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Abstract—This paper focuses on the portfolio construction that determines the assets 
arranged in the portfolio based on some relatively novel and unique financial indicators. 
After that, the Monte Carlo simulation is used to find the efficient frontier and the 
allocation distribution of each asset. Subsequently, the ARIMA model is used to predict 
the overall trend of the price performance of the portfolio. Finally, there is a back test of 
the newly established asset portfolio to check the performance of our portfolio. In this 
paper, the historical data of 20 chosen blue-chip stocks is extracted from NYSE and 
NASDAQ. Each stock is assigned with an appropriate weight to achieve a smoother and 
more stable price trend by modeling. In the prediction section, there is a reasonable time 
prediction of the portfolio. The final back test also showed that the portfolio performs 
better than average market performance. In addition, the maximum sharp ratio proves 
that the research of this paper has made achievements on receiving extra returns under 
relatively stable risk and volatility. Altogether, the findings in this paper benefit certain 
investors in the related markets. It offers a brand-new quantitative investing strategy, 
which selects stocks scientifically and weighing them properly, decreasing the risk and 
receiving an acceptable return.  
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1  INTRODUCTION  

Risk and return are always the main concerns of investors in the quantitative investment area of 
the financial market. From this aspect, the portfolio construction process has been of 
significance for those who prioritized finding the asset allocation maximizing the returns under 
the accepted risk level as the ultimate goal. Since the pioneering work of Markowitz [1] and the 
advent of modern portfolio theory [2], institutional asset allocation as a practical field has 
evolved to include myriad techniques and perspectives [3]. 

By far, economists and other professionals did diversified investigations derived from the 
portfolio construction process. For instance, Shen [4] did the portfolio construction for the 
private market; the Russell company [5] focused on the assets allocation of the Emerging 
Market (EM) fixed income asset class, and Chattopadhyay [6] did the portfolio construction 
based on art and science-related assets. However, apart from these papers, the research 
combining the portfolio construction process with extra aspects, such as the financial indicators 
of assets and the time series prediction with back tests of the portfolio return, is relatively rare.  
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Therefore, to the best of our knowledge, this paper makes the following contributions to the 
literature. First, we evaluate and filtering the assets in the US stock market by using various 
financial indicators and build the efficient frontier of the representative assets by generating 
50000 random simulations using the Monte Carlo method. For the following analysis, we 
decide to take the maximum sharp ratio asset allocation as the benchmark model, in which the 
maximum weight of 10.32% is contributed from the SBUX company. Second, we use the 
ARIMA model to make the time series prediction of our portfolio returns. The results of our 
analysis show that, in general, our portfolio performs better than the market in the prediction, 
and the extra return is simultaneously achieved. Third, we do the back test for our returns and 
find some important evaluation indicators such as sharp ratio, annual volatility, and a 
cumulative return of our portfolio. With these indicators, we evaluate the portfolio's 
performance and compare it with some stock market indexes. 

This paper is organized as follows. Section 2 shows the data used in this paper. Section 3 and 
Section 4 present the methodologies and the related empirical results in this paper, respectively. 
Section 5 concludes this paper.  

2 DATA 

Pyramid algorithms assign different weights among the related indicators based on the financial 
data [7]. For example, the most critical metrics to investors, especially ROE and ROA, are 
given the highest importance. The second most crucial factor is the profitability, and then the 
cash position, the revenue, and the growth. Weights will be assigned to them in descending 
order. For the historical data range, the year 2020 is not included because of the passive, 
negative, and abnormal influences of the COVID-19. This means, consequently, the majority of 
industries and companies were affected by the COVID-19 epidemic, and the subsequent 
issuance of the Fed's massive amount of currency makes the financial data and stock prices of 
them not representative. However, there are good reasons to believe that the world will 
gradually return to normal after 2021, with many affected companies recovering. Therefore, the 
best 20 stocks were obtained according to the pyramid algorithm, and then the stock data from 
January 1, 2015, to December 31, 2019, were downloaded from yahoo finance 
(http://finance.yahoo.com). Some basic descriptive statistics are shown in the following Table 1. 

