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Abstract. Corrosion of steel reinforcement in the reinforced concrete (RC) members 

contribute to structural damage and failure. This study proposes a damage classification 

method for corroded reinforced concrete (RC) beams subjected to flexural loading by 

linear discriminant analysis (LDA) of acoustic emission (AE) data. The structural behavior 

of RC beam specimens induced with varying steel corrosion levels was evaluated by AE 

monitoring during the flexural load test. Analysis of primary AE data, RA value (ratio of 

rise time to amplitude of the waveforms) could be correlated and used to classify the 

fracture type. It was found that the proposed LDA could achieve good accuracy in damage 

classification of corroded RC beams. 
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1   Introduction         

Corrosion of the steel reinforcements in RC structures is a worldwide problem [1]. The 

corrosion has been recognized as the major deterioration mechanism which affects RC 

degradation due to the environmental actions [2]. The costs of repair and maintenance of 

corroded structures worldwide exceed billions of dollars per year [3]-[6]. It becomes necessary 
that the effects of steel reinforcement corrosion on RC structures' functionality be detected early 

and studied in detail using an effective inspection method to provide effective remedial means 

[7]-[9]. Non-destructive testing (NDT) method is an objective-oriented inspection method for 

damage evaluations, i.e., steel corrosion [9]-[13]. Regarded as one of the popular NDT methods 

based on elastic wave propagation monitoring, the Acoustic Emission (AE) technique has also 

been studied for use in detecting steel corrosion in concrete [14]-[16]. The elastic waves 

generated due to corrosion events (i.e., cracking) could be successfully detected by placing AE 

sensors on the surface of concrete [17]-[19]. The first recorded application of the AE technique 

for corrosion evaluation in RC structure was done by Dunn et al. in 1984 [20]. The AE 

parameters, such as accumulated hits, signal strength, and energy, were successfully used to 

identify and characterize the RC structures' steel corrosion. The AE sources were also classified 

in terms of RA value and AF to classify the type of failure [21]-[24].  

Many classification techniques for interpreting AE data have been developed in recent 

years. However, to date, success has been limited to interpreting the AE data. Therefore, this 
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research aims to represent classification techniques in a suitable format that evaluates the steel 

corroded of the concrete structure. In this study, mechanical load testing was conducted at 

several RC beams with varying corrosion levels through recorded data of the AE activity to 

classify the damage by linear discriminant analysis (LDA). The AE parameters, namely RA 

value, were obtained to evaluate the corroded RC beams. Therefore, a drop in RA value could 

be indicative of an impending fracture. Thus, LDA was conducted to study the drop of RA value 

of the monitored AE data for corroded beam specimens' damage classification. 

2   Method 

2.1   Materials 

  

Four concrete beam specimens with varying corrosion levels (i.e., Control (0%), 9.54%, 

19.84%, and 24.60%) were prepared in the study. The corrosion levels of beam specimens were 

0% for S0, 9.54% for S10, 19.84% for S20, and 24.60% for S25. The concrete beams have 

dimensions of length = 500 mm, width = 100 mm, and height = 100 mm. The diameter of the 

tensile reinforcement was 12 mm. The bottom cover was 26 mm from the concrete surface. The 

details of beam specimen are shown in Figure 1.  

 

Fig. 1. Details of beam specimen (units are in mm) 

Ordinary Portland cement (OPC), river sand, and crushed granite with a maximum 

aggregate size of 10 mm were used to prepare the concrete mixture. The compressive strength, 

average modulus of modulus elasticity, and average Poisson’s ratio of the concrete at 28th day 

of after casting are 37,31 MPa, 26,49 GPa, and 0,17, respectively. 

 

2.2  Accelerated corrosion technique 

 

Corrosion was induced to the steel reinforcement using the impressed current technique 

after 28th days of moist curing, by adopting a direct current (DC) power supply [6, 25, 26]. The 

corrosion level was obtained from the voltage, current, and duration of exposure (time interval) 

using Faraday’s Law [27].  

