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Abstract—This paper firstly suppose that the distribution of asset returns has the 

characteristics of heavy tail and high peak in the actual financial market, and the risky 

asset returns are set as triangular fuzzy numbers. Meanwhile, the third and fourth 

moments of the returns are used to express skewness and kurtosis. Based on the 

credibility theory, considering the degree of risk preference of investors, a credible multi-

objective portfolio selection model with chance-constraints is built. Secondly, an 

improved multi-objective particle swarm algorithm is designed to solve the model, and 

an empirical analysis is conducted to prove the validity of the model by using historical 

trading data of 12 stocks from Shanghai Stock Exchange. 

Keywords-portfolio selection; credibility theory; chance- constraint; improved multi-

objective particle swarm optimization  

1 INTRODUCTION 

The securities market is an investment environment with great uncertainty. Investors need to 

consider possible asset types and portfolio changes in order to achieve a reasonable allocation 

of limited assets. The basic idea of investment portfolio theory is that the reasonable investment 

strategies is made to maximize the expected return of investors under a certain risk level, or 

minimize the risk of a given return, so that the optimal asset allocation goal is weighed. 

In 1978, Zadeh [1] developed the possibility theory on the basis of fuzzy theory. Fuzziness has 

been emphasized in the research of portfolio selection model and used to describe the fuzzy and 

uncertain market environment. In the following decades, possibility theory has been widely 

used, but it does not possess self-dual property and lacks a strict mathematical foundation. Liu 

[2,3] first proposed the credibility measure in 2002, and created the credibility theory in 2004 as 

the axiomatized basis of fuzzy theory in order to overcome this shortcoming. Since then, some 

researchers have applied credibility theory to the research of portfolio selection model. For 

example, Zhang (2012) [4] proposed the mean-CVaR model under the credibility theory, and 

used performance measurement indicators such as Jensen Index to evaluate the established 

model. Mohebbi et al. (2018) [5] constructed a dual-objective mean-VaR portfolio selection 

model based on the combination of credibility theory and scenario trees, and used interactive 

dynamic programming to solve the model. 
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Some scholars have conducted improved research on related assumptions in the classic 

portfolio model that do not conform to the reality of the securities market in addition to the 

description of uncertainty. 

There is an asymmetrical peak and thick tail in the distribution of asset returns pointed out by 

Mandelbrot (1963) [6]. This view is in contradiction with the assumption that the return on 

assets follows a normal distribution in the mean-variance model proposed by Markowitz (1952) 

[7]. This makes the higher-order moments mean and variance of the return on assets be 

considered in the portfolio selection model. The higher-order moment overcomes the limitation 

that the variance measure is not sufficient to explain the non-normal distribution of returns. 

Therefore, the higher-order moments were introduced into the portfolio selection model, and 

the skewness and kurtosis of returns were taken as the objective function by many researchers. 

Yang and Lin (2014) [8] established a mean-variance-skewness-kurtosis portfolio model, 

taking into account realistic constraints such as transaction costs, and using genetic algorithms 

to solve the model. Their research work has verified the importance of higher-order moments. 

Deng and Liu (2020) [9] proposed a multi-objective high-order moment fuzzy stochastic 

portfolio model that considers background risks. The empirical results show the influence of 

skewness and kurtosis in the portfolio selection model. 

The portfolio selection model has gradually become closer to reality with the continuous 

research of scholars. The chance-constraint theory is proposed considering that investors have 

different risk preferences under realistic investment scenarios, and hope the risk can be 

controlled within the expected risk threshold in order to realize the actual rate of return be 

greater than the given expected rate of return. Charnes and Cooper (1959) [10] proposed a 

chance-constrained programming to deal with uncertain variables. The probability of the 

random constraint condition be established is not less than a certain confidence level in this 

chance-constrained programming. This theory is subsequently used in the construction of the 

portfolio selection model. Gupta and Mehlawat (2014) [11] constructed a multi-objective 

portfolio selection model with chance constraints, and designed a hybrid intelligent algorithm 

to solve the model. Zhang and Huang et al. (2019) [12] established a multi-period portfolio 

selection model, which the influence of chance- constraints was taken into account so that the 

rate of return is not lower than a given confidence level. 

