

The Performance of Hotel Management System Using

Microservices and Containerization Technology

 Bekti Maryuni Susanto1, Ery Setiyawan Jullev Atmadji2, Lukman Hakim3

 {bekti@polije.ac.id1, ery@polije.ac.id2, lukman.hakim@polije.ac.id3}

Information Technology Department, Politeknik Negeri Jember, Jl. Mastrip Kotak Pos
164 Jember Indonesia1,2,3

Abstract. Today, agile development of scalable applications that influence new forms of
production and business organization is a requirement for organizations. Scalability and
quick development requirements are no longer met by traditional monolithic architectures.

Docker containerization is a new emerging technology bringing virtualization to software

applications. In particular, lightness has brought higher profits to docker containers. This
research aims to measure the performance of applications running on containerization
architecture and compare it with conventional architecture namely monolithic architecture.

The experiment was carried out on a computer with a Windows operating system on which
the Docker desktop application was installed. Performance is measured using the Apache
JMeter application to determine throughput, latency, packet loss, and delay. Analysis is
carried out by comparing the results of parameter measurements. The results show that

monolithic architecture has better latency values compared to microservices architecture.

Keywords: Virtualization, Docker Container, Cloud Computing, Hotel Management

System.

1 Introduction

Today, agile development of scalable applications that influence new forms of production and

business organization is a requirement for organizations. Scalability and quick development

requirements are no longer met by traditional monolithic architectures [1]. Organizations want

strong, technologically based solutions. To assist software products meet functional

requirements and be resource-efficient, software engineers have created and implemented a

variety of architectures over time. Certain architectures disperse their modules across multiple

layers or tiers, or they may be arranged in a single layer. Since the invention of software systems,

monolithic design, when combined with virtual machines, has shown to be a successful and

efficient strategy for both small and large-scale projects. It is well known that when the volume

of data to be handled grows or surpasses a particular capacity threshold, the performance of

monolithic programs is impacted.

A new emerging technology called Docker containerization brings virtualization to software

applications. It delivers an ultra-lightweight infrastructure technology for software applications

ICoSHIP 2023, November 18-19, Surabaya, Indonesia
Copyright © 2024 EAI
DOI 10.4108/eai.18-11-2023.2342548

resulting in significant take-up to develop, test , and deploy. Concerning this, a major issue in

many online forums has occurred, especially about deploying distributed software applications

on Docker-based containers in a more leveraged manner [2].

The mapping study results conducted by [3] show increasing interest and use of container-based

technologies, such as Linux Container (LXC) or Docker as solutions of lightweight

virtualization at the Infrastructure as a Service (IaaS) level, and as solutions of application

management at the Platform as a service (PaaS) level. As observed, containers have a positive

impact on several aspects, especially development and deployment. For example, architecture

in the cloud is moving towards a DevOps-based approach, supporting continuous development

and deployment pathways by considering cloud-native architectural solutions that are based on

containers and their orchestration[3].

A single physical machine is deployed for limited applications and it results in hardware

resources underutilization [4]. The idea of abstracting physical system resources into multiple

virtual computing resources called virtualization originated from IBM. In 1990, it was

commercialized for x86 computer systems. Virtualization techniques are considered as the cloud

computing data center backbone as they allow deploying multiple virtual servers over a single

physical server system. Thus, virtualization improves resource utilization and increases return

on investment. It provides an abstraction over physical resources that can be shared by cloud

users. The comparison among deployments of the application using traditional, hypervisor, and

container architecture is shown in Figure 1.

Fig. 1. Comparison of application deployment traditional, hypervisor, and container architecture)

The Microservices Architecture pattern possesses many pivotal benefits. First, it addresses

complexity problems. It decomposes what might be a terrible monolithic application into a

series of services. Second, it allows each service to be developed by a particular team

independently. Those who develop the service are free to choose any technology that makes

sense, as long as it respects the API contract. Most organizations prefer to avoid total anarchy

by limiting choices of technology. Third, it allows each microservice to be used independently.

