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Abstract—Aiming at the problems of low accuracy and long prediction time of industrial 
equipment fault prediction, a prediction method based on main feature extraction and back 
propagation neural network (MFE-BPNN) was proposed. This method firstly preprocesses 
the missing, abnormal and high-noised industrial equipment data, then uses the method of 
recursive feature elimination combined with cross validation to extract the main feature 
variables, then designs the numbers of hidden layers and neurons, and weights of training 
and learning rates. This method improves the accuracy of industrial equipment fault 
prediction by preprocessing industrial data and establishing a prediction model based on a 
neural network. The prediction time is reduced by extracting the main characteristic 
variables. The experimental results of fan blade icing fault prediction in the field of power 
generation verify the effectiveness of this method. 
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1 INTRODUCTION 

Industrial equipment failures often cause enterprises huge losses. With the advent of industry 
4.0, the industrial devices of intelligent factories are equipped with various sensors to collect 
data such as vibration, temperature, current and voltage. By analyzing these data and adopting 
the corresponding algorithms, the time of potential equipment failure can be predicted, and the 
early warning and treatment can be carried out in advance, so as to reduce the loss caused by 
equipment shutdown. However, with the rapid growth of industrial equipment data, there are 
often problems such as missing, invalid, abnormal values, high noise, excessive characteristic 
parameters and unbalanced data, which often lead to the further problems of low prediction 
precision and long prediction time. Thus, it is difficult to accurately and quickly predict failures 
and carry out operation and maintenance in advance. 

The research on the equipment fault prediction at home and abroad mainly includes prediction 
methods based on time series and those based on machine learning models. The commonly used 
time series prediction models include autoregressive moving average (ARMA) model and 
autoregressive integral moving average (ARIMA) model. Erdem et al. [1] proposed four 
prediction methods based on the ARMA model for wind direction and speed prediction. Zhang 
et al. [2] used the ARIMA model to predict the concentrations of PM2.5 in Fuzhou, China. 
Although the ARIMA model has been applied in many fields and can well describe the linear 
relationship in time series, there are many nonlinear problems in real life, and there are 
limitations to solve them by linear approximation. 

Machine learning provides effective methods for nonlinear prediction problems, such as neural 
network [3], Gaussian process regression (GPR) [4], decision tree [5,6], logical regression [7], 
multilayer perceptron (MLP) [8]. Zong et al. [9] applied multi-layer perceptron (MLP) neural 
network to predict the energy demand of South Korea and compared it with several models. The 
experiments show that MLP has good prediction precision. Liu et al. [10] established a multi-
variable prediction model based on GPR and multiple imputations. The model can well predict 
the time series with the missing data. Guo Yu and Yang Yu [11] proposed the equipment fault 
prediction based on the grey rough set and back-propagation neural network (BPNN). BPNN is 
also combined with empirical mode decomposition (EMD) to be used for the cavitation damage 
fault diagnosis of hydro-power units [12] and wind power prediction [13]. Zhou Guangfei [14] 
proposed to apply the multivariate statistical analysis method to fan blade icing fault prediction. 
In addition to using dominant features significantly related to icing, Zhou also constructed a 
series of invisible features, which greatly improved the prediction effect. However, this greatly 
increased the prediction time. 

In this paper, an industrial equipment fault prediction method based on the extraction of main 
feature variables and the back propagation neural network (MFE-BPNN) is proposed. The data 
is preprocessed through data screening, data down-sampling, singular value deletion and feature 
selection. The main feature variable are extracted by combining the recursive feature elimination 
method for cross-validation (RFECV). Taking the icing fault of fan blade in power generation 
field as an example, the effectiveness of the model is verified and evaluated by comparing with 
the decision tree and logistic regression classification algorithm. 



 

2 MFE-BPNN PREDICTION METHOD 

2.1Data Description and Preprocessing 

The data in this paper sources from the SCADA system of domestic wind power plants. About 
390,000 data and 26 characteristic variables were collected in real-time operation of the fans for 
two months in chronological order. The data type is floating point. The names of variables are 
shown in Table 1: 