In summary, the deficiencies of the classic portfolio selection theory had been perfected by the 

research on credibility theory and higher-order moments in terms of self-duality and the 

hypothesis of the distribution of asset returns. This has important research significance. In 

addition, the chance-constraints reflecting investors’ subjective factors are used to build the 

portfolio selection model considering the risk appetite of investors will have an impact on 

investment strategies in the real trading environment of the financial market. A credible mean-

skewness-kurtosis model with chance constraints (hereinafter referred to as the CMSK model) 

is proposed, and the multi-objective particle swarm algorithm is designed to solve the model 

through MATLAB programming so that the accepted confidence level and the provided 

appropriate security boundaries by investors can be pre-set. 



2 RELATED THEORIES 

Based on the credibility theory [13-14], some theoretical knowledge involved in the CMSK 

model is initially introduced, in which the credibility theory and the definition and theorems of 

credibility higher-order moments are included in this part. Fuzzy numbers  are a special kind 

of convex fuzzy sets whose membership functions  are piecewise continuous, the relevant 

definitions and theorems are as follows: 

Definition 1 Suppose that  is a non-empty set and ( )P  is a power set of  . Pos is called as 

a possibility measure when the following three conditions are met: 

 1Pos  =  

os =0P   

For any set family in ( )P  , there are 

 =supi i i

i

Pos A Pos A
 
 
 
U  

Definition 2 Record the possibility measure of a fuzzy event (such as  x  ) as 

 ( )
t

os =sup
x

tP x  


 , then its necessity measure is defined as follows: 

 ( )
t

=1-sup
x

tNec x  
＞

 

The credibility measurement is defined as follows according to the concept of credibility 

measurement proposed by Liu in the credibility theory: 

  ( )
1

os +
2

Cr x P x Nec x   =    

It is easy to prove that the credibility measure is self-dual, that is, it satisfies: 

 =1-Cr x Cr x  ＜  

Definition 3 Suppose that the membership function of fuzzy variable is defined in the 

credibility space (  , ( )P  , Cr ): 

( ) 1 (2 { })x Cr x =  =
 

Theorem 1 Reliability Inversion Theorem 

Suppose  is a fuzzy variable whose membership functions is ( )x , then the membership 

function for any set of real numbers A  can be used to express credibility as following: 

  ( ) ( )( )
1

= sup 1 sup
2

cx A x A
Cr A x x    

 + −  



Definition 4 Suppose that the fuzzy variable


is a function from the credibility space 

( ), ( ),P Cr  to the set of real numbers, and the credibility distribution of :  → [0,1] is 

defined as: 

( ) ( ) :u Cr u   =    

Definition 5  is set as a fuzzy variable. According to its credibility distribution, the 

credibility expectation value of can be defined as: 

( )( ) ( )

 

0

0

0

0

( )= 1-

1

E u du u du

Cr u du Cr u du

   

 



−

+

−

−  

= −  − 

 

 （ ）

                               (1) 

In where, the condition for the existence of the expected value is that at least one of the two 

integrals is finite. 

Theorem 2 Assuming that  and are two mutually independent fuzzy variables, then the 

credible expectation for any real numbers m and n ,satisfies the following theorem: 

( + )= ( )+

( + )= ( )+ ( )

E m n mE n

E m n mE nE

  

   
 

Definition 6 The third and fourth-order credibility moments of the expected value ( )E  are 

used to measure the skewness and kurtosis of the fuzzy variable  .The obtained third central 

moment and fourth central moment, namely skewness and kurtosis, are defined as follows: 

( )( )
3(3) ( )=E E E   −

 
                                                      (2) 

( )( )
4(4) ( )=E E E   −

 
                                                    (3) 

