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Abstract—The CFSv2 forecast products have been widely used in climate prediction 
operation all over the world. Although the real-time forecast is able to basically capture 
large pattern of climate anomaly, there still exists obvious bias, which may have enormous 
impacts on predicted result and thus cannot be neglected. Presently, how to smartly use the 
massive modeling outputs to improve forecast skill is very important for objective 
prediction. In this paper, a statistical downscaling strategy for correcting systematic bias 
through recovering modeling-climatology to its observational counterpart is introduced, 
and with such methodology, an operational platform conducting real-time 1-30d and 
10-30d temperature and precipitation objective prediction is constructed for Zhejiang 
province. Various verification schemes of the Ps score, Pc score, ACC, SCC, RMSE, the 
absolute bias, relative bias, and sign coherence are applied on long-term temperature and 
rainfall assessment. Given the behavior of 335 independent forecast ensembles from 
January 1st to November 30th in 2019, predictive ability of the downscaling model is 
generally satisfying. The performance of the Ps score, Pc score, and ACC are similar, and 
the skillful ensembles are much more than the skillless ones, especially for the Ps score and 
ACC. Comparatively, SCC can achieve even higher values. RMSE of the 10-30d 
temperature and precipitation as well as 1-30d rainfall prediction exhibits distinct 
seasonality. Result of the 1-30d forecast is moderately superior to that of the 10-30d range. 
While the capability of 1-30d temperature prediction is close to current operational level, 
the result of monthly-scale precipitation prediction is statistically better than subjective 
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forecast. In general, forecast presentation demonstrates this system is practically useful 
and valuable. 

Keywords—CFSv2; systemic bias correction; extended-range; monthly scale; verification; 
operation platform 

1 INTRODUCTION 

With the fast development of economy and society, industrial and living need for climate 
prediction gradually increased in the past several decades. Although precise weather forecast 
within a week has been available, people still want to know the general climate trend for the 
future days, which is of great importance for scientifically preparing natural disasters defense 
and properly arranging substantial activities in advance. Besides, long-term climate prediction 
is valuable for agricultural production and business analysis. 

In China, climate prediction, whose prescription is usually shorter than two seasons, is also 
referred to as “short-term climate prediction”[1]. Currently, the operational framework covers a 
broad range of time scales, i. e. from extended-range forecast to seasonal prediction. The main 
predictive technologies contain mathematical-physical statistics[2-4], numerical simulation[5-9], 
statistical-dynamical downscaling[10-14], machine learning and deep learning[15-17]... and so on. 
As global and regional climate models evolve rapidly, nowadays modeling result is able to 
reasonably predict large-scale anomalies[18], and objective prediction, instead of subjective 
decision, gradually becomes the primary strategy for modern multi-scale climate forecast, 
which will be further reinforced in the future[19]. 

In 2004, National Center for Environmental Prediction (NCEP) released the Climate Forecast 
System (CFS), which could be looked upon as an extension of common numerical weather 
prediction[20], and in 2011, the improved adaptation (version 2) of CFS (hereafter CFSv2) 
became operational[21]. Compared to the original version, CFSv2 upgraded nearly all aspects of 
the data assimilation and forecast model components[22]. The current version contains an 
atmospheric model with horizontal resolution of T126 and 64 vertical layers, a classical oceanic 
model (MOM3), a modified four-level soil model and an interactive three-layer sea ice model. 
Comprehensive evaluations have shown that CFSv2 exhibits beneficial skills in hindcasting 
temperature and precipitation in East Asia and China at extended-range and seasonal 
time-scale[23-27], and such skills can be further enhanced after useful statistical downscaling[23, 

28-31]. Now, CFSv2 forecast results have been widely used in operational climate prediction in 
China[32-36]; however, it has also been demonstrated that there exist distinct systemic biases, 
which will significantly influence modeling output in the Indo-Pacific region[37], how to deal 
with these errors remains a thorny problem in operational climate prediction. 

Currently, most climate prediction products are commonly issued every 10 days, and this slow 
frequency cannot fulfill the total need of government and society, especially for some sudden 
and urgent cases. Enormous public numerical predictions make climate trend outlook with 
high-frequency update possible[18]. Considering direct forecast from models usually appears 
apparent bias, it is necessary to conduct systemic bias correction to generate reasonable 
predictive result. 