TABLE 1 FAN ICING DETECTION VARIABLES 

Number Variable Name Number Variable Name 

1 Wind speed 14 Temperature of variable pitch motor 1 

2 Engine RPM 15 Temperature of variable pitch motor 2 

3 Power 16 Temperature of variable pitch motor 3 

4 Paired wind angle 17 Acceleration in X-axis direction 

5 Average wind 
direction angle 18 Acceleration in Y-axis direction 

6 Yaw position 19 Ambient temperature 

7 Yaw speed 20 Engine room temperature 

8 Blade angle 1 21 Temperature of No. 1 ng5  

9 Blade angle 2 22 Temperature of No. 2 ng5  

10 Blade angle 3 23 Temperature of No. 3 ng5  

11 Blade angle 1 24 Direct current of No. 1 ng5 charger 

12 Blade angle 2 25 Direct current of No. 2 ng5 charger 

13 Blade angle 3 26 Direct current of No. 3 ng5 charger 
 
There are many invalid data in the data set; the time is not continuous; the data has many singular 
values; and the equipment status data is unbalanced. In this paper, several data preprocessing 
methods such as data screening, data down-sampling, singular value deletion and feature 
selection are used to preprocess the data to optimize and improve the prediction effect and 
efficiency of the model. The specific process is shown in Figure 1: 
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Figure 1 Ice Detection Process of Fan Blades 

 

2.1.1Invalid Data Deletion and Down-sampling 

There are three data set files: data.csv is the original data set; failure.csv is the data of fan during 
the fault icing; normal.csv is the data of fan during the normal operation. The data excluded in 
normal time period and icing time period of the fan are invalid data, which shall be filtered and 
deleted. 

2.1.2Exclusion of Singular Values 

Due to the noise and other factors in the data set that will cause the appearance of singular values, 
this paper uses the box plot method, i.e., quantiles to delete singular values. Basic principle and 
steps are as follows: 

(1) Sort the sample data according to a variable from small to large; 

(2) Calculate the upper quartile 𝑄2, median and lower quartile 𝑄1 of the selected variable 
respectively; 

(3) Use the formula(1) to calculate the upper and lower limits: 

 
      𝑈 = 𝑄2 + 𝑅 ⋅ 𝛥, 𝐿 = 𝑄2 − 𝑅 ⋅ 𝛥                      (1) 𝛥 = 𝑄1 − 𝑄2 

 
where 𝑅 is the control limit. When 𝑅 = 1.5, the singular value obtained when the variable 
value exceeds the upper or lower limit is called mild singular value. When 𝑅 = 3, the singular 
value obtained is called extreme singular value. 



 

(4) Delete the extreme singular value samples of the variable; 

(5) Calculate the next selected variable and repeat the first step until all variables are verified. 
The box plot of feature variables is shown in Figure 2: 
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Figure 2 Box Plot 

 

2.1.3Selection of Main Feature Variables 

From the sample data, there are up to 26 variables of fan blades. If all variables are used for the 
model training, it will not only increase the calculation of data, but also will be difficult to 
accurately find the characteristic source of fan icing. If the features easy to classify can be 
extracted from the sample data, the fan with the icing fault can be detected effectively and 
accurately. This paper uses RFECV for feature selection. RFECV consists of the recursive 
feature elimination (RFE) and the cross-validation (CV). Firstly, RFE is used to sort the feature 
variables according to the given weight. The feature variables with low weight are excluded to 
select the important feature vectors, and then CV is used to optimize and select the best feature 
combination. 

Phase I -- RFE phase 

There are 26 feature variables in the initial data set. The current feature set is modeled and the 
importance of each feature variable is calculated. The least important feature variables will be 
deleted, and then the feature set is updated. The importance of the new feature collection is 
calculated until the importance rating of all feature variables is completed. 

Phase II -- CV phase 

According to the feature importance calculated in the RFE phase, different numbers of features 
are selected in turn. Then the selected feature set is cross-validated to finally determine the 
number of features with the highest average score, thus completing the feature selection. The 
output results are shown in Figure 3. 



 

 
Figure 3 Feature Selection 

 
As can be seen from Figure 3, the score drops dramatically in the wake of the third variable, 
which can ensure greater accuracy when selecting the top three variables. Therefore, the top 
three feature variables are selected to reduce the prediction cost. 

2.2Fault Prediction Model of Industrial Equipment Based on BPNN 

The BP neural network is a multilayer feedforward neural network trained according to the error 
back-propagation algorithm. Signals are input by the input layer, and then the signal is output 
by the output layer after being calculated by one or more hidden layers. The output values are 
compared with the expected value. If the two do not match (i. e., there is an error), the error is 
back propagated from the output layer to the input layer (error back-propagation). In the process 
of error back-propagation, the gradient descent algorithm is used to adjust the neuron weight. 
After a lot of repeated learning and training, the weight and threshold corresponding to the 
minimum error are finally determined, and the training stops. 