3 MODEL 

The uncertainty of the securities market can be described more by introducing the third-order 

moment-bias of returns and degree and fourth moment-kurtosis [15] , using the mean, skewness 

and kurtosis based on credibility theory as the target of the model so as to overcome the non-

self-dual defect of the possibility measurement during the process of constructing the CMSK 

model .Meanwhile, a confidence level represented by the credibility value is set in advance as a 

chance-constraint to establish an effective boundary for the portfolio to realize that the actual 

rate of return is greater than a certain expected rate of return .Taking into account the different 

risk preferences of investors, In addition, three realistic constraints, including budget constraint, 

investment ratio constraint, and base approximation, are also added to the model in order to 

make the constructed model closer to the realistic investment environment. The definitions of 

relevant variables and parameters in the model are as follows: 



A triangular fuzzy variable representing the uncertain rate of return of the 

i-th asset, its center value is , and the left-right spread is  and ; 

Represents the reliability of ; 

Indicates the investment ratio of the i-th asset; 

Indicates whether the i-th asset is invested. It is a binary variable. When , it is 

invested, otherwise it is not invested; 

Represents a portfolio of multiple assets; 

Represents the credibility mean of the portfolio’s return rate; 

Indicates the credibility skewness of the portfolio return rate; 

Indicates the credibility kurtosis of the portfolio’s return rate; 

: Indicates the expected rate of return on investment; 

: Indicates the confidence level; 

L: Indicates the lower limit of investment for a single investment portfolio; 

u: Indicates the investment upper limit of a single investment portfolio; 

Indicates the lower limit of the portfolio base constraint, that is, the minimum number of 

risky assets in the portfolio; 

Indicates the upper limit of the portfolio base constraint, that is, the maximum number 

of risky assets in the portfolio; 

The triangular fuzzy number is used as a measure of the uncertainty of the rate of return in the 

following model. Suppose R is a triangular fuzzy variable, the center value is a , and the left 

and right diffusions are  and  respectively in the credibility 

space ( , ( ), )P Cr  .The ( , , )R a = ,the membership function ( )
R

x and its inverse function 

( )1

R
x− can be expressed as: 

( )

1-( ) /        

1-( ) / 

 0                            otherwise  
R

a x a x a

x x a a x a

 

  

− −  


= −               +



 

( )1
( )(1-2 ) +2                 1/ 2

(2-2 ) ( )(2 1) 1/ 2R

a x ax x
x

a x a x x






−
− 

= 
+ + −         ＞

                                   (4) 

From Eq. (1) and the credibility inversion theorem, the credibility expectation value of R can be 

expressed as: 



 



( )

0

0

0

( )= 1-

(1 )

5
4

E R Cr R u du Cr R u du

Cr R u du

a                                                               

+

−

+

 − 

= − 

 − 
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 


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From Eq. (2-3), the kurtosis and skewness of R can be expressed as: 

2( ) ( ) ( ) / 32S R =  + −                                             (6) 

2
4 4 2 25 ) 2

( ) ( ) ( )
432 72 135

K R
(

=  +  + +  +                         (7) 

3.1 Objective function of CMSK model 

From Eq. (5-7), the objective function of trustworthy mean, skewness and kurtosis of the 

portfolio is constructed as shown in Eq. (8-10): 

( )
1 4

n
i i

x i i
i

CE p a x
 

=

− 
=  + 

 
%

                                       (8) 

( )
( ) ( )

2

1 32

n
i i i i

x i
i

CS p x
   

=

+ −
= %

                                  (9) 

( ) ( )
( )

( )
2

4 4 2 2

1

5 2

432 72 135

n
i i

x i i i i i
i

CK p x
 

   
=

 
 =  + + + +
 
 

%                 (10) 

3.2 Constraints of the CMSK model 

Different investors will require the actual rate of return to be higher than a given expected one 

according to their own degree of reducing risk appetite. The introduction of chance- constraints 

can make the probability of this condition not lower than a certain confidence level, and 

generate different investment strategies that meet the characteristics of investor risk aversion 

for different confidence levels. In addition, three basic practical constraints, including budget 

constraints, investment ratio constraints, and base constraints, have also been added for the 

actual trading constraints of the stock market. The constraints of the model are described as 

follows: 

1) Chance constraints: The portfolio Selection model with chance-constraints can enable 

investors to pre-set the confidence level they wish to accept and play a better role in risk control 