Zhejiang province, localized in Southeast China, is a small region with the area of only 105, 
500km2, but frequently attacked by various natural disasters such as Meiyu and typhoon. 
Generally speaking, provincial climate variability is complex and consequently the prediction 
skill is limited. In this paper, technical route for high-frequency update (daily-updating) 
objective prediction is investigated in Zhejiang province based on the CFSv2 products, and 
meanwhile, to demonstrate whether the scheme is effective, a careful evaluation for the 
modified forecast is also provided. 

The paper is organized as follows. A brief description of the data and technical methods for 
forecast and verification are provided in section 2. Section 3 describes main performance of our 
downscaling model and central pages of the on-line operational platform. Concluding remarks 
and further discussion are given in section 4. 

2 DATA AND METHODS 

2.1 Data 

Stational observation: In this research, observational data used are monthly 2-m temperature 
(hereafter temperature for short) and precipitation at 90 meteorological stations (Banshan, 
Hangzhou, Hanggao, Sanliting, Sandun, Bin’jiang, Xiaoshan, Qiaosi, Fuyang, Lin’an, Tonglu, 
Chun’an, Jiande, Donghu, Keqiao, Shangyu, Zhuji, Xinchang, Shengzhou, Gongchengxueyuan, 
Ertonggongyuan, Beilun, Zhenhai, Yinzhou, Cicheng, Cixi, Yuyao, Fenghua, Shipu, Ninghai, 
Jiaxing, Xiuzhouqu, Jiashan, Haining, Tongxiang, Haiyan, Pinghu, Quzhouxueyuan, Quzhou, 
Kaihua, Longyou, Changshan, Jiangshan, Dachendao, Huangyan, Taizhou, Tiantai, Sanmen, 
Xianju, Linhai, Wenling, Yuhuan, Jinhua, Jinyizhong, Pujiang, Lanxi, Yiwu, Dongyang, Pan’an, 
Wuyi, Yongkang, Huzhou, Nanxun, Changxing, Anji, Deqing, Dinghai, Putuo, Shengsi, 
Daishan, Lishui, Suichang, Longquan, Jinyun, Qingtian, Yunhe, Qingyun, Songyang, Jingning, 
Wenzhou, Yongqiang, Louqiao, Yueqing, Yongjia, Taishun, Wencheng, Pingyang, Ruian, 
Dongtou, and Cangnan) from 1982-2020. All these stations are regional representative stations 
at county-level, whose observational quality are relatively reliable[38]. 

Modeling output: For CFSv2, there are four control runs per day from the 0000, 0600, 1200, 
and 1800 UTC cycles of the real-time data assimilation system, out to 9 months (red lines in Fig. 
1). In addition to the control runs, there are three additional perturbed runs at 0000 UTC, out to 
one season (blue lines in Fig. 1), and at the 0600, 1200, and 1800 UTC cycles, there are also 
three additional perturbed runs, out to 45 days (green lines in Fig. 1). Hence, there are totally 16 
CFSv2 runs every day, of which four runs go out to 9 months, three runs go out to 1 season, and 
nine runs go out to 45 days[21]. Currently, only the climatology of the specific runs with forecast 
period of 45 days is available, and the climatological field is essential for subsequent 
downscaling, so in daily output, just nine members with 45 days forecast-range are adopted for 
further treatment. 



 
Fig. 1 Operational configuration of the CFSv2 (from Saha et al., 2014). 

2.2 Forecast strategy 

Traditional climate trend prediction (CTP) usually refers to monthly and seasonal time-scale 
forecast[39], however, with the rapid growth of governmental and public need, CTP for the 
extended-range becomes more and more important[40]. Considering the limited predictable scale 
of the selected CFSv2 forecast members, two time-span of the monthly scale (1-30 day, 
hereafter 1-30d) and extended-range scale (10-30 day, hereafter 10-30d) are chosen as the target 
forecast period. Next, we will introduce the detailed process of 10-30d forecast, and the 
procedure of 1-30d forecast is similar. 

Basic logic: To develop a prediction scheme based on the CFSv2 result, modeling forecast 
ability should be understood first. Two examination indices, i. e. Spatial Correlation 
Coefficient (SCC, the detailed definition will be introduced in section 2.3.1) and Root Mean 
Squared Error (RMSE, the detailed definition will be given in section 2.3.1), are chosen to 
statistically reflect accumulated effect of stational biases for the reforecast of CFSv2 (Fig. 2). 

