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Abstract— Investment strategy optimization is largely discussed in the financial industry 

and academia as investors seek to maximize the Return with limited input. This paper 

discusses how potentially profitable stocks can be selected using statistical models to form 

a portfolio and then use the predicted prices to find the optimal allocation strategy. We first 

use the ARIMA Model to predict the stock price on the following 21st day. We further 

verify the stock selection with Monte Carlo Simulation predicting the price ranges which 

the stocks will fall into in the next year. Then Black-Litterman Model is used to optimize 

the asset allocation. We select five stocks with non-negative returns based on the results to 

form the target portfolio: TSLA, KO, AMD, NKE, and ORCL. According to our simulation, 

the stocks have an annual profit of 3%, 2%, 7,8%, 3.4%, and 5.1%, respectively. The 95% 

confidence interval of those five stocks is small which demonstrates that the stock we 

choose has low risk. For instance, the confidence interval for the TSLA is (-0.05,0.06). 

Next, we get the weight of each stock to be 27.92%, 0%, 39.61%, 10.10%, and 22.38%, 

respectively. This asset allocation is the optimal choice. Comparing to the equal weight 

stock selection, although the equal weight stock selection shows lower variance, our asset 

allocation has higher profit. In conclusion, we show that the above five stocks will have 

positive profits in both the short and long run. 

Keywords: Investment strategy optimization; financial modeling; ARIMA Model; Monte 

Carlo Simulation; Black-Litterman Model; stock allocation 

1 INTRODUCTION 

Asset allocation and Stock Price are predictable among the most important and popular tasks in 

finance [1]. This problem is hard because there are too many factors influencing the stock price. 

For instance, the paper by Kurihet al.t al [2] studies that the factor such as gross domestics income, 

interest rate, and monthly supply [2] influences the stock price and Arzoo, Shamail (2011) gives 

a case study on Karachi Stock Exchange [3]. There are also microeconomics factors that 

influence the Stock Price. For example, Pražák.Tomáš. (2020) points out that liquidity rate is a 

significant factor in Stock Price [4]. 
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Starting from 1990, people have been using Stochastic Differential Equation Models [5,6], 

statistical methods [7,8], and machine learning [9] technics to deal with this issue. Assuming that 

the log price of the stock is Gaussian Random Walk, people use the geometric Brownian motion 

model to model the stock price and derive the Black-Scholes Equation [6,7]. Additionally, people 

could add a jump on the stock price model to make the jump-diffusion process or Levy Process 

more reasonable [10]. On the other hand, people also use the deep learning approach to predict 

the stock price [9].  

However, in practice, both methods do have some drawbacks. For the Geometric Brownian 

motion approach, it might not be perfect to assume that the log price is simply a random walk as 

that the stock price is not a Markov Process For the deep learning approach. However,h the deep 

learning model might give the researcher reasonable results if building a good architecture and 

turning the parameter well. It still does not have a relatively perfect theoretical foundation. For 

instance, the optimal solution may converge to the local-optimal solution instead of the global-

optimal solution because finding the optimal global solution is NP-hard [11]. Our paper uses the 

ARIMA-Model to predict the stock price in the short term and select stocks from the whole pool 

based on the prediction [9]. This model has a very well-developed theory, and it is a more 

generalized approach than simply assuming the log price is a random walk. Using the stock's 

passing data, we could determine the appropriate p,q,d for the ARIMA model.  

After that, we will deal with the asset allocation problem. The asset allocation problem is not 

trivial because one must balance maximizing the profit and minimizing the risk. And the best 

way of dealing with this problem is to switch the asset allocation problem to find the optimal 

solution. Noticing that Markov Inequality and Chebyshev [12] inequality demonstrate that 

variance depicts the risk of the problem and the Expected Return represents the profit, we can 

use mean-variance optimization to model our asset allocation problem. However, this model is 

sensitive [13]. Best and Garuer (1991) show that if one perturbs the expected Return a little bit, 

it will give a quite different result than the unperturbed problem. As a result, we should seek a 

more robust model. And Black-Litterman Model [14] is the answer for us. Therefore, we will use 

the Black-Litterman Model to calculate the best asset allocation for selecting stocks. Although 

the Geometric Brownian Motion is not the best model to model the stock price, we will use Monte 

Carlo Simulation [15] to simulate the Geometric Brownian Motion, supporting our result for 

building the Black-Litterman model. Monte Carlo Simulation is one of the best ways to simulate 

and predict the future price in the long run due to its "randomness" and "deterministic." 