The BP neural network has strong nonlinear mapping ability, which is conducive to solving the 
problem of complex internal mechanism of fan icing. BP neural network has high self-learning 
and self-adaptive ability and strong generalization ability, which can effectively determine 
whether the fan has fault and classify it correctly. BP neural network has certain fault tolerance 
ability. After its local neurons are damaged, it has little impact on the global training results, 
that is, it can stably judge the fan fault. If BP network has enough hidden nodes and hidden 
layers, it can approach all nonlinear mapping relations and fully reflect its generalization ability. 
See Figure 4 for details: 
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Figure 4 Structure of BP Artificial neural network 

 
Let the input and output values of the BP artificial neural network be(𝑝ଵ, 𝑝ଶ, … 𝑝௠)  and (𝑎ଵ, 𝑎ଶ, … , 𝑎௠) respectively. Then, the threshold is 𝜃௜, and the connection weights between the 
nodes of the input domain and the output domain are 𝑊 and 𝑇 respectively. 

Let the target value of the BP artificial neural network be 𝑡௜. Then the output value of the hidden 
layer of the BP artificial neural network is(shown in formula(2)): 

 𝑦௝ = 𝑓൫∑ ൫𝑤௜௝𝑝௜ − 𝜃௝൯௜ ൯ = 𝑓(𝑛𝑒𝑡௜)               (2) 

 
The output value of the output layer is(shown in formula(3)): 

 𝐴௠ = 𝑓൫∑ ൫𝑇௜𝑦௝ − 𝜃௝൯௜ ൯ = 𝑓(𝑛𝑒𝑡௜)            (3) 

 
The error of the output layer is(shown in formula(4)): 
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3 EXPERIMENT AND RESULT ANALYSIS 

3.1Data Preprocessing and Feature Extraction 

The data used in this paper is about 370,000. According to the selection method of feature 
variables, the first three variables are finally used as the main variables to study the data -- “wind 



 

speed”, “generator rotation speed” and “active power”. The missing values, singular values and 
invalid values in the original data are processed, and the missing values are supplemented by 
the average value of the current dimension. The singular value is deleted by the box plot method, 
and a total of 1,103 data and invalid values are deleted. The data characteristics of the fan when 
it is not frozen or frozen are shown in Figures 5 and 6. It can be seen that there are obvious 
differences between the normal state and the frozen state. The experiment uses a notebook 
computer equipped with Intel i5-7300HQ CPU 2.5GHz with an 8G memory. 

 

 
Figure 5 Scatter Diagram of Fan Blade Unfrozen Wind Speed -- Generator Speed 

 

 
Figure 6 Scatter Diagram of Fan Blade Icing Wind Speed -- Generator Speed 

 

3.2Model Training and Evaluation of BPNN 

The BPNN has the abilities of nonlinear mapping, self-learning, self-adaptation, generalization 
and fault tolerance. Therefore, this algorithm is selected to classify the data here. 

3.2.1Model training 

a) Data preprocessing: the mapminmax function is used to standardize input data and output 
data based on Matlab to eliminate dimensional influence. 
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b) The BPNN neural network model is established. The transfer function is set to ‘tansig’; the 
training function of BPNN network is set to ‘trainlm’; the BPNN learning algorithm is set to 
‘learngdm’; the network performance function is set to ‘mse’; the number of iterations is set to 
1,000; the learning rate is set to 0.01; the minimum error of training goal is set to 10-7. 

c) The training set is input into the model for training, and the BPNN prediction model of fan 
blade icing is obtained. 

The testing set is input into the model for prediction. After prediction, it is compared with the 
real value to obtain the confusion matrix. 

3.2.2Model Evaluation 

After the training of the BPNN model is completed, it is necessary to evaluate the model with 
some index as the standard. The results can be divided into: 

1) TP (correctly identify the blade as normal). 

2)  FP (misjudge the blade in non-icing state as icing state). 

3) TN (misjudge the blade in icing state as non-icing state). 

4) FN (correctly identify the blade as icing). 