Developers do not need to coordinate the local changes implementation to their services. Last,

it allows each service to scale independently [5].

This research aims to measure the performance of applications running on containerization

architecture and compare it with conventional architecture namely monolithic architecture. The

experiment was carried out on a computer with a Windows operating system on which the

Docker desktop application was installed. Performance is measured using the Apache JMeter

application to determine throughput, latency, packet loss, and delay. Analysis was carried out

by making a comparison of the parameter measurement results.

2 Method

The research encompassed several stages, including requirements analysis, the design and

implementation of a hotel management information system, and the testing of the system's

architecture. Requirements analysis was carried out by identifying the software and hardware

needed for system development. The object of this research was the Integrated Hospitality

Laboratory of Politeknik Negeri Jember. Interviews with integrated hospitality teaching factory

managers were conducted to identify the system needs. The requirement of software and

hardware used to develop a hotel management information system is shown in Table 1.

Table 1. Requirement of software and hardware used to develop hotel management information system

Number Requirement type Specifications

1 Software Web Server, PHP 8.2
 Laravel framework

 Visual studio code
 Mysql database
 Docker Desktop
 Microsoft Windows 11 operating

system
2 Hardware CPU intel min 8th generation

 RAM DDR4 min 8 GB
 SSD min 256 GB
 Standard input output system

Unified Modelling Language (UML) was used to model the hotel management information

system being developed. The UML diagram used in this research was a use case diagram. The

next stage was the implementation of the development of a hotel management information

system using the Laravel framework and MySQL database. System architecture testing used

Apache JMeter software by measuring several parameters, namely latency, throughput, packet

loss, and delay. Apache Jmeter software was chosen because it can carry out load tests and stress

tests well[6]. The analysis was carried out by comparing the results of parameter measurements

on monolithic and microservices architectures. Docker desktop software was used to develop

microservices architecture. Testing was carried out on a computer with Windows 11 64-bit

operating system, Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz, 16 GB RAM and 256 GB SSD.

3 Results

The UML diagram used in this research was a use case diagram. To create it, an interview was

previously conducted with the manager of the integrated hospitality teaching factory at

Politeknik Negeri Jember to get an idea of the system that will be developed. The use case

diagram is shown in Fig. 2, which consists of managing customer data, managing food and

drinks, managing laundry types, managing rooms, managing room types, managing food and

drink orders, managing laundry orders, and managing room reservations.

Fig. 2. Use case diagram hotel management system

Furthermore, the applications that have been developed are implemented on two different

system architectures, namely monolithic and container-based microservices. To implement the

system using a microservices architecture, the docker-compose file is used which is shown in

Figure 3. Based on program figure 3, there are four types of microservices, namely web server,

PHP, database, and php-myadmin.

Docker desktop software is used to run this microservices architecture. Docker Desktop is
secure, ready-to-use containerization software that offers developers and teams a powerful

hybrid toolkit for building, sharing, and running applications anywhere[7].

Fig. 3. Architecture of microservices technology used in the hotel management system.

The next step is to carry out architectural system testing. Testing is carried out locally, which is

different from that where testing is carried out by [8] in a cloud computing environment. The

testing activity was carried out using Apache Jmeter software with latency, throughput, packet

loss, and delay parameters. The test results are shown in Figures 4 to 7. Figure 4 shows a

comparison of latency measurement results between monolithic and microservices. Monolithic

architecture has better latency values compared to microservices architecture. The same results

are also obtained for the throughput parameters shown in Figure 5, and respectively in Figures

6 and 7. The results of measuring all parameters show that monolithic architecture is better than

microservices architecture.

