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Abstract: In view of the complexity of the auxiliary nozzle structure of air-jet looms, a 

prediction model between the auxiliary nozzle structure parameters and the maximum exit 

velocity was established based on PSO-BP. Firstly, the finite element model of the 

auxiliary nozzle was established by using Ansys software. Secondly, 500 sets of structural 

parameters were sampled using Latin hypercube sampling, and the corresponding 

maximum outlet velocity was obtained using the finite element model. Finally, 450 groups 

of samples are used as the training set, and the remaining 50 groups are used as the test set 

to establish the PSO-BP prediction model. The results show that the PSO-BP model is 

effective and accurate to predict the maximum exit velocity of the auxiliary nozzle. 
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1 Introduction 

As an important textile machine, the auxiliary nozzle is an important part of the air-jet loom. 

There is a nonlinear relationship between the structural parameters of the auxiliary nozzle and 

the comprehensive performance evaluation index, and each parameter has an important 

influence on the comprehensive performance evaluation index of the auxiliary nozzle. A 

reasonable structure can not only reduce energy consumption, improve productivity, but also 

achieve a better weft insertion effect [10]. 

Researchers have carried out a large number of numerical and experimental studies on flow field 

characteristics, injection performance and energy consumption of auxiliary nozzles [3] [5] [13], 

including the influence of structural parameters of auxiliary nozzles, nozzle shape, nozzle 

number and flow parameters on flow field characteristics. Relevant scholars have studied the 

nozzle shape of single-hole nozzle [4], the diameter of single-round hole [1] and its taper value 

[2], the optimal aspect ratio of rectangular nozzle [12], and the cross-sectional area of nozzle 
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outlet [11]. The flow field characteristics of the auxiliary nozzle with different shapes of single 

orifices, different orifices of single circular orifices and their taper values, and the optimum 

aspect ratio of the rectangular orifices were obtained. It was proved that the cross-section area 

of the nozzle outlet has a great influence on the jet velocity and persistence. Li et al.[5] analyzed 

three typical auxiliary nozzle structures of single circular hole, equilateral hole and star hole 

under different air supply pressures, and carried out corresponding three-dimensional flow field 

numerical simulation. The results show that under the same air supply pressure, the star hole 

auxiliary nozzle has the best air flow concentration, weft insertion smoothness, the lowest gas 

consumption and the best comprehensive performance. 

The influence of the structural parameters of the auxiliary nozzle on its injection performance 

was studied by means of experiment and numerical simulation. But few people use intelligent 

optimization algorithm to optimize the structural parameters of the auxiliary nozzle to make the 

overall performance optimal. The relationship between the structural parameters and the 

comprehensive performance evaluation index of the auxiliary nozzle is a nonlinear problem, 

which is difficult to be expressed by common methods. BP neural network algorithm has strong 

nonlinear mapping ability, self-learning and self-adaptation ability, and can deal with many 

complex nonlinear problems [8] [9]. However, since the weight and threshold of BP neural 

network are updated by gradient descent method, it is easy to obtain local extreme values instead 

of global extreme values by updating parameters in the direction of negative gradient of the 

target. Particle Swarm Optimization (PSO) is widely used in the Optimization of various models 

because it can avoid the process of Optimization falling into local extreme values and has good 

robustness and easy convergence [6] [7]. 

This paper aims to establish an accurate model between structural parameters and 

comprehensive performance evaluation indexes. The nozzle diameter, nozzle taper, nozzle 

position and nozzle center distance of the central annular six-hole auxiliary nozzle were selected 

as structural parameters, and the maximum outlet velocity was selected as the performance 

evaluation index. BP neural network was used to establish the relationship model between the 

four structural parameters and the maximum outlet velocity, and then PSO was used to optimize 

the network weights and thresholds iteratively in the process, in order to get the relationship 

model with as little error as possible, which could provide reference for practical production. 