[16-17]. Assuming that the investor’s expected rate of return is eR and the confidence level  is 

the credible chance-constraint is as follows: 

1

n

i i e

i

Cr R x R 
=

 
  

 
  



According to Eq. (4) and credibility theory, the above formula is transformed into:  

( )
i

1

1

n

i eR
i

x R −

=


 

when 0.5 , ( )  
i

1

1 1

= (2-2 ) ( )(2 1)
i

n n

i i i i eR
i i

x a a x R    −

= =

+ + −    

2) Budget constraints: When the proportion of each asset in the portfolio is , in order to 

keep the sum of the investment proportions at 1, the budget constraint requires: 

1

1
n

i

i

x
=

=
 

3) Investment ratio constraint: According to the requirements of the financial market, the 

investment ratio of a single asset needs to be within a certain range, that is, meet the following 

conditions: 

0 , 1,2, ,il x u i n   =   

4) Cardinality constraints: The number of assets in the portfolio is restricted through the base 

number constraint to control the transaction cost in the process of securities investment. This 

can be expressed as: 

1
, {0,1}

n

l i u i
i

m z m z
=

   
 

3.3 The concrete expression of CMSK model 

( )
( )

( )

( ) 

1

2

3

1
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Cr ( )

1, 0 ( )
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i

i

n

l i u i

i
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C
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x x b
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S

d
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

=








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




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



=
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=
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
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



 

In which, the model objectives Z1, Z2, Z3 respectively represent the credible mean, credible 

skewness and credible kurtosis of the expected return of the portfolio; constraint (a) represents 

the model’s chance-constraint; constraint (b) the model’s budget constraint; constraint 



condition (c) represents the investment ratio constraint of the model; the constraint condition (d) 

represents the cardinal number constraint of the model. 

4 CMOPSO 

The model constructed above is to solve a multi-objective optimization problem, in which 

multiple conflicting and related objectives need to be weighed. The multi-objective particle 

swarm optimization algorithm (MOPSO) can be used to solve the proposed model because of 

its few computing resources as possible to obtain a non-inferior solution set covering the entire 

search space, uniformly distributed, and close to the real Pareto front. In addition, the MOPSO 

algorithm is improved, and a new constrained multi-objective particle swarm optimization 

algorithm (CMOPSO) is designed, in which dynamic infeasibility constraint dominance is used 

as a constraint processing method to avoid premature Fall into the local optimum and improve 

the global search ability of the algorithm [18-19]. The key operator design of the constrained 

multi-objective particle swarm algorithm is as follows: 

1)Dynamic   infeasibility constraint dominance relationship: 

A certain mediation method is needed to make the control of infeasible solutions have a 

dynamic adaptive process in order to control the proportion of infeasible solutions in the 

iterative process. The infeasibility of the candidate set X is defined as: 

 

 

max ( ),0 1,2,...
( )

max | ( ) | ,0 1,2,...

i

j

g X i p
dc X

h X j q

 =
= 

− =

，

，
 

In which,
( )dc X

is the distance from solution iX
to the feasible space. The infeasibility is 0 

when iX
is a feasible solution;

( )ig X
is an equality constraint;

( )jh X
is an inequality 

constraint;  is a tolerance coefficient, usually 0.001 or 0.0001. 

In order to further satisfy the constraint requirements and make the search approach the Pareto 

optimal solution, the dynamic infeasibility threshold  is defined as follows: 

0 (1 5 / 4 ), 0.8
=

0, 0.8

t M t M

t M




 − 


                           ＞
 

In which, 0
is the initial value of infeasibility; t is the current evolutionary algebra; M is the 

maximum algebra of population evolution, used to control the number of iterations of the 

algorithm.  decreases with the increase of the number of iterations. When the infeasibility 

threshold of the solution iX
is less than  , it is called a feasible solution. 

