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Abstract: It is a challenged topic of option pricing with multi-asset. This paper uses 

Monte Carlo (MC) simulation to valuate options which possess multiple assets. Firstly, 

given correlative coefficients, an algorithm to generate normal distributed random 

variables is established. Then, MC scheme is proposed for pricing European, American, 

Asian and Lookback options. Numerical experiments illustrate that MC simulation is an 

efficient and accurate method. With MC path number 8000, the relative errors of 

numerical European options are less than 0.5%. The stability experiments of MC 

algorithm are also carried out. As an advantage, the proposed MC algorithm can be 

extended to more general options such as Strangles and CEV options. 

Keywords: multi-asset options, Monte Carlo simulation, normal distribution, correlative 
coefficient 

1 Introduction 

In the valuation of multi-assets option pricing (MAOP), it is assumed the underlying asset 

prices  are modeled by Brownian motion together with a drift term under no-arbitrage 

assumption (see [2] and [3]), i.e., 
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Here, d is the number of assets, r is risk-free interest,  are divided yields, ¾i¾i represents the 

volatility and the covariance 

Cov(dW i
t ; dW

j
t ) = ½ijdtCov(dW i

t ; dW
j
t ) = ½ijdt.                                               (2) 

Equation (1) is a d-dimensional stochastic differential equation (SDE) with covariance (2). For 

the 1- dimensional cases,  given the payoff functions on maturity date T 

f(S1(T); S2(T); : : : ; Sd(T))f(S1(T); S2(T); : : : ; Sd(T)),                                      (3) 

Black-Scholes equation (BSE)  (1) has closed form solution. However, for the case of d > 1d > 1 

underlying assets, BSE (1) -(3)  generally have no analytical solution and need to be solved by 

numerical methods. 

Finite difference method (FDM) is a choice of valuating options. But the spatial partition of 

FDM is very difficult and complicated in the case of d = 3d = 3 (see [5] and [6]). If d > 3d > 3, FDMs 

have no possibility to implement MAOP. Binomial Tree method (BTM, see [8]) and Willow 

Tree method (WTM, see [7]) are successful in pricing one-asset option, but it becomes more 

and more difficult as the dimension d tends to be larger. The reason is that we need to calculate 

the very complicated transition probability from time t to time t+¢tt+¢t. 

In past four decades, Monte Carlo simulation becomes a powerful way to valuate some type of 

options (see [1] and [4]). The basic idea of MC simulation is to generate a large number of 

underlying price paths, then option values are taken as the discount average value of pay 

functions from terminal time T to time zero. Constructing random sequence satisfying pre-

given correlative coefficients ½ij½ij is the key of MC algorithm. In this paper, we focus on this 

method and give a full algorithm for MAOP. Algorithm-1 in Section 2 is the most important 

contribution of this paper. Based on this algorithm, we get normal correlative sequence fW ifW i 

from independent random sequenceW iW i. 

2 Monte Carlo Simulation 

2.1 Generate standard normal sequence 

Assume  are standard normal distributed variables and assume 

they are independent on each other. We give an algorithm to generate standard normal random 

variables  such that the covariance Cov(Wi;Wj) = ½ijCov(Wi;Wj) = ½ij with pre-

given values of . Since W iW i  are standard, we know ½ij½ij  are also the correlative coefficients 

between W iW i and W jW j. 

Let W 1 = W 1W 1 = W 1 and . The variance of   satisfies 

D[fW2] = ¸2
21 +¸2

22 = 1D[fW2] = ¸2
21 +¸2

22 = 1.                                           (4) 

The covariance between W 1W 1 and fW 2fW 2 is 

 



 

Cov(fW1;fW2) = ¸21 = ½12Cov(fW1;fW2) = ¸21 = ½12.                                      (5) 

From (4) and (5), it is obtained that 
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Expression (6) means that 
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and then Cov(W1;W2) = ½12Cov(W1;W2) = ½12. 

Now, we consider the more general case of (7). Let 

,                                                   (8) 

for . The variance of W kW k is 
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By the result (6), we get 

 ¸2
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.                                                   (10) 

The definition of AA and ¸̧ are given by 

 A = [½ij ](n¡1)£(k¡1)A = [½ij ](n¡1)£(k¡1),                                               (11) 
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The covariance is expressed by 
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Hence, 

                                    (14) 

Is obtained from (13). Equation (14) is a linear system, i.e. 

Aȩ = e½ with e½ = [½k1;½k2; : : : ; ½k;k¡1]
TAȩ = e½ with e½ = [½k1;½k2; : : : ; ½k;k¡1]
T

.                               (15) 

Therefore, from (15) we have 

,                                        (16) 

 .                                                     (17) 



 

Using expression (8), (9) and (17), the correlative normal distributed sequence W iW i and then 

underlying path  can be formulated. The program of generating random sequence fW ifW i is 

created as in Algorithm 1. 