Randomness is because Monte-Carlo-Simulation gives many results, and we can check the 

robustness of our results. And the deterministic is by central limit theorem and law of large 

number; hence the general statistics are controlled by the error and will go to 0 if we simulate 

more. In the end, we will also use Monte-Carlo-Simulation to simulate the expected Return of 

our developed portfolio. 

Section 2 briefly reviews the definition of the ARIMA model, the Black-Litterman Model, and 

the Monte-Carlo-Simulation. We also derive the formulas used in the simulation. Section 3 

explains the numerical result we get from the model and how we choose the parameter. In section 

4, we will give the paper's conclusion and talk about some issues of our method and how we 

could improve it in the future.  



2 METHOD 

2.1 Data preparation 

The data was derived from Yahoo Finance [16] and Sina Finance [17]. All the data information 

is from Yahoo Finance except the market capitalization derived from Sina Finance.  

We visited the website Yahoo Finance and found the historical price of several companies. 

Downloading the data, we put them into jupyter notebook and calculated their Return, which is 

used for further calculation. Since there is trouble to get the market capitalization, we also visited 

Sina Finance [2] to get the capitalization of the stocks we choose. 

2.2 ARIMA-based Trend Prediction 

The model we use is ARIMA.  

(1 − ∑ 𝜙𝑖𝐿
𝑖)(1 − 𝐿)𝑑𝑋𝑡 = (1 + ∑ 𝜙𝑖𝐿

𝑖)𝜖𝑡
𝑞
𝑖=1

𝑝
𝑖=1                               (1) 

𝐿𝑖
is the Lag operator and𝐿𝑖(𝑋𝑡) = 𝑋𝑡−𝑖 and𝜖𝑡 are i.i.d random variable. 

By programming the code, we drew the graph and calculated the value of the p,d,q based on the 

result of the graph.  

We set 2 years as a period when doing the ARIMA model and draw the time series plot, the 

autocorrelation plot, and the partial autocorrelation plot to see if the stocks we choose have low 

value.  

After drawing the plot, we get an interval of the stock price on the 21st day. And we also calculate 

the value of p,d,q based on the result of the graph.  

Finally, we chose the five most well-behaved stocks based on their price prediction.  

2.3 Price prediction based on Monte Carlo 

We use the Monte Carlo method to predict the price of the five stocks we choose to prepare for 

the View of Black-litterman model.  

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡                                                   (2) 

𝑆𝑡 is the stock price, 𝜇 is the drift term, and it represents the expected Return, σ is the diffusion 

term, and it represents the risk of the stock. Now, by the Log price definition𝑉𝑡 =  ln(𝑆𝑡)  and 

the Ito Lemma. We will have the log return to be: 
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We do the Monte Carlo for 10000 and get a distribution plot of the five stocks. In the plot, we 

selected the start price and final price using a 95% confidence level. We decided our view and 



confidence interval with references from the companies' products' market sentiment and 

conditions 

We use the Monte Carlo method again to test the stocks. The purpose of the step is to judge 

whether the View we made is effective. The judgment is made by comparing it with an equal 

weight portfolio. 

2.4 Asset allocation based on Black-litterman model 

We use the prior Return to calculate the posterior expected return and covariance matrix by 

programming the code.  

Posterior Expect Return: 

𝐸(𝑅) = [(𝜏𝛴)−1 + 𝑃𝑇𝛺−1𝑃]−1[(𝜏𝛴)−1𝛱 + 𝑃𝑇𝛺−1𝑄]                             (4) 

E(R) is an 𝐾 × 1 vector of expected returns, where N is the number of assets. Q represents a 

𝐾 × 1 vector of views. P is the 𝐾 × 𝑁 picking matrix which maps views to the universe of assets. 