2)The speed and position update method of particles: A linearly decreasing weight is used 

when updating the speed and position of the particle swarm, and the update method is as 

follows: 



( ) ( ) ( )

( )

( ) ( ) ( )

1 1 1 ( ) ( )

2 2 ( ) ( )

1 1

i i i i

i

i i i

V t w V t r c pbest t X t

r c gbest t X t

X t X t V t

 + =  +   −


+   −


+ = + +  

 

In which, 
( )max min

max

t w w
w w

M

 −
= − is a linearly decreasing weight, maxw and minw are 

artificially set; 1r and 2r are random numbers in the interval [0,1]; 1c and 2c are learning factors. 

3)Selection strategy of local best position pbest: When the new solution
( )iX t

constraint 

obtained in the t-th iteration dominates the current local optimal position ( )ipbest t , 

take
( +1)ipbest t

=
( )iX t

; when the two do not dominate each other, randomly select one of the 

two as the new local optimal position; otherwise, take
( +1)= ( )i ipbest t pbest t

. 

According to the above key operators, the designed constrained multi-objective particle swarm 

algorithm is shown in Fig.1. 

Initialize the population G, set the external 
archive A to be empty

Initialize the pbest, gbest of the 
particles

It=MAX?

Iterative calculation to generate 
a new generation of population

N

Adaptive parameter adjustment

Update gbest based on crowded 
distance and roulette wheel 

selection

Update and maintain external 
archive A

Evaluation of particles

Output external 
archive A

Y

Start

Update pbest based on 
constraint dominance

Update the velocity and 
position of particles

End  

Figure.1 Basic flow chart of CMOPSO algorithm 



The specific algorithm steps in Fig.1 are as follows: 

Step1: Generate the initial population G randomly, set the external file A to be empty, and set 

the evolution algebra t=0; 

Step2: Initialize the local optimal position and the global optimal position of each particle; 

Step3: Let t = t+1, the iterative calculation starts to loop; 

Step4: Calculate the infeasibility threshold of the current evolutionary algebra, and adaptively 

adjust the inertia weight parameters; 

Step5: Combine dense distance and roulette selection to select the best global position for each 

particle in the population; 

Step6: Use linearly decreasing weights to update the speed and position of each particle in the 

population G; 

Step7: Update the local best position of each particle according to the constraint domination 

relationship; 

Step8: Update the external file A with the non-inferior solution of the particle population, and 

maintain the external file; 

Step9: Judge whether it has reached the maximum evolutionary algebra M of the population. If 

it does not reach M, return to Step3; otherwise, end the loop and output the external file 

collection. 

5 EMPIRICAL RESEARCH 

The historical data of 12 representative stocks (n=12) in the SSE 50 Index are selected as 

empirical data samples for empirical analysis from January 2019 to February 2021 for a total of 

508 trading days in the following. The selected stocks, the codes and names are shown in Tab.1. 

Table 1 Selected stock codes and names 

Stock Code Stock Name Stock Code Stock Name 

600570 Hundsun 601818 

China 

Everbright 

Bank 

603160 Goodix 600104 Saic Motor 

603259 WuXi AppTec 600031 
Sany Heavy 

Industry 

601336 
New China 

Life Insurance 
600887 Yili Group 

601668 

China State 

Construction 

Engineering 

600196 
Fosun 

Pharma 

601066 China 

Securities 
601166 

Industrial 

Bank 



Suppose the daily rate of return of the i-th risk asset is , , , 1 , 1( ) /i t i t i t i tr p p p− −= −
, where ,i tp

 is the 

closing price of security i in time t . The frequency estimation method of literature [19] are used 

to fuzzify the historical data of daily return rate. Hundsun is taken as an example. Firstly, the 

historical yields are sorted to magnitude for finding the maximum yield and minimum yield of 

the security and calculating the group distance. Secondly, the yields are grouped, the interval 

containing most of the yields are recorded as
   1 2 1, ,..., ,m md d d d + , and let jn

be the frequency 

of the j-th interval, =1,2,...,j m ,and record ( )
1 j
maxk jn n=
≤≤m

.The frequency statistics of Hundsun 

obtained are shown in Fig.2 below. 