The total number of program recognition errors is recorded as N(formula(5)): 

 
 𝑁 = 𝑇𝑁 + 𝐹𝑃        (5) 

 
The total number of correct program identification is recorded as P(formula(6)): 

 
  𝑃 = 𝑇𝑃 + 𝐹𝑁                         (6) 

 
The proportion of the quantity correctly identified as “icing” to the actual total number of “icing” 
is recorded as precision(formula(7)): 

 
   𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝐹𝑁/(𝑇𝑁 + 𝐹𝑁)                (7) 

 
The proportion of the quantity correctly identified in the test set to the total quantity is recorded 
as A (accuracy) (formula(8)): 

 
 𝐴 = ௉ேା௉                     (8) 

 

3.3 Experimental results and analysis 

3.3.1MFE-BPNN Experimental Results and Analysis of MFE-BPNN Method 

After data preprocessing, the original sample set is obtained. There are 349,064 groups of 
unfrozen data, accounting for 93.38% of the total data, 24,729 groups of frozen data, accounting 



 

for 6.62% of the total data. The unfrozen sample size is 14.1156 times of the frozen sample size. 
The data are selected randomly to establish the original training set and the testing set. The ratio 
of the original training set to the testing set is 7:3; the number of hidden layers is set to 3; and 
the number of nodes in each layer is 8, 5 and 5 respectively. During the experiment, it is found 
that the proportion difference between the frozen and non-frozen data in the original training set 
is large, resulting in low prediction precision. Therefore, the proportion of non-icing: icing in 
the original training set is further adjusted to improve the model accuracy. Taking the icing data 
as the standard, the non-icing is sampled randomly: a training set is established according to the 
ratio of 1:1 of the icing data, so as to establish a balanced training set. In order to eliminate the 
error caused by different data, the training set and the testing set data used by each algorithm in 
the following paper are the same set of data. Table 2 shows the experimental results of BPNN 
prediction model. 

TABLE 2 EXPERIMENTAL RESULTS OF MFE-BPNN PREDICTION METHOD 

Sample set Original training set Balanced training set 
Variable 
category 

All feature 
variables 

Main feature 
variables 

All feature 
variables 

Main feature 
variables 

    N 472 5461 5520 12497 
    P 111997 107008 106949 99972 

   Precision 95.33% 42.20% 57.03% 75.51% 
    A 99.58% 95.15% 95.09% 88.89% 

    T(s) 90.4 54.6 12.72 4.7 
 
It can be seen from Table 2 that even if only three main feature variables are extracted and tested 
after the model is trained by the BPNN network, there is little difference between the accuracy 
of correctly identifying the blade state and the prediction precision of the model trained by all 
26 variables. For example, after the original training set and all feature variables are used to 
train the model, the prediction precision of the overall test data set is 99.58%, and the prediction 
precision of extracting three main feature variables is 95.15%. Using the balanced training set, 
it also reached 95.09% and 88.89% respectively. However, when the prediction precision is 
calculated only for the icing fault data, the result is low. For example, after the main feature 
variables are extracted from the original training set to train the model, the prediction precision 
of the calculated icing fault data is only 42.20% and 75.51% in the balanced training set, which 
is much lower than the accuracy of the total prediction testing set. In addition, it can be found 
that the prediction time T after the extraction of main feature variables is much lower than that 
using all feature vectors, from 90.5 seconds to 54.6 seconds, and from 12.72 seconds to 4.7 
seconds. 

3.3.2Experimental Results and Analysis of Decision Tree 

Decision tree is a common machine learning classification algorithm. The initial decision tree 
is firstly established in the process, then is pruned, to draw the tree diagram and verify the model 
by test set. After the main feature variables are extracted from the original training set, an initial 
decision tree is established. The tree diagram drawn after pruning is shown in Figure 7. No 
branches are cut off, and all branches pass the test. 



 

 
Figure 7 Tree Diagram After Pruning 

 
According to this process, experiments are carried out for different training sets and different 
feature variables, and the results are shown in Table 3. 

TABLE 3 EXPERIMENTAL RESULTS OF DECISION TREE PREDICTION MODEL 

Sample set Original training set Balanced training set 
Variable category All feature 

variables 
Main feature 

variables 
All feature 
variables 

Main feature 
variables 

    N 59 5501 841 12124 
    P 112410 106968 11628 100345 

   Precision 99.54% 41.73% 99.57% 74.80% 
    A 99.95% 95.11% 99.25% 89.22% 

    T(s) 45 5.5 3 0.6 
 
It can be seen that when the original training set of three main feature variables is extracted, the 
prediction precision of decision tree model for icing fault data is 41.73%, and the prediction 
precision of overall data is 95.11%. In the case of balanced training set, the prediction precision 
of decision tree model for the fault data is 74.80%, and the prediction precision of overall data 
is 89.22%, which is better than the model trained based on the original training set. 