Fig. 4. Comparison latency parameter between
monolithic and microservices architecture

Fig. 5. Comparison throughput parameter
between monolithic and microservices

architecture

Fig. 6. Comparison packet loss parameter
between monolithic and microservices

architecture

Fig. 7. Comparison delay parameter between
monolithic and microservices architecture

4 Discussion

In the test results, it was found that the monolithic architecture had better values for all

parameters measured, namely latency, throughput, packet loss, and delay. This is because the

microservice architecture has not been optimized and only relies on basic settings. Moreover,

microservice architecture is implemented in containers that have small computing resources. A

form of optimization that can be carried out on a microservice architecture is the addition of

load balancing and scaling, both manual and automatic as conducted by [9]. By scaling the

quality of service can be improved even though the resources owned by the container are small

because by scaling you will get a larger number of containers, especially in horizontal scaling.

In this research, the microservice only consists of four, namely web server, database, PHP, and

PHP-my admin, and has not implemented event-driven architecture as done by[10].

5 Conclusion

Microservice architecture offers several advantages over monolithic architecture, namely,

solving complex problems, each service can be developed independently without any

dependency on other parties and can be scaled. However, in this study, the monolithic

architecture had better parameter values because the microservices had not been optimized.

Future research can implement load balancing and scaling in this hotel management information

system application.

Acknowledgment

A big thank you to the Politeknik Negeri Jember for providing funds to conduct this research

through PNBP (Penerimaan Negara Bukan Pajak/Non-Tax State Revenue) funding sources.

References

[1] F. Tapia, M. ángel Mora, W. Fuertes, H. Aules, E. Flores, and T. Toulkeridis, “From

monolithic systems to microservices: A comparative study of performance,” Appl.

Sci., vol. 10, no. 17, 2020, doi: 10.3390/app10175797.

[2] W. M. C. J. T. Kithulwatta, K. P. N. Jayasena, B. T. G. S. Kumara, and R. M. K. T.

Rathnayaka, “Integration With Docker Container Technologies for Distributed and

Microservices Applications,” Int. J. Syst. Serv. Eng., vol. 12, no. 1, pp. 1–22, 2022,

doi: 10.4018/ijssoe.297136.

[3] C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, “Cloud container technologies: A state -

of-the-art review,” IEEE Trans. Cloud Comput., vol. 7, no. 3, pp. 677–692, 2019, doi:

10.1109/TCC.2017.2702586.

[4] A. Bhardwaj and C. R. Krishna, “Virtualization in Cloud Computing: Moving from

Hypervisor to Containerization—A Survey,” Arab. J. Sci. Eng., vol. 46, no. 9, pp.

8585–8601, 2021, doi: 10.1007/s13369-021-05553-3.

[5] C. Richardson and F. Smith, “Microservices - From Design to Deployment,” Nginx, p.

80, 2016.

[6] D. I. Permatasari, “Pengujian Aplikasi menggunakan metode Load Testing dengan

Apache JMeter pada Sistem Informasi Pertanian,” J. Sist. dan Teknol. Inf., vol. 8, no.

1, p. 135, 2020, doi: 10.26418/justin.v8i1.34452.

[7] Anonim, “Docker Desktop: The # 1 containerization software for developers and

teams The fastest way to containerize applications,” Docker Inc. [Online]. Available:

https://www.docker.com/products/docker-desktop/

[8] G. Blinowski, A. Ojdowska, and A. Przybylek, “Monolithic vs. Microservice

Architecture: A Performance and Scalability Evaluation,” IEEE Access, vol. 10, pp.

20357–20374, 2022, doi: 10.1109/ACCESS.2022.3152803.

[9] H. Suryotrisongko, “Arsitektur Microservice untuk Resiliensi Sistem Informasi,”

Sisfo, vol. 06, no. 02, pp. 231–246, 2017, doi 10.24089/j.sisfo.2017.01.006.

[10] H. F. Oliveira Rocha, Practical Event-Driven Microservices Architecture. Ermesinde,

Portugal: Apress, 2022. doi: 10.1007/978-1-4842-7468-2.