Essentially, it tells the model which View corresponds to which asset(s). Ω is the 𝐾 × 𝐾  
uncertainty matrix of views. Σ is the 𝑁 × 𝑁 covariance matrix of asset returns. τ denotes a scalar 

tuning constant. 

Posterior Covariance Matrix: 

 𝛴𝐵𝐿 = 𝛴 + [(𝜏𝛴)−1 + (𝑃𝑇𝛺−1𝑃)]−1                                       (5) 

Then, with the view and confidence interval we got from the Monte Carlo process, we calculated 

the asset allocation. 

3 RESULT AND DISCUSSION 

3.1 Arima-based Trend Prediction 

From the ARIMA analysis, we get the value of p, d, q, and then we predicted the stock price in 

21 days. Then, we choose five stocks that probably has positive Return in 21 days. The predicted 

value is shown in the following plot. (Take TSLA as an example)  



 

Figure 1.  Predicted price time series for TSLA 

The blue line visualizes the time series of the price of TSLA. The red line shows the price 

prediction in the future 21 days. The 95% confident Interval at 21 days is between -0.0873 and 

0.0873. The 99% confident Interval at 21 days is between -0.1147 and 0.1147, indicating that 

TSLA 

We use logistics regression to find the best ARIMA(p,d,q) model to fit the log return of the data. 

To avoid complication, we restrict d to be 0 or 1 and p to be a number between 0 and 5. After 

finding the best parameter, we use the model to predict the log return (keep in mind that the log 

return is approximated to equal the true Return when the time step is small because of the Taylor 

Expansion) 

Table 1 Predicted Price Time Series For All 5 Stocks. 

No. Predicted price time series for all five stocks 

Stock 

Name 

Return (95% 

confident interval) 

% 

Return (99% 

confident 

interval) 

% 

p, d, q Return 

% 

1 TSLA [-8.73, 8.73] [-11.47, 

11.47] 

1, 0, 0 0 

2 KO [-3.25, 3.30] [-4.28, 4.33] 1, 0, 4 .03 

3 AMD [-5.29, 5.93] [-7.05, 7.69] 3, 0, 3 .32 

4 NKE [-4.13, 4.33] [-5.46,  5.66] 3, 0, 3 .10 

5 ORCL [-3.23, 3.23] [-4.24, 4.24] 0, 0, 1 0 

 

We showed the ranges in both 95% and 99% confidence intervals. And Colum the Return is the 

result of predicted Return. From d = 0, the plot shows that the time series of the price is 

rationalized. We judge whether to choose one stock according to whether the Return of each 

stock is positive or negative. If the Return is negative, the stock will be abandoned. From the 

table, the returns of the five stocks are not negative. Thus, we choose those stocks.  



3.2 Price prediction based on Monte Carlo 

After getting these five stocks, we put them into the Monte Carlo process and get an interval of 

the stock price. (Take 'TSLA' for example) 

 

Figure 2.  Monte Carlo analysis of TSLA 

The figure shows 10000 random routes that the price will be 365 days (derived on Aug 27, 2021). 

From the density of the distribution, we can tell that the price conforms to the central distribution. 

It has a centered distribution feature because the random price is formed day by day according to 

normal distribution. 

Since the route in figure 2 is not clear enough to show the result, we transferred the locus plot to 

the distribution plot. 

 

Figure 3.  Final price distribution for TSLA stock after 365 days 

This plot shows the distribution of each X-axis represents the price, and Y-axis represents the 

frequency of the price. As mentioned before, this plot shows the feature of normal distribution. 

It shows that the predicted price will be between $670.8 and $753.1 with a confidence interval of 

95%.  



Therefore, we can get the Interval of each stock, which the future prices are possibly falling into. 

The confident Interval is 95%. 