  (1) 

Where: Δm = mass of steel consumed (g, gram), M = atomic or molecular weight of metal 

(56 g/mol for steel), I = current (A, amperes), t = time current or potentials applied (s, seconds), 

z = ionic charge or electrons transferred in the half-cell reaction (2 for steel) and F = Faraday’s 

constant (96500 A/s). 



 

 

 

 

 

The positive terminal of a DC power supply was connected to steel reinforcement as an 

anode by an electrical wire, while the negative terminal was connected to the steel reinforcement 

bar as a cathode. The concrete was partially immersed in a water tank filled with 5% sodium 

chloride (NaCl) solution. The NaCl solution was in contact with the bottom of the concrete 

beam. During the corrosion process, the electrical current was kept constant. The corrosion 

process was continuously monitored until the steel reinforcement corroded to the estimated mass 

loss required with different exposure times. 

 

2.3  AE data acquisitions 

 

During the load testing, the beam specimens were also monitored using the AE technique. 

For the AE data acquisition, six AE sensors were attached to each concrete specimen. The 

schematic acquisitions of the AE technique are shown in Figure 2. 

 

Fig 2. Schematic data acquisitions of AE technique (unit are in mm) 

2.4 Linear discriminant analysis (LDA) 

 

The LDA performs well in many applications. LDA's basic idea is simple: for each class to 

be identified, calculate a (different) linear function of the attributes. The class function yielding 

the highest score represents the predicted class. There are many linear classification models, and 

they are different largely in how the coefficients are established. LDA does not require multiple 

passes over the data for optimization. Also, it naturally handles problems with two classes and 

more. It can estimate the probability for each of the candidate classes [28]. 

The LDA solves a general Eigen-problem. Suppose there are C classes and n number of d-

dimensional training samples, and nc denotes the number of training samples of class c. Let 1 

denotes an all-one vector of proper length. The equations for within-class scatter matrix, Sw, 

between-class scatter matrix, Sb, and total scatter matrix, St, are: 

  (2) 

    (3) 

   (4) 
Where: X ̂ ∈ Rdxn = the data matrix in which the columns are training samples, X ̂_c = the 

data matrix of training samples belonging to the class c, m = the mean vector of all training 



 

 

 

 

 

samples, mc = the mean vector of training samples belonging to the class c, and T = denotes 
matrix transpose. 

The LDA computes a linear transformation matrix W ∈ Rd×(C−1), and usually d ≫ C. The 

transformation matrix projects data from the original high-dimensional space into a low-

dimensional space, maximizing the between-class distance while minimizing the within-class 

distance. Traditional LDA finds the optimal transformation matrix WLDA by solving the 

optimization problem [28]. 

  (5) 

According to Galloway [29], when the total scatter matrix St is non-singular, the solution 

WLDA consists of the top eigenvectors of the matrix (S_t^(-1) S_b ) that corresponds to non-

zero eigenvalues. When the total scatter matrix St does not have a full rank, WLDA consists of 

the eigenvectors of (S_t^+ S_b) corresponding to the non-zero eigenvalues S_t^+ denotes the 

pseudo-inverse of St [30]. 

3    Result and Discussion 

3.1   Accumulated of AE hits 

 

Figure 3 shows the relationship between the accumulated AE hits and load level (%) of the 

beam specimens. The accumulated AE hits decrease as the corrosion level of the specimens 

increases. In general, as the load is applied, the AE hits appear to increase before the first visible 

cracks. After forming the first visible crack at the range of 10% to 30% of the load level, AE 

hits' rate rapidly increases. Afterward, as the loading continues, the cracks propagate, and the 

AE hits gradually increase until beam specimen failure occurs. Based on the history of 

accumulated AE hits, the trend of the accumulated AE hits can provide useful information in 

evaluating the damage level of the corroded beam specimens. This trend may be attributed to 

the stressing and majority of cracking, especially longitudinal cracking along the steel 

reinforcement, which has already been dissipated by the steel corrosion. 