2 Six round hole auxiliary nozzle model 

2.1 Geometric Model 

The central annular six-hole auxiliary nozzle model shown in Figure 1 was selected as the 

research object. Figure 2 shows the 3D flow field model, whose outward drawing angle is 80°, 

and the length, diameter and drawing depth of the external far flow field are 80 mm,24 mm and 

2 mm respectively. 



 

 

Figure 1: Schematic diagram of the arrangement of the nozzle holes of the auxiliary nozzle with six 

round holes and its three-dimensional characteristics. 

 

 

Figure 2: 3D flow field model of auxiliary nozzle. 

 

 

Figure 3: Mesh division and boundary condition setting of flow field model. 

2.2 Numerical Simulation Model 

Mesh plug-in in finite element software Ansys was used to conduct mesh division for the three-

dimensional flow field model of the auxiliary nozzle. Figure 3 shows mesh division and 

boundary condition setting of the flow field model. Free tetrahedral mesh was adopted with 

mesh density of 100 and mesh quality of Fine, and the number of meshing is about 840,000. 

Four boundary conditions of pressure inlet, symmetrical surface, pressure outlet and wall 

surface are set respectively after the mesh is generated. 



 

Density-based hermit solver in Fluent was used to calculate the grid files. Other simulation 

parameter settings refer to Table 1. Density-based hermitage solver was used to calculate. RNG 

K-ε biequation model was used for turbulence model. Ideal gas is selected as the fluid medium. 

Using mixed initialization conditions. The number of iterations is 500, and then the solution is 

performed. Figure 4 shows the cloud diagram of the maximum outlet velocity of the six-hole 

auxiliary nozzle with a diameter of 0.6124 mm, a center distance of 0.76 mm and a taper of 9°. 

In the figure, the maximum outlet velocity is 453 m/s. The flow field has very good bundling 

and the weft insertion effect is excellent. 

 

 

Figure 4: Cloud map of the maximum exit velocity of the auxiliary nozzle with six round holes. 

Table 1: Flow field boundary condition setting in Fluent. 

Parameter setting parameter value 

Inlet air supply pressure/(MPa) 0.3 

Turbulent dissipation rate at the entrance /(m2/s3) 8428.8 

Turbulent kinetic energy /(m2/s2) 5 

temperature/(K) 293 

Pressure outlet total pressure/(Pa) 101325 

Static pressure/(Pa) 297510 

After comprehensive consideration of engineering practice, requirements of relevant process 

specifications and errors in actual processing, the value range of the auxiliary nozzle's jet hole 

aperture, jet hole taper, jet hole position and jet hole center distance is determined to be 0.55-

0.67 mm, 0°-9°, 0°-72°, 0.76-0.86 mm, respectively. The reference position of the annular 

nozzle location distribution is the vertical center line in Figure 1. 



 

3 PSO-BP prediction model 

3.1 PSO-BP Algorithm 

BP neural network is a multilayer feedforward error back propagation neural network. When 

the actual output value is different from the expected output value, the error will be propagated 

back, and the weights and thresholds of each layer will be adjusted along the gradient direction 

to achieve the target accuracy. The number of nodes in the input layer and output layer is 

determined by the number of input and output variables, while the number of nodes in the hidden 

layer is usually determined by the empirical formula. M and L are the number of neurons in 

the input layer and output layer respectively. In this paper, N =10 and the value range of 


 

is 0-10. The activation functions of the hidden layer and output layer are tansig function and 

purelin function respectively. Newff function is called to create the network, and train function 

is used to train the network. 