 

Figure.2 Frequency distribution of daily yield of Hundsun from January 2019 to February 2021 

Then, let 1

2

k k

i

d d
a ++

= , 1

2

m m

i i

d d
a ++

= − , 1 2-
2

i i

d d
a

+
= , get the triangular fuzzy number 

( )1 0.08867, 0.00681,0.10652R = − . 

The fuzzy rate of return of the other 11 stocks can be obtained in the same way, and the 

specific data are shown in Tab.2. 

Table 2 Fuzzy rate of return of 12 stocks 

Stock 
Fuzzy rate of return 

i  ia  i  

S1 0.08876 -0.00681 0.10652 

S2 0.09114 -0.04440 0.10413 

S3 0.08488 -0.00220 0.10187 

S4 -0.08157 0.00607 0.90370 

S5 -0.08049 0.00163 0.08374 

S6 0.08896 -0.00677 0.10675 

S7 0.06092 -0.00741 0.10662 

S8 0.08474 -0.00429 0.10396 

S9 -0.09708 -0.00154 0.09400 

S10 0.09757 0.00209 0.09546 



S11 0.09338 0.00212 0.09761 

S12 0.07872 0.00305 0.09447 

 

The improved constrained multi-objective particle swarm algorithm is used to solve the model 

and the effectiveness of the established model and algorithm are proved. The number of 

evolutions 300,M = Population size 100,G = External archive size 50A = . The specific 

parameters used in the CMSK model and algorithm are shown in Tab.3. 

Table 3 Main parameter settings 

Parameter Parameter settings 

  0.80,0.85,0.90 

eR  0. 

um  5 

lm  5 

 

u  0.3 

l  0.01 

  0.001 

M  300 

G  100 

A  50 

maxw  0.9 

minw  0.4 

 

Run the CMOPSO algorithm through MATLAB to get the confidence 

level =0.80 0.85,0.90 ， . The approximate Pareto frontiers in three different situations are 

shown in Fig.3-5: 



 

Figure.3 The three-dimensional Pareto chart obtained by the CMSK model when the confidence 

level = 0.8  

 

Figure.4 The three-dimensional Pareto chart obtained by the CMSK model when the confidence 

level = 0.85  



 

Figure.5 The three-dimensional Pareto chart obtained by the CMSK model when the confidence 

level = 0.9  

It can be seen from Fig.3 that these non-dominated solutions obtained by the CMOPSO 

algorithm have better distribution and convergence, which indicates that the Pareto optimal 

front has a greater relationship with the mean, skewness, and kurtosis. Take them as The 

model objective is used to weigh and optimize the approximate Pareto frontier, which shortens 

the distance from the actual Pareto frontier, thus proving the validity of the constructed CMSK 

model. 

With confidence levels = 0.8,0.85,0.9 , the selection results of the investment portfolio are 

shown in Tab.4 below: 

Table 4 Portfolio asset allocation under different confidence levels 

 Stock investment ratio and target value 

 
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

 =0.80 0 0.221 0 0 0.159 0 0 0 0.268 0.251 

 =0.85 0 0.156 0 0.225 0 0 0 0 0.137 0.245 

 =0.90 0.034 0.191 0 0.261 0 0 0 0 0 0.235 

 
S11 S12 Z1 Z2 Z3   

 =0.80 0 0.101 0.02545 8.4051e-06 4.0649e-06   

 =0.85 0.237 0 0.01155 5.3349e-05 3.4325e-06   

 =0.90 0.279 0 0.00875 2.6484e-05 4.3376e-06   



6 CONCLUSION 

In this paper, how to build the high-order moment portfolio selection model based on 

credibility theory is researched. The chance-constraint is used to reflect the degree of 

investor’s risk preference under different confidence levels, which has certain practical 

significance. In addition, the proposed CMSK model is non-convex, non-linear, and non-

differentiable. Therefore, a constrained multi-objective particle swarm optimization algorithm 

is designed to solve it with MATLAB software. The edge search capability is improved and 

the non-inferior solution set covering the entire search space. Meanwhile, uniformly 

distributed and close to the real Pareto front is obtained with as little computing resources as 

possible by using the improved algorithm. The effectiveness of the target portfolio selection 

model and algorithm is illustrated. 
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