Algorithm 1:  Generate random variables with coefficients ½ij½ij 

Step 1 Generate standard norm distributed random variables such that each W i » N(0; 1)W i » N(0; 1) for 
i = 1; 2; : : : ; di = 1; 2; : : : ; d  and they are independent on each other. 

Step 2 Let W 1 = W 1W 1 = W 1. 

            FOR k = 1; 2; : : : ; dk = 1; 2; : : : ; d 

Step 3 Create matrix AA and vector e½e½  according to expressions (11) and (12). 

Step 4 Compute ¸kj¸kj for j = 1; 2; : : : ; kj = 1; 2; : : : ; k by using (16) and (17). 

Step 5 Calculate random sequence W kW k by using formula (8). 

 ENDFOR 

Step 6 Random variables Wk; k = 1;2; : : : ; dWk; k = 1;2; : : : ; d have correlative coefficients ½ij½ij 

2.2 Monte Carlo algorithm for multi-asset option pricing 

Given an integer number N > 0N > 0 , and let time mesh ¢t = T=N; t0 = 0¢t = T=N; t0 = 0 , 

tn = n¢t (n= 1;2; : : : ;N)tn = n¢t (n= 1;2; : : : ;N). Denote by S i
nS
i
n the nthnth asset price at time tntn, i.e., Si

n = Si(tn)Si
n = Si(tn). 

Firstly, we give d standard random variables W i(tn)W i(tn) at each time tntn and using Algorithm 1 to 

produce Wi(tn)Wi(tn). Secondly, according to SDE (1), M underlying price paths are constructed. 

Finally, d-asset option values are taken as the average value of payoff function at expire time 

T = tNT = tN, and then discounted from terminal time T to time zero. 

The algorithm of Monte Carlo simulation for multi-asset option pricing is described as in 

Algorithm 2. This algorithm can be extended to other options, such as American options and 

Asian options. 

Algorithm 2: Monte Carlo algorithm for multi-asset option pricing 

Step 1 Let initial option value V = 0V = 0. 

Step 2 Generate N £ dN £ d  standard normal distributed random matrix W » N(0; 1)W » N(0; 1)such that 

W (:; i)W (:; i) (i = 1;2; : : : d)(i = 1;2; : : : d) are independent on each other. 

Step 3 Using Algorithm-1 to generate WW  such that 

. 

Step 4 Given initial value of asset price S i
0S
i
0, compute underlying path, 

. 

Here, n = 1;2; : : : ;Nn = 1;2; : : : ;N  and i = 1; 2; : : : ; di = 1; 2; : : : ; d. 

Step 5 Compute accumulation of option value on this path, 



 

. 

Step 6 Repeat M paths and compute accumulated option value V from Step 2 to Step 5. 

Step 7 The final option value is taken as 

V = e¡rTV 1
M

V = e¡rTV 1
M

. 

3 Numerical examples 

We use some examples to illustrate the efficiency, accuracy and stability of Monte Carlo 

algorithm-1 and Algorithm-2. The first one (in subsection 3.1) is European call option with 

exact solutions. The second (in subsection 3.2) discusses American, Asian and Lookback 

options, which have no analytical solutions and are compared with those solutions obtained 

from WTM. 

3.1 European call option with exact solutions 

Assume call option has geometric mean payoff functions, i.e., 
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with 0 · ®i · 10 · ®i · 1 and 
Pd

i=1 ®i = 1
Pd

i=1 ®i = 1. Let ¿ = T ¡ t¿ = T ¡ t and denote S = [S1; S2; : : : ; Sd]S = [S1; S2; : : : ; Sd], the values 

of d-asset option can be formulated as 
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Here, ©(¢)©(¢) is the standard normal distribution function,  
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and parameters are set as 

¾̂ =

d

i;j=1

½ij¾i¾j®i®j¾̂ =

d

i;j=1

½ij¾i¾j®i®j ,     d̂2(¿;S) = d̂1 ¡ ¾̂
p
¿d̂2(¿;S) = d̂1 ¡ ¾̂
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In our experiments, parameters in multi-asset model are taken as follows. r = 0:05r = 0:05, T = 1,T = 1, 
K = 10; t = 0K = 10; t = 0,®i = 1=d®i = 1=d, ¾i = i%;½ii = 1¾i = i%;½ii = 1, ½ij = 0:7½ij = 0:7 for i 6= ji 6= j. Table 1, Table 2 and Table 3 

list some Monte Carlo solutions, errors (ERRs) and relative errors (REs). In these Tables, ViVi 

denotes MC solutions with time partition N = 50£ 2i¡1N = 50£ 2i¡1 and path number M = 500£ 2i¡1M = 500£ 2i¡1. 