 

Fig 3. Accumulated AE hits versus load level (%) of beam specimens 

The correlation between accumulated AE hits and ultimate peak load or ultimate strength 

is shown in Figure 4. A decrease in ultimate strength was linear with the decrease in accumulated 



 

 

 

 

 

AE hits of the specimens. The ultimate strength and accumulated AE hits were controlled by 

the corrosion level of the beam specimens. The R2 of the linear graph is 0.5055. 

 

Fig 4. Accumulated AE hits against ultimate peak load of beam specimens 

3.2    RA Value and AF 

 

Figure 5 shows RA value vs. AF distribution of the AE data at every 1 kN increment load. 

The RA value is defined as the ratio of the waveforms rise time to the amplitude, as shown in 

Equation 6. The AF feature is calculated from the number of thresholds crossing of waveforms 

divided by duration, as shown in Equation 7. Based on the linear regression for each data group, 

it is suggested that as the corrosion level becomes higher, there is a collective increase in AF 

and a decrease in RA value of the beam specimen. It also indicates the beam's transition 

dominating fracture type, which shifts from shear crack to tensile crack. However, there is a 

decrease and increase in RA value for the highest corrosion level due to the beam specimen's 

shear crack progression. 

RA value = Rise Time/Amplitude 

Average frequency = Counts/Duration 

 

Fig 5. RA value and AF of the concrete beam specimens 



 

 

 

 

 

3.3    Linear Discriminant Analysis 

 

The description of data used for the classification of LDA is tabulated in Table 1. The data 

are obtained from the AE parameters, i.e., the RA value of the concrete beam specimens. The 

data are classified into four classes based on the corrosion levels of the beam specimens. Class 

1 is for S0, class 2 is for S10, class 3 is for S20, and class 4 is for S25 beam specimens. For 

LDA classification data, each beam specimen is classified into four classes based on the LDA 

class. The LDA was applied to classify RA value data of the beam specimens. Table 1 shows 

the classification results of LDA. In this study, a system uses validity measures of the test with 

four classes. 

Table 1.  Data classifications to test system of LDA 

Beam Specimens Class 1 Class 2 Class 3 Class 4 

S0 6472 601 796 18 

S10 2746 3272 1116 0 

S20 1953 1367 1952 0 

S25 1553 698 1070 232 

 

Table 2 shows the classification of AF features of the beam specimens. The table shows 

that initially, the classified data are predominantly classified as a class they are. The S0 beam 

specimen failed in the shear crack, the high percentage of S0 beam specimen and Class 1 is 

assumed as shear crack. Overall, class 1 of the beam specimens are classified as a shear crack, 

and the class 2 to 4 are classified as tensile crack. Table 2 shows the classification data based 

on LDA data in terms of the type of crack. The S0 beam specimen dominant as shear crack 

while for S10, S20, S25 dominant as tensile crack. The type of cracks of the beam specimens is 

almost the same as the observations. More studies will be required to examine further the 

reliability of the LDA using other AE parameters. 

Table 2. Type of cracks classification based on LDA 

Beam Specimens Shear Cracks (%) Tensile Cracks 

(%) 

S0 82.06 27.94 

S10 38.50 61.50 

S20 37.04 62.96 

S25 43.46 56.54 

4   Conclusion   

Based on the observations of RA value vs. AF distribution of the AE data, it is suggested 

that as the corrosion level becomes higher, there is a collective increase in AF and a decrease in 

RA value of the beam specimen. It also indicates the beam's transition dominating fracture type, 

which shifts from shear crack to tensile crack. The classification data give information in terms 

of statistical features based on the correlation of the distribution data. Based on the beam 

specimens' classification of the beam specimens' RA value features, class 1 of the beam 

specimens are classified as a shear crack, and class 2 to 4 is classified as tensile crack. The S0 

beam specimen dominant as shear crack while for S10, S20, S25 dominant as tensile crack. The 



 

 

 

 

 

type of cracks of the beam specimens is almost the same as the observations. The promising 

results obtained in the analysis are proposed to classify the fracture type of the corroded 

specimens. Although the results obtained so far are encouraging, more investigations on 

theoretical and practical aspects are needed to indicate further the applicability of the corroded 

specimens' classification based on other AE parameters. 
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