 
Fig. 2 Comparison of mean daily SCC (a, c) and SRMSE (b, d) for temperature (a, b) and precipitation (c, 
d) over Zhejiang province for the long-term 1-30d reforecast during 1991-2009 by CFSv2 before and after 

model-bias correction; unit of (b) and (d) is ℃ and mm respectively. 
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Generally speaking, the capability of CFSv2 on hindcasting temperature and precipitation is 
limited. For temperature, initial SCC in the short-term forecast range (STR, 1-10d) is smaller 
than 0.4, and slowly decreases in the extended-range (ER, 11-30d) (Fig. 2a, black line). 
Moreover, RMSE is larger than 2.0 ℃ even at the early stage, and gradually rises in the 
following days (Fig. 2b, black line), which demonstrates the existence of stable systematic bias 
between model-prediction and observation. For precipitation, the situation is similar, but the 
bias grows more rapidly for both SCC and RMSE (Fig. 2c and 2d, black lines). Considering the 
distinct systematic bias is clear, it can be speculated that general performance of CFSv2 may 
improve after correcting modeling bias, and thus we recover modeling climatology to the 
observed 30-year mean (1981-2010) climatology in order to reduce forecast bias (the detailed 
methodology will be introduced in the following part). 

Forecast skill of CFSv2 is significantly ameliorated especially for temperature after amending 
climatology. SCC of temperature uplifts to larger than 0.6 (Fig. 2a, red line), and RMSE is 
declined by about 1 ℃ (Fig. 2b, red line). For rainfall, although the improvement of RMSE is 
unapparent (Fig. 2d, red line), SCC is evidently enhanced at the ER (Fig. 2c, red line). Overall, 
climatology-recovery strategy is effective in correcting model-bias for the hindcast result, and 
subsequently we will apply this solution on rectifying real-time forecast bias of CFSv2. 

Suppose A  is certain meteorological variable (temperature / precipitation), and then we have 

 

O OC OA A A′= +                             (1) 

 

And 

 

M MC MA A A′= +                             (2) 

 

here OA  and MA  represent observational A  and originally forecasted A  by CFSv2 
respectively, while OCA  and MCA  stand for climatological A  for observation and CFSv2 
prediction, and OA′  and MA′  are observational and forecasted anomaly of A . Compared to 
the actual value of A , the bias of prediction for A′  is much smaller, so we approximately 
have 

 

O MA A′ ′≈                               (3) 

 

Thus, (1) can be written as 

 



( ) ( )O OC O OC M MC M OC MCA A A A A A A A A′= + ≈ + − = + −            (4) 

 

In this meaning, the modified predicted A  can be gotten by correcting modeling climatology. 
Due to the initial forecast of CFSv2 ( MA ) can be gained timely, formation of observational and 
forecasted climatology is necessary for completing the forecast workflow. 

Generation of observational climatology: In normal observation, temperature and 
precipitation at each station are observed four times (0200, 0800, 1400, and 2000 BJT) per day 
according to the requirement of China Meteorological Administration (CMA). Therefore, daily 
temperature / precipitation can be acquired by averaging / summing up four observed values in 
one day. It should be noted that there exists a lag of 8 hours between UTC and BJT, so a 
conversion from UTC to BJT is needed. Subsequently, for any day in a year, the 
climatological daily temperature / precipitation can be calculated as the mean value for the 
specific day in 30 years from 1981 to 2010. As for the special case of the leap year, which 
naturally occurs every four years, the climatology of February 29th is obtained by averaging 
values of all leap years in the total 30 years, i. e. 1984, 1988, 1992, 1996, 2000, 2004, and 
2008. Furthermore, for certain day in a year, the climatological temperature / precipitation for 
the future 10-30d is available by averaging / adding the climatology of each day for the 
corresponding time-span, i. e. from the 10th day to the 30th day. In Zhejiang province, some 
automatic stations are lack of long-term observation, and their climatological values can be 
replaced by that of the nearest normal stations. Also, the observational series of some stations 
are not complete, and the sparse missing-values can be filled up using reasonable spatial 
interpolation[41]. 

Extraction of forecasted climatology: For CFSv2, each member at different time in every 
day has a separate climatology[21]. That is to say, in a specific day, forecast at 0600, 1200, and 
1800 UTC have divergent climatology, and hence there are totally 1098 (3×366) climatology 
corresponding to all the forecast members. Similarly, for any ensemble, in the 45d time-span, 
daily forecasted climatology for per member can be formatted, and thus climatology for the 
10-30d range (mean value / sum of the 10-30d climatological temperature / precipitation series) 
can be easily calculated. 