 

N L M = + +                         (1) 

 

Particle swarm optimization (PSO) is a parallel optimization algorithm based on swarm 

intelligence. Its basic principle is that each particle is a potential solution of optimization 

problem, corresponding to a fitness value, by the fitness function to calculate the fitness values, 

each particle has a speed determine their movement direction and distance, and the optimal 

particle particle are to follow the current search in the solution space, so as to realize the 

optimization of the whole space. Therefore, particle swarm optimization is used to optimize the 

weight and threshold of BP neural network model, so that it can better approximate the global 

extreme value. Using Latin hypercube sampling method from the given parameter values range 

from 500 groups of data, each group of structure parameters in Ansys combinations 

corresponding to maximum exit velocity, randomly selected 450 groups of data is used to set 

up auxiliary nozzle structure parameters and the biggest export rate of relational model, the 

remaining 50 sets of data used for testing the relational model. The specific steps of PSO-BP 

neural network optimization algorithm are as follows: 

Step1: As the range of some input data may differ greatly, resulting in slow convergence of 

neural network and long training time, the input sample data is normalized and the topological 

structure of BP neural network is determined according to the input and output samples. The 

normalization formula is shown as follows: 
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Where, x are the mapping values, minx and maxx are the minimum and maximum values. 



 

Step2: After initializing the network weight, threshold, population position and speed, update 

the speed and position according to the individual extreme value and population extreme value, 

the formula is as follows: 

 

1

1 1 2 2( ) ( )k k k k k k

id gdV V c r P X c r P X+ = + − + −
             (3) 

 
1 1k k kX X V+ += +                  (4) 

 

Where, 1c and 2c are constants, also known as acceleration constants. 1r and 2r are the uniform 

random number within the range of [0,1], which is used to increase the randomness of particle 

flight. k  is the current iteration number.
k

idP  is the individual optimal particle position.
k

gdP  is 

the global optimal particle position.V is the particle velocity. X is the particle position. 

Step3: calculate the fitness value with the fitness function, and then update the individual 

extreme value and the population extreme value according to the fitness value. The fitness 

function is shown as follows: 
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Where, n is the total number of particles,
1k

idX +
is the updated value of the id particle, and

k

idX is 

the initial value of the id particle. 

Step4: PSO algorithm is used to optimize the weight and threshold of BP neural network model, 

and then training and testing are carried out. If the error conditions are met, the prediction results 

are output. Otherwise, step2 is returned to continue execution until the error requirements are 

met. 

The training fitting and optimization process based on PSO-BP is shown in Figure 5. 
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Figure 5: The training, fitting and optimization process based on PSO-BP. 

3.2 Evaluation of the Model 

The established network was used to calculate the input test set, and the actual output value and 

predicted value of the test set were analysed for error. The results used mean square error (MSE) 

and mean absolute percentage error (MAPE) as the performance evaluation indexes of the 

model. The smaller the two, the higher the prediction accuracy of the model. The specific 

calculation formulas are as follows (6) and (7): 
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In the formula, iy  is the actual value and
iy



is the predicted value of the neural network model. 

3.3 Analysis of Results 

The actual value and predicted value of the PSO-BP model test set are shown in Figure 6, with 

an average relative error of 0.00886. According to formulas (6) and (7), the mean square error 

of the test set is 0.0299, and the mean absolute percentage error is 0.00045%. Through 

calculation and analysis, the accuracy of PSO-BP neural network is very high, and the maximum 

outlet velocity of six-hole auxiliary nozzle can be predicted well. 
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Figure 6: Prediction results of PSO-BP neural network. 

4 Conclusions 

BP neural network optimized by particle swarm optimization algorithm was used to establish a 

model between the four structural parameters of the auxiliary nozzle (nozzle aperture, nozzle 



 

taper, nozzle location and nozzle center distance) and the maximum outlet velocity, so as to 

predict the maximum outlet velocity of the six-hole auxiliary nozzle. The results show that the 

mean square error and mean absolute percentage error of the proposed method are both lower 

than 5%, which indicates that the prediction accuracy is very high and can meet the actual 

demand of engineering. This enlightens us that there are certain deficiencies in single prediction 

models, and these deficiencies are inherent. However, combined with the optimization 

algorithm, the prediction results will be more reliable, even if it makes the algorithm a little 

more complicated. 
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