When all 26 feature variables are adopted, the prediction precision of the decision tree model 
for the fault data and overall data under the original training set and the balanced training set is 



 

almost the same. For example, the prediction precision of the model trained under the original 
training is 99.55% for the fault data and 99.95% for overall data, while the prediction precision 
of the fault data and overall data under the balanced training set is 99.57% and 99.25% 
respectively. 

3.3.3Results and Analysis of Logistic Regression Experiment  

Logistic regression is an algorithm that applies the idea of regression to classification problems. 
Firstly, the logistic regression model is established; then the logistic regression model is 
modified; and finally, the testing set is used for prediction. In the experiment, the significance 
test of setting parameters under the extraction of three main feature variables is p = 0.05, and 
the significance test of setting parameters under the selection of all feature variables is p = 0.001. 
The logistic regression model is established under the original training set. The output results of 
all 26 feature variables in R language are shown in Figure 8: 
 

 
Figure 8 Final Model Summary 



 

The variables are screened according to the summary results, and the variables are eliminated 
according to the standard of p = 0.001. The modified logistic regression model eliminates 
“yaw_speed”, “pitch1_speed”, “pitch2_speed”, “pitch3_speed”, “pitch3_ng5_tmp”, 
“pitch3_ng5_dc”, indicating that the yaw speed, the blade speed, the temperature of ng5 3 and 
the DC of chargers have little influence on the fault. Therefore, such variables are eliminated. 

Similarly, based on this process, experiments are carried out for different training sets and 
different feature variables, and the results are shown in Table 4. 

TABLE 4 EXPERIMENTAL RESULTS OF LOGISTIC REGRESSION PREDICTION MODEL 

Sample set Original training set Balanced training set 
Variable 
category 

All feature 
variables 

Main feature 
variables 

All feature 
variables 

Main feature 
variables 

    N 15607 6237 15625 19452 
    P 96862 106232 96844 93017 

Precision 84.89% 29.27% 84.75% 77.77% 
    A 86.12% 94.45% 86.12% 82.70% 

T(s) 5 2 1 0.3 
 
As can be seen from Table 4, based on the original training set and the logistic regression 
prediction model of all 26 feature variables, the prediction precision of the fault data is 
84.89199%, and the prediction precision of overall data is 86.12%. After selecting three main 
feature variables, the prediction precision of the trained prediction model for overall data is 
94.45%, but the prediction precision of the fault data is only 29.27%. Under the balanced 
training set, whether based on all feature variables or the prediction model with main feature 
variables selected, the prediction precision of the fault data and overall data is almost the same; 
the prediction precision of the fault data is slightly less than that of overall data; the prediction 
time of extracting main feature variables is slightly less than that of all feature variables. 

3.3.4Comparative Analysis of Prediction Results of Three Methods 

Comparing the experimental results of the MFE-BPNN prediction model, the decision tree 
prediction model and the logistic regression in Table 2, 3 and 4, it can be found that the 
prediction time is greatly shortened after extracting feature variables, and that the prediction 
effect of the MFE-BPNN prediction method is better. For example, under the original training 
set, the prediction precisions for the fault data and overall data are 42.20% and 95.15% 
respectively in the MFE-BPNN prediction method, 41.73% and 95.11% respectively in the 
decision tree prediction model, 29.27% and 94.45% respectively in the logistic regression 
prediction model. Similarly, under the balanced training set, the prediction precisions for the 
fault data and overall data are 75.51% and 88.89% respectively in MFE-BPNN prediction 
method, 74.80% and 89.22% respectively in the decision tree prediction model, and 77.77% and 
82.70% respectively in the logistic regression prediction model. 

The fastest training speed is the logistic regression prediction model under the extraction of 
main feature variables from the balanced training set, which takes only 0.3 seconds. The 
prediction time after the extraction of main feature variables by the three algorithms is much 
lower than that of all feature variables. The MFE-BPNN, decision tree and logistic regression 



 

all retain the three variables of wind speed, generator power and power. It can be seen that these 
three variables are closely related to the occurrence of fault. 

4 CONCLUSION 

This paper presents a fault prediction and classification method of industrial equipment based 
on the selection of main feature variables and the back propagation neural network (BPNN). 
The method proposed in this paper improves the prediction precision and shortens the prediction 
time through data preprocessing, extraction of main feature variables and prediction model 
based on the neural network. The method has the characteristics of operability, intelligibility 
and comparability. The effectiveness of the model is proved by the comparison with the decision 
tree and the logistic regression classification algorithm. This prediction method, which can 
simulate multiple variables without inputting complex variables, provides a way to solve the 
problem of industrial equipment failures and reduce loss. 
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