stages:

3.3.1 Binarization

The binarization process converts the grayscale image into a binary image using a predefined
threshold value T . The binary image Ibinary is defined as:

Ibinary(x,y) =

{
1 if I(x,y)> T
0 if I(x,y)≤ T

(4)

where T is the threshold value.

3.3.2 Thinning

We utilize the Zhang-Suen thinning algorithm to reduce the width of the ridges in the binary
image to a single pixel, a crucial step for accurate minutiae detection.

The Zhang-Suen thinning algorithm is applied to reduce the width of the ridges in the binary
image to a single-pixel width [16]. This algorithm has been widely used in image processing for
thinning operations and is known for its effectiveness in preserving the connectivity and topology of
the binary image.

3.3.3 Minutiae Detection

Identifying ridge endings and bifurcations in the thinned images using the following criteria:

If
8

∑
k=1

pk = 1, then p is a ridge ending (5)



If
8

∑
k=1

pk = 3, then p is a bifurcation (6)

where pk are the pixel values in the 3x3 neighborhood of p.

Fig. 1. Illustrative Diagram of the Different Preprocessing Steps Applied to Fingerprint Images.



Algorithm 1 Generalized Hough Transform and Minutiae Matching

• Inputs:

– I - Original image

– T - Threshold value for binarization

• Outputs:

– List of matched minutiae

– Transformation parameters (∆x∗,∆y∗,∆θ ∗)

Procedure MinutiaeMatching:

1. Initialize the accumulation matrix A to zero for each cell.

2. Initialize the list of matches to empty.

3. Binarize the image I using threshold T to obtain Ibinary.

4. Apply Zhang-Suen thinning to Ibinary to obtain Ithinned.

5. Detect minutiae in Ithinned to obtain a list of minutiae points.

6. N← Number of minutiae points in the reference image.

7. M← Number of minutiae points in the input image.

8. For each minutia point mi in the reference image do

(a) For each minutia point m j in the input image do
i. Compute ∆θ , the orientation difference between mi and m j.

ii. Compute ∆x, the x-coordinate difference between mi and m j.
iii. Compute ∆y, the y-coordinate difference between mi and m j.
iv. Increment A(∆x,∆y,∆θ).
v. If matching conditions are met then

Add (mi,m j) to the list of matches.

9. Find the peak in A to obtain the optimal transformation parameters (∆x∗,∆y∗,∆θ ∗).

10. Return the list of matches and the transformation parameters (∆x∗,∆y∗,∆θ ∗).



3.4 Parallel Processing with Joblib and Pymp

We implemented two parallel processing pipelines for feature extraction using Joblib and
Pymp.

3.4.1 Joblib and Pymp Setup

We used Joblib’s Parallel and delayed modules to distribute the feature extraction tasks
across multiple CPU cores. Similarly, we used Pymp to create a parallel processing environment.
Pymp’s shared lists were used to store the extracted features. A parallel region was created, and the
feature extraction function was executed in parallel for each fingerprint image.

Algorithm 2 Parallel Feature Extraction using Joblib

Require: Fingerprint images {img1, img2, . . . , imgn}
Ensure: Extracted features { f eat1, f eat2, . . . , f eatn}

1: function EXTRACT FEATURES(img)
2: Preprocess the image img
3: Extract features from the preprocessed image using Generalised Hough Transform
4: return features
5: end function
6: function PARALLEL FEATURE EXTRACTION(images)
7: Import Joblib’s Parallel and delayed modules
8: Execute Parallel(n jobs=-1)(delayed(extract features)(img) for

each img in images)
9: return the list of extracted features

10: end function
11: images←{img1, img2, . . . , imgn}
12: f eatures← PARALLEL FEATURE EXTRACTION(images)



Algorithm 3 Parallel Feature Extraction using Pymp

Require: Fingerprint images {img1, img2, . . . , imgn}
Ensure: Extracted features { f eat1, f eat2, . . . , f eatn}

1: function EXTRACT FEATURES(img)
2: Preprocess the image img
3: Extract features from the preprocessed image using Generalised Hough Transform
4: return features
5: end function
6: function PARALLEL FEATURE EXTRACTION(images)
7: Import Pymp
8: Initialize a Pymp shared list for features
9: Create a Pymp parallel region

10: for i in p.range(len(images)) do
11: f eatures list.append(EXTRACT FEATURES(images[i]))

end for
12: end parallel
13: return f eatures list
14: end function
15: images←{img1, img2, . . . , imgn}
16: f eatures list← PARALLEL FEATURE EXTRACTION(images)

3.4.2 Hardware and Software Environment

The experiments were conducted on a machine with the
following specifications:

• CPU: Intel Core i7-12700H @ 5GHz (turbo-boost)

• RAM: 32 GB DDR4

• Operating System: Ubuntu 20.04 LTS

• Software: Python 3.8, Joblib 1.0.1, Pymp 0.4.3

This setup ensures a comprehensive comparison of Joblib and Pymp for parallel feature ex-
traction in fingerprint recognition, providing insights into their performance and practical utility in
real-world applications.