Table 2 Result Of Monte Carlo 

No. Result of Monte Carlo 

Stock 

Name 

Start 

price 

End Price(95% 

confident interval) 

VaR 

1 TSLA $711.92 [$670.93, $753.87] $57.31 

2 KO $55.65 [$54.34, $56.98] $1.84 

3 AMD $111.40 [$106.03, $120.0] $8.11 

4 NKE $167.58 [$161.55, $173.35]  $8.43 

5 ORCL $89.35 [$85.17, $93.82] $5.81 

 

The start price is the price in the date when we use the Monte Carlo model (2021-08-28). VaR is 

the 'Value at Risk' of each stock, which shows the maximum loss an investment will suffer to a 

given degree. The result of the End Price is the range of predicted price in 95% confident Interval. 

Monte Carlo results are in accord with Normal distribution. 

3.3 Asset allocation based on Black-litterman model  

We choose the price in the Interval by considering the market view of each stock.  

Therefore, we get the View and the confident Interval of each stock 

• TSLA will increase by 3% after 365 days. 

• KO will increase by 2% after 365 days. 

• AMD will increase by 7% after 365 days. 

• NKE will increase by 3.4% after 365 days. 

• ORCL will increase by 5.1% after 365 days. 

Table 3 Decision of View and Interval 

No. Decision of View and Interval 

Stock 

Name 

View Intervals 

1 TSLA TSLA will increase by 3% after 365 

days. 

(-0.05, 0.06) 

2 KO KO will increase 2% after 365 days. (0, 0.02) 

3 AMD AMD will increase 7% after 365 

days. 

(0, 0.09) 

4 NKE NKE will increase 3.4% after 365 

days. 

(0, 0.04) 

5 ORCL ORCL will increase 5.1% after 365 

days. 

(0, 0.06) 

 



The view shows the trend of each stock in 365 days, estimated according to the Monte Carlo 

results. The Interval shows how much certainty we have on each stock. It is bounds estimated 

synthetically by specifying one standard deviation confidence interval and the Monte Carlo result. 

(Data derived on 2021-08-28). 

Then input the Views and Intervals and come out the weight of each stock. After calculating the 

weight, we get the portfolio. 

 

Figure 4.  Portfolio of chosen stocks from the B-L model 

The proportion of TSLA is 27.92%. The proportion of AMD is 39.61%. The proportion of NKE 

is 10.10%. The proportion of ORCL is 22.38%. And there is no KO in this portfolio. 

With the portfolio, we use Monte Carlo for the second time to see the change of the Price interval 

and the VaR. We compare our portfolio with an equal weight portfolio. 

 

Figure 5.  Comparison between the portfolio from the B-L model and the portfolio from the Equal-

weight portfolio 



The plot above shows the distribution of the Monte Carlo results in the future 365 days. It can be 

concluded that the mean final price, which is the possible price, has a more conspicuous change 

from the start price in the B-L model portfolio than in the Equal weight portfolio. It means the B-

L model portfolio can probably have a greater return than Equal-weight Portfolio. At the same 

time, VaR in the B-L model portfolio is higher than the Equal-weight portfolio. That is because 

the start price of the portfolio is higher than the Equal-weight portfolio. 

4 CONCLUSION AND FUTURE WORK 

In summary, according to the numerical results, our optimization process provides very reliable 

and promising returns. Therefore, we believe it is a good approach to select the stocks, build the 

portfolio and find the best asset allocation. However, due to the limit of time, we do not compare 

our results to other existing methods, such as the deep learning method. Hopefully, the 

comparison will be conducted in future research. We may also consider using our method on 

stock markets in other nations as other countries have different financial systems, impacting the 

effectiveness of the models we choose. For example, we assume that the stock price is nearly 

stationary, which means that by taking enough finite difference, we will get a stationary sequence. 

This might not necessarily be true in other stock markets. When it comes to giving View, the 

price we get should take more than Monte Carlo into account. Finally, although we combine the 

short-term model (ARIMA) and the long-term model (Monte Carlo Simulation) to overcome the 

limitation of using short or long-run predictions, we still have some inevitable errors from these 

models' limitations. 
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