TABLE 1. DESCRIPTIVE STATISTICS OF THE SELECTED ASSETS 

 Mean Std. Min. Max. Skew. Kurtosis 

AAPL 0.3297 0.0176 -0.1049 0.0681 -0.5869 4.3167 

ACN 0.1710 0.0130 -0.0756 0.0573 -0.6716 4.5583 

BR 0.1532 0.0148 -0.1020 0.1058 -0.4323 11.1682 

CBRL 0.0054 0.0132 -0.0707 0.0462 -0.7070 2.2741 

CEPU -0.6487 0.0511 -0.8191 0.1560 -8.4454 136.1701 

FIZZ -0.3818 0.0263 -0.1599 0.1139 -1.2343 7.5528 

FTV 0.0103 0.0146 -0.0502 0.0468 -0.2920 1.1279 

ITW 0.0561 0.0154 -0.0749 0.0704 -0.7102 3.2854 

MA 0.2980 0.0161 -0.0643 0.0653 -0.2553 2.1159 



NOC 0.0353 0.0157 -0.0676 0.0569 -0.5983 2.1175 

NVDA 0.0008 0.0292 -0.2077 0.0895 -1.3243 7.3597 

NVO 0.0958 0.0136 -0.0763 0.0374 -0.7467 3.0402 

NVR 0.1149 0.0183 -0.0866 0.0591 -0.4250 1.7944 

ROST 0.2147 0.0153 -0.0985 0.0695 -0.9491 5.7738 

RYAAY -0.1685 0.0188 -0.1712 0.0838 -1.6482 15.7669 

SBUX 0.2584 0.0135 -0.0951 0.0926 0.2505 12.3180 

SPGI 0.2356 0.0139 -0.0639 0.0786 -0.1296 3.9217 

TJX 0.2509 0.0133 -0.0504 0.0672 0.1880 2.6207 

TREX 0.2567 0.0254 -0.0997 0.1928 1.3433 11.4583 

TXN 0.1148 0.0178 -0.0858 0.0717 -0.3614 2.8686 

 
Detailed data of each stock are counted in the table. The combination of standard deviation 
skewness and abundance allows us to better measure the volatility and distribution of all stocks. 
Skewness is calculated to check whether the data distribution is symmetrical, and kurtosis is a 
measurement of the degree of data aggregation in the center. In a normal distribution, both 
skewness and kurtosis are 0. If the skewness is less than 0, it is a left skewness or negative 
skewness, which means that the mean value is to the left of the peak value, and there are more 
data of low stock prices than the high stock prices. If the skewness is greater than 0, it is a right 
skewness or positive skewness, which means that the mean is to the right of the peak, and there 
are more data of high stock prices than the negative low stock prices. A kurtosis less than 0 
makes the distribution model flatter than the normal one, and a kurtosis greater than 0 makes 
the distribution model steeper than the normal one. Generally speaking, the stock market price 
typically has the characteristics of apparent left skew or right skew, and the kurtosis value is 
significantly greater than 0, which is shown as the tail after the peak [8]. 

3 METHOD 

3.1 Mean Variance Model 

In 1952, Markowitz published his paper "Portfolio Selection" in the Journal of Finance, which 
laid the foundation of portfolio theory and marked the beginning of modern portfolio theory [9]. 
The proposed mean-variance model creates the theory and method of the portfolio investment 
for rational investors under the condition of uncertainty. For the first time, it proves the 
advantages of diversified investment with accurate mathematical models. This model has 
become the mainstream direction of investment theory and practice. In the article, he pointed 
out that due to the correlation of various securities, the portfolio investment can reduce risks as 
long as there is an incomplete positive correlation between securities. In Markowitz's mean-
variance model, the expectation represents the expected return of assets, and the variance 
represents the risk to study the selection and combination of assets. Specifically, the mean and 
variance are calculated by equations (1)-(2). 

According to Markowitz [9], the expected return of the portfolio is calculated by equation (1), 

𝑅 ൌ 𝑥்𝜇 (1) 



where R is the expected return of the portfolio, x is the weight for each asset, and is the 
expected return of each asset.  

The corresponding variance of the expected return can be reached by the following equation (2), 

𝑉 ൌ 𝐷ሺ𝑅ሻ ൌ 𝐷ሺ𝑥்𝜇ሻ ൌ 𝑥்𝜔𝑥 (2) 

where V is the variance of the expected portfolio return and w is the co-variance matrix of the 
asset returns. 

3.2 The Monte Carlo Simulation 

Monte Carlo simulation (also known as the Monte Carlo Method) is a computerized 
mathematical technique to generate a large quantity of possible outcomes and assess the risk 
impact on them [10]. According to Carmona [11], the Monte Carlo simulation is feasible to be 
applied in portfolio construction in this paper. Thus, we chose this method to simulate the 
weights for the assets in the portfolio. 

Monte Carlo simulation performs risk analysis by building models of possible results, 
substituting a range of values, which is a probability distribution, for any factor with inherent 
uncertainty [12]. In this paper, the normal distribution is applied, taking the mean and standard 
deviation values of the assets’ returns as the parameters. By assigning random weights between 
0 to 1 to twenty assets from the normal distribution function, with the total weight equaled to 1, 
the Monte Carlo method calculates the annualized return and variance repeatedly [12] for each 
sample set based on the following equations (3) - (4). 