From these Tables we see (i) the REs are less than 0:5%0:5% for dimension d = 2,3,4; (ii) The 

ERRs and REs are more and more smaller as parameters M and N become larger. These 

experiments show that MC simulation has good performance for MAOP. 

3.2 Options without exact solutions 

Table 1: Solutions and errors of Monte Carlo simulation for 2-dimensional model   



 

nodes V3V3 V4V4 V5V5 VEVE 

(9, 9) 0.2888 0.2819 0.2857 0.2899 

(9, 10) 0.5077 0.4995 0.4966 0.5027 

(9,11) 0.7789 0.7748 0.7704 0.7705 

ERR 0.0071 0.0052 0.0050 --- 

RE 0.0078 0.0056 0.0047 --- 

Table 2: Solutions and errors of Monte Carlo simulation for 3-dimensional model  

nodes V3V3 V4V4 V5V5 VEVE 

(9,9,9) 0.4124 0.3918 0.4121 0.4157 

(9,9,10) 0.5507 0.5253 0.5551 0.5556 

(9,9,11) 0.7023 0.6725 0.7106 0.7083 

ERR 0.0740 0.0397 0.0053 --- 

RE 0.0750 0.0404 0.0054 --- 

Table 3: Solutions and errors of Monte Carlo simulation for 4-dimensional model   

nodes V3V3 V4V4 V5V5 VEVE 

(9,9,9,9) 0.5100 0.5269 0.5348 0.5382 

(9,9,9,10) 0.6104 0.6328 0.6468 0.6439 

(9,9,9,11) 0.7149 0.7411 0.7535 0.7519 

ERR 0.0418 0.0071 0.00344 --- 

RE 0.0388 0.0066 0.00234 --- 

Table 4: Monte Carlo solutions of   European, American, Asian and Lookback opyions 

options K=9 K=10 K=11 K=12 

European 
0.08287 0.37425 0.90931 1.65028 

(0.08254) (0.37505) (0.90899) (1.65048) 

American 
0.10658 0.44388 1.07225 2.00435 

(0.10687) (0.44692) (1.07256) (2.00821) 

Asian 
0.00793 0.19466 0.819114 1.69952 

(0.00708) (0.19430) (0.81956) (1.69770) 

Lookback 
0.00000 0.00168 0.224868 0.83107 

(0.00012) (0.00174) (0.22475) (0.83245) 

In this subsection, we compute four type of put options with two assets and with parameters

r = 0:05r = 0:05, T = 1T = 1, t = 0t = 0, ®i = 1=d®i = 1=d, ¾i = i%¾i = i%, ½ii = 1½ii = 1, ½ij½ij=0.7 for i 6= ji 6= j . The asset values at 

time zero are set as Si
0 = 10Si
0 = 10  for i = 1; 2; : : : ; di = 1; 2; : : : ; d . These options are named “European”, 

“American”, “Asian” and “Lookback”. 

Table 4 presents the Monte Carlo simulation results for different values of strike price K. 

Options (numbers included in parentheses) obtained by Willow tree method (WTM) are also 

listed. Details about WTM are referred to the literature (see [7]) From this Tab., we see the 

Monte Carlo solutions are very consistent with those by WTM. All errors between MC 

solutions and the corresponding WTM solutions are about 10¡4 » 10¡310¡4 » 10¡3. 

 



 

 

Figure 1:  Shapes of four options with different strike prices 

 

Figure 1 plots the shapes of four type options. All results are consistent with the theoretical 

claims as in reference (see [3]). These experiments illustrate that the proposed algorithm is 

effective and accurate.  

Figure 2 plots Monte Carlo option values under different path numbers M. From this Fig., we 

see the option values become more and more stable as M goes to 6,000, which shows the 

Monte Carlo scheme has good stability. 

 

Figure 2:  Monte Carlo solutions v.s different path number M 

4 Conclusions 

To valuate multi-asset options, finite difference method (FDM), binomial tree method (BTM), 

willow tree method (WTM) and MC simulation are the most popular methods. Because FDM 

needs to solve complicated partial differential equations (PDEs), constructing FDM scheme is 

a difficult task for higher dimensional problem. BTM and WTM might get trouble when 



 

calculating transition probabilities (see [7] and [8]). In addition, FDM, WTM and BTM are not 

easily generalized to more complex options. This paper proposes an effective and uniform 

algorithm to generate multi-asset paths such that they satisfy given correlative coefficients. 

Numerical experiments are carried out to conform that the proposed Monte Carlo method has 

good performance in valuating European, American, Asian and Lookback options.  

As an advantage, MC algorithm can be extended to more complex options, such as Strangles 

options, CEV options, Parisian options and so on (see [3]). Additionally, MC simulation can 

be extended to Levy processes, such as VG (Variance Gamma), GH (Generalized Hyperbolic) 

and NIG (Normal Inverse Gamma) models. In future, convergence analysis of MC simulation 

will be discussed in depth. 
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