4 Results and Discussion

To evaluate the performance of Joblib and Pymp in the context of fingerprint recognition, we
conducted a series of experiments. The experiments involved parallelizing the feature extraction
step for a dataset of fingerprint images. We measured the execution time and resource utilization for
both libraries under various configurations.



4.1 Performance Analysis

4.1.1 Execution Time

In our experimental setup, we systematically compared the execution times of Pymp and Joblib
across various scenarios as illustrated in Table 1. We initiated the comparison by evaluating the exe-
cution time for a single fingerprint comparison and incrementally increased the number of compar-
isons to 100. For each scenario, we measured the time taken by both Pymp and Joblib to complete
the fingerprint comparison tasks.

Our findings revealed that Pymp consistently demonstrated superior performance in terms of
execution time compared to Joblib. This can be attributed to Pymp’s efficient parallelization tech-
niques and its adeptness at effectively leveraging multi-core processors. Pymp’s backend is opti-
mized for task distribution and load balancing, ensuring that computational resources are utilized
optimally, leading to shorter execution times. This efficiency in resource utilization allows Pymp
to outperform Joblib across all scenarios, making it the preferred choice for fingerprint recognition
tasks that require swift and efficient processing.

Table 1: Execution Time Comparison.

Number of Comparisons Pymp Joblib

1 1.03s 2.73s
5 1.06s 7.87s
10 1.07s 15.17s
15 1.08s 22.45s
20 1.10s 27.07s
25 1.12s 31.59s
30 1.15s 33.01s
35 1.18s 39.90s
40 1.20s 40.52s
45 1.70s 43.07s
50 1.97s 43.90s
75 2.33s 50.60s
100 2.77s 53.79s

Firstly, it is evident that execution times increase as the number of fingerprint comparisons
grows, which is expected given the complexity of this task. However, the significant differences
between Pymp and Joblib are particularly noteworthy.

The Pymp library demonstrates markedly shorter execution times compared to Joblib across all
scenarios. For instance, for a single fingerprint comparison, Pymp takes only 1.03 seconds, whereas
Joblib requires 2.73 seconds. This pattern persists as the number of comparisons rises, with Pymp
consistently outperforming Joblib at each stage.

These findings suggest that Pymp is a more efficient option for Hough transform-based finger-
print recognition in a virtual grid. The parallelization of tasks performed by Pymp seems to fully



leverage available hardware resources, such as multi-core processors, to expedite the process.
The data from the table is visualized in the graph below, illustrating the performance disparities

between Pymp and Joblib more clearly. This graphical representation underscores Pymp’s superior
efficiency and the substantial time savings it offers for fingerprint comparison tasks. The fingerprint

Fig. 2. Figure illustrating the comparative execution times of both algorithms as a function of the number of
fingerprints analyzed.

recognition rate achieved using the Generalised Hough Transform (GHT) method reached 99%.
This outstanding performance underscores the effectiveness and reliability of GHT in accurately
recognizing fingerprints. By employing this method, we have achieved a high level of precision,
ensuring precise fingerprint identification with an exceptional accuracy of 99%.

4.1.2 Resource Utilization

Pymp, on the other hand, demonstrated better utilization of CPU resources. This is due to its
effective management of parallel loops, which allows for more granular control over the distribution



of tasks across CPU cores. Pymp’s design facilitates efficient CPU usage, minimizing idle time and
ensuring that each core is actively contributing to the computational workload.

This characteristic is particularly beneficial in environments with limited computational re-
sources or where fine-tuning of resource allocation is necessary. For instance, in a multi-threaded
scenario with intensive computations, Pymp was able to maintain higher CPU usage percentages
compared to Joblib, leading to more efficient resource utilization. As shown in Table 2, Pymp con-
sistently outperformed Joblib in various tasks, achieving higher CPU utilization percentages across
matrix multiplication, image processing, and data transformation tasks.

Table 2: CPU Utilization Comparison.

Task Joblib CPU Utilization (%) Pymp CPU Utilization (%)

Matrix Multiplication 85 92
Image Processing 78 88
Data Transformation 80 90

4.2 Usability

4.2.1 Ease of Use

Joblib’s straightforward integration and caching capabilities significantly enhance its ease of
use, especially for complex tasks. The framework provides simple yet powerful tools for parallel
processing, making it accessible to users with varying levels of expertise in parallel computing. Its
ability to cache intermediate results reduces redundant computations, which is particularly useful in
iterative processes or workflows involving repetitive tasks.

For example, a data scientist working on machine learning model training can easily parallelize
cross-validation tasks with Joblib, leveraging its caching to avoid recomputing data transformations
or model predictions. This feature not only saves time but also simplifies the workflow. As shown
in Table 3, Joblib offers easier integration, robust caching support, and extensive documentation
compared to Pymp, making it a more user-friendly option for most users.

Table 3: Ease of Use Comparison.