W ൌ  ሺwଵ, wଶ, . . . , w୧, . . . , wଵଽ, wଶ଴ሻ୘ (3) 
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(4) 

where 𝛿௜௝ represents the standard deviation of the returns of i, j assets and is the𝑤௜weight of the 
i asset in the portfolio which satisfies∑ w୧

ଶ଴
୧ୀଵ ൌ 1.  

There are 50000 sample sets, and subsequently, 50000 calculations are generated and recorded. 

3.3 The ARIMA Model 

ARIMA is a natural extension of the class of ARMA models. The ARMA model is simply the 
merger between AR(p) and MA(q) models, in which AR(p) models try to capture (explain) 
effects of the momentum. It means reversion frequently observed in trading markets (market 
participant effects) and MA(q) models try to capture (explain) the shock effects observed in the 
white noise terms. These shock effects could be thought of as unexpected events affecting the 
observation process like Surprise earnings and terrorist attacks. ARIMA is used because it can 
reduce a non-stationary series to a stationary series by using a sequence of differences. Our data 
are usually not stationary; however, they can be made stationary by differentiating. The time 
series prediction is an auto-regressive integrated moving average model of order p, d, q, 
ARIMA(p,d,q). If the series is differentiated d times, it then follows an ARMA (p,q) process. 
We expand on the method described in the previous sheet. To fit data to an ARMA model, we 
use the Akaike Information Criterion (AIC) across a subset of values for (p,q) to find the model 
with minimum AIC. Then we apply the Ljung-Box test to determine if a good fit has been 



achieved for particular values of (p,q). If the p-value of the test is greater than the required 
significance, we can conclude that the residuals are independent and white noise. ARIMA 
(p,d,q) model expands ARMA (p,q) models. It can be shown as, 

ሺ1 െ ෍ φ୧L୧ሻ

୮

୧ୀଵ

ሺ1 െ LሻୢX୲  ൌ  ሺ1 ൅ ෍ θ୧L୧

୯

୧ୀଵ

ሻϵ୲ 
(5) 

where L is the lag operator,  d ∈  Z, d ൐ 0.  

4 EMPIRICAL RESULTS 

4.1 Portfolio Construction 

In this paper, we implement the Monte Carlo simulation for 50000 times. Based on these asset 
weights, we calculate the return R and variance of the portfolio by using equations (6) and (7) 
and subsequently calculate the Sharpe ratio S of each sample sets based on the equation (8). In 
both calculations, we assume that there are 252 trading days per year. 

R ൌ ෍ μ୧

ଶ଴

୧ ୀଵ

𝑤௜ ∙ 252 
(6) 

𝛿ଶ ൌ  𝑊் ∙ ሺ𝐶𝑜𝑣 ∙ 𝑊ሻ ∙ 252 (7) 
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represents the co-variance value between i,j assets, 

n is the number of historical days,  R୧ represents the means of the returns of the i asset. 

S ൌ
 R െ R୤

δ
 

(8) 

where R୤ is the risk free ratio extracted from the US government website. 

Correspondingly, we plot the efficient frontier and get the data of the maximum Sharpe ratio 
portfolio. The related results are shown in the following Figure 1 and Table 2. 



 

Figure 1.  The efficient frontier 

TABLE 2. PORTFOLIO WITH THE MAXIMIZED SHARPE RATIO 

 AAPL ACN BR CBRL CEPU 

Weight/% 4.54 7.71 4.21 0.35 0.11 

 FTV ITW MA NOC NVDA 

Weight/% 7.43 1.43 10.03 7.16 2.29 

 NVR ROST RYAAY SBUX SPGI 

Weight/% 2.58 6.66 0.46 10.32 7.51 

 TREX TXN FIZZ NVO TJX 

Weight/% 9.97 1.31 0.90 8.69 6.33 

Portfolio 
Return/% 

0.18 
Portfolio 
Risk/% 

0.16 

 
As shown in Table 2, it is clear that SBUX accounts for the largest proportion, with the 
magnitude of 10.32%, which may be accounted for because the SBUX is a large sized company 
with a small price-to-book ratio and relatively stable returns over the historical data set. 

4.2 Times series Prediction 

After the portfolio allocation is constructed, we made the time series prediction of our portfolio 
returns. For time series prediction, we choose the ARIMA model. First, we multiply the price 
sequence of all the selected stocks by their weights and add them together to get a portfolio 
price. As introduced before, the ARIMA model can be indirectly considered as a merger 



between AR(p) and MA(q) models, in which the AR(p) models capture market participant 
effects and MA(q) models try to capture the shock effects observed in the white noise terms. In 
our paper, ARIMA is used to reduce our non-stationary data series to a stationary data series by 
applying a sequence of differentiation. To fit data to an ARMA model, we use the Akaike 
Information Criterion (AIC) across a subset of values for (p,q) to find the model with minimum 
AIC. Then we apply the Ljung-Box test to determine if a good fit has been achieved, for 
particular values of (p,q). If the p-value of the test is greater than the required significance, we 
can conclude that the residuals are independent and white noise.  

Following the above process, we found that the best order for our data is (2,0,1). The following 
figures show the Time Series Plots, Auto-correlation Coefficient and Partial Auto-correlation 
Coefficient data, the QQ Plot, and the Probability Plot. The related results are demonstrated in 
the following Figures (2)-(6). 

 
Figure 2.  Time Series Analysis Plots 

 
Figure 3.  Autocorrelation                                    Figure 4. Partial Autocorrelation 

 

Figure 5. QQ Plot                                                     Figure 6. Probability Plot 

We can see that after iterating, both the auto-correlation coefficient and the partial auto-
correlation coefficient are in an acceptable range. It can be seen from the QQ plot that the 



residual basically meets the normal distribution. However, the bias of the curve’s head and the 
tail is slightly larger. To reduce bias, we tried several other orders like (2,1,1) and (3,0,1), but it 
turns out that (2,0,1) is still the best choice. 

After testing the normal distribution of the residuals, we predicted the return of the portfolio of 
early 2020. The result is shown in the following Figure 7. To make the result clearer, we also 
predicted our portfolio price, and the results are shown in figure (8). 

 
Figure 7. 21 Days Portfolio Return Forecast 

 

Figure 8. 21 Day Portfolio Price Forecast 



4.3 Back Test 

Figure Labels: After the time prediction, we do the back test for our portfolio. The results are 
shown in Table 3 and figures (9)-(11). 

TABLE 3. BACK TEST 

Start date 2015-01-02 

End date 2019-12-30 

Total months 59 

Annual return 21.1% 

Cumulative return 159.9% 

Annual volatility 19.4% 

Sharp ratio 1.08 

Calmar ratio 0.59 

Stability 0.86 

Max drawdown -36.0% 

Omega ratio 1.21 

Sortino ratio 1.58 

Skew -0.14 

Kurtosis 3.83 

Tail ratio 0.99 

Daily value at risk -2.4% 

 

 
Figure 9. Cumulative returns 



 
Figure 10. Rolling Sharp ratio(6-month) 

 
Figure 11. Underwater plot 

From the table above: the annual return is 21.1%; the cumulative return is 159.9%; the annual 
volatility is 19.4%; the Sharp ratio is 1.09; the Calmar ratio is 0.59; the Stability is 0.86; the 
Max drawdown is -36.0%; the Omega ratio is 1.21; the Sortino ratio is 1.58; the Skew is -0.14; 
the Kurtosis is 3,83; the Tail ratio is 0.99; and the daily value at risk is -2.4%. We can also see 
the graph of Rolling Sharp Ratio (6-month), the underwater plot of drawdown, and the 
Cumulative Return. 

5 CONCLUSION  

This paper focuses on the portfolio construction area and applies various financial indicators in 
the asset allocation process. 

First, we applied a new method in the stock selection process, introducing financial indicators 
to evaluate and rank all stocks in the US market. Then, by using the Monte Carlo Method to 
produce the efficient frontier, we find the allocation distribution of the maximum sharp ratio 
assets allocation. After that, we analyze our portfolio’s returns by using the ARIMA models, 
and in the time series prediction, we successfully find that our portfolio performs better than the 
market. Finally, we evaluate the performance of our returns by using several important 
evaluation indicators such as sharp ratio, annual volatility, and a cumulative return of our 
portfolio.  



Most of the results are not unexpected in our paper, as shown by our assets allocation' good 
performance over time. Nonetheless, there are spaces for improvements. For instance, we can 
choose more diversified dimensions to measure the value of stocks to select better stocks. 
Moreover, the inaccuracy of the Monte Carlo simulation is not eliminated. The allocation 
distribution may vary regarding changes in the number of simulations and different trial times. 
Although economists prove this method to be authentic in producing the efficient frontier, 
further investigation may still be worth considering. Finally, for the prediction part, the 
accuracy of the time series model will weaken with the increase of the forecast market. If we 
want to obtain more accurate forecast data, other methods might be needed. 
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