Criterion Joblib Pymp

Integration Easy Moderate
Caching Supported Not Supported
Documentation Extensive Moderate



4.2.2 Flexibility

Pymp offered greater flexibility for tasks requiring shared memory. Its architecture allows
for detailed management of resources, which can be crucial in scenarios where specific control over
memory allocation and task execution is needed. Pymp’s shared memory capabilities enable efficient
communication between parallel tasks, making it suitable for applications that require frequent data
sharing or synchronization between processes.

However, this flexibility comes at the cost of increased complexity. Users need to manage
memory and task synchronization explicitly, which may require a deeper understanding of paral-
lel computing concepts. This makes Pymp more suited for advanced users or specific applications
where its flexible memory management can be fully leveraged. As shown in Table 4, Pymp pro-
vides extensive shared memory and high control over execution compared to Joblib, which offers
automatic memory management and moderate control.

For instance, in a scientific computation project involving large matrix operations that need
to share intermediate results frequently, Pymp’s shared memory approach can lead to significant
performance improvements.

Table 4: Flexibility Comparison.

Criterion Joblib Pymp

Memory Management Automatic Manual
Shared Memory Limited Extensive
Control over Execution Moderate High

5 Conclusion

Our comparative exploration into the performance of the Pymp and Joblib libraries for execut-
ing fingerprint comparison tasks via the Hough transform has unveiled invaluable insights. Rigorous
testing has unequivocally established Pymp’s superiority in terms of speed, outperforming Joblib
across a variety of experimental contexts.

The significant discrepancy in execution times not only underscores the efficacy of Pymp’s
parallelization strategies but also its adept utilization of multi-core processors. This efficiency is of
paramount importance in demanding fields like fingerprint recognition, where swift data processing
is essential for responsiveness and security in biometric systems.

Pymp’s consistent outperformance, even with increasing data volumes, attests to its robust-
ness and scalability. These qualities render Pymp a preferred solution for biometric applications,
promising enhanced productivity and significant computational cost reductions.

Furthermore, our study highlights the importance of continuous optimization of parallel pro-
cessing libraries. Fine-tuning Pymp’s parameters and maximizing its functionalities could pave the
way for substantial performance improvements, not only in fingerprint recognition but also across a
multitude of other computational applications.



Additionally, comparative analyses with other parallelization frameworks could uncover op-
portunities for improvement and potential synergies. Such comprehensive comparative endeavors
are crucial for fully understanding the strengths and limitations of each method and guiding the
development of even more efficient parallel processing solutions.

In conclusion, our findings position Pymp as an advantageous solution for Hough transform-
based fingerprint recognition, offering superior speed, efficiency, and scalability compared to Joblib.
Adopting Pymp can transform the workflows of researchers and practitioners, enabling them to
achieve heightened efficiency in fingerprint analysis and related areas, while opening new horizons
for biometric innovation.

References

[1] Goyal P, Pandey A, Singh V. Comparative study of parallel computing tools for data-intensive
applications. Journal of Parallel and Distributed Computing. 2018;120:22-30.

[2] Kumar S, Chaturvedi A. Performance analysis of Python parallel computing libraries. Inter-
national Journal of Computer Applications. 2019;178(3):12-8.

[3] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn:
Machine learning in Python. Journal of machine learning research. 2011;12:2825-30.

[4] McKinney W. Data structures for statistical computing in Python. In: Proceedings of the 9th
Python in Science Conference. vol. 445. Austin, TX; 2010. p. 51-6.

[5] Maltoni D, Maio D, Jain AK, Prabhakar S. Handbook of fingerprint recognition. Springer
Science & Business Media; 2009.

[6] Jain AK, Flynn P, Ross AA. Handbook of biometrics. Springer Science & Business Media;
2007.

[7] Hong L, Wan Y, Jain AK. Fingerprint image enhancement: algorithm and performance evalu-
ation. IEEE transactions on pattern analysis and machine intelligence. 1998;20(8):777-89.

[8] Feng J, Jain AK. Combining minutiae descriptors for fingerprint matching. Pattern Recogni-
tion. 2008;41(1):342-52.

[9] Ross AA, Nandakumar K, Jain AK. Handbook of biometrics. Springer Science & Business
Media; 2006.

[10] Grama A, Gupta A, Karypis G, Kumar V. Introduction to parallel computing. Pearson Educa-
tion; 2003.

[11] Quinn MJ. Parallel programming in C with MPI and OpenMP. McGraw-Hill, Inc.; 2003.
[12] Jain AK, Ross A, Pankanti S. Scaling up biometrics: A case study in fingerprint matching.

Pattern Recognition Letters. 2000;20(8):1371-82.
[13] Neurotechnology Fingerprint Dataset;. Accessed: 2024-05-24.

https://www.neurotechnology.com.
[14] Daugman JG. How iris recognition works. IEEE Transactions on Circuits and Systems for

Video Technology. 2004;14(1):21-30.



[15] Maltoni D, Maio D, Jain AK, Prabhakar S. Handbook of Fingerprint Recognition. Springer
Science & Business Media; 2009.

[16] Anastasia RW. Comparing Hilditch, Rosenfeld, Zhang-Suen, and Nagendraprasad Wang Gupta
Thinning. World Academy of Science, Engineering and Technology. 2011;78(6):104-8.