Formation of operational forecast: Considering each ensemble has its own climatology in 
the CFSv2 forecast framework, to form a uniform forecast result, we just take the predicted 
anomaly as the mean value of various anomaly forecasted by nine members with 45d forecast 
length. In this meaning, forecasted anomaly is actually “average anomaly”, and (4) can be 
modified as 
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2.3 Verification scheme 

Spatial evaluation: To assess the result of forecasted spatial distribution, five testing solutions 
are provided, i. e. the Ps score, the Pc score, Anomaly Correlation Coefficient (ACC), SCC, 
and RMSE. The detailed algorithms will be introduced as follows. 

The Ps score: The Ps score, formulated by CMA, is the current operational grading criterion in 
China, which can be calculated as 
 

0 2 1 2 2 4 100
( 0) 0 2 1 2 2 4

N N NPs
N N N N N M

× + × + ×= ×
− + × + × + × +

           (6) 

 
where 0N  represents the number of forecast stations with the same sign as that of the 
observational result, while 1N  and 2N  stand for the number of forecast stations 
successfully capture the first-grade ( 2.0 1.0T ′− < ≤ −  or 1.0 2.0T ′≤ < ; 50 20R′− < ≤ −  
or 20 50R′≤ < ; T ′  and R′  denote temperature anomaly (TA) and the ratio of precipitation 
anomaly (RPA) respectively) and second-grade ( 2.0T ′ ≤ −  or 2.0T ′ ≥ ; 50R′ ≤ −  or 

50R′ ≥ ) anomalies respectively, and M  reflects the number of missing stations (the 
forecasted temperature / rainfall grade lower than the second grads but in fact 3T ′ ≥ ℃ or 

3T ′ ≤ − ℃, or 100%R′ ≥  or 100%R′ = − ). 

The Pc score: The Pc score once prompted by CMA as a traditional examining method before 
the Ps score[42], whose calculation is relatively laconic and can be described as follows: 

 
0 100NPc
N

= ×                            (7) 

 
The meaning of 0N  is the same as that in (6), and N  represents the number of total stations 
used for scoring. 



ACC: ACC is a widely used verifying scheme recommended by World Meteorological 
Organization (WMO)[43], and the definition is as follows: 
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where Δ fiX  and Δ oiX  stand for predicted and observational stational TA / the ratio of 

rainfall anomaly, while Δ fiX  and Δ oiX  represent the corresponding climatological values 

during 1981-2010. The signification of N  is the same as that in (7). In reality, Δ 0fiX =  and 

Δ 0oiX = , so (8) can be further simplified to 
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SCC: SCC is similar to classical correlation coefficient, but the meteorological element 
(temperature / precipitation) varies in the spatial field rather than time series[44], which is 
capable to reflect the similarity between the forecasted and observational field. Specifically, the 
formula is as follows: 
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Similarly, here fiX  and oiX  denote predicted and observational stational temperature / 

precipitation (or their anomalies), and fiX  and oiX  are the corresponding spatial-mean 

values. The meaning of N  is the same as that in (7). 

RMSE: RMSE is one of the most mature algorithms measuring the forecast bias, and can be 
calculated as follows: 
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                         (11) 

 

Here iF  and iO  refer to forecasted and observational stational temperature / precipitation 
respectively, and N  also has the same meaning as that in (7). 

Stational examination: For single station, three examining methods are provided, i. e. the 
absolute bias (AB), relative bias (RB), and sign coherence (SC). AB can be represented as the 
difference between prediction and observation ( f oX X− ), and RB can be easily obtained by 

dividing the observational value into AB ( f o

o

X X
X
−

). SC has two reverse results, i. e. both 

forecasted and observational values share the same signs or the opposite signs. 

3 RESULTS 

3.1 Fundamental construction of the operational system 

Generally speaking, the daily-updating objective climate prediction system consists of two parts, 
the forecast module and the verification section. In the former part, current prediction of 
temperature and precipitation tendency for the future 1-30d and 10-30d and corresponding 
observational result (when observation can be gotten) are provided, and thus the predicted and 
observational temperature, TA, rainfall, and the ratio of rainfall anomaly are exhibited. With the 
real-time date moves, the forecast changes accordingly. The start date is adjustable so as to 
make the historical prediction information search convenient. 

In the later part, AB, RB, and SC for single station and statistical assessment including the Ps 
score, the Pc score, ACC, SCC, and RMSE for forecast field are furnished for both 1-30d and 
10-30d cases. Also, the start date can be changed freely according to forecasters’ requirement. It 
should be noted that all the calculation results including forecast and evaluation can be exported 
backstage to the Excel documents. 

3.2 General interface of the on-line platform 

The prediction interface: In order to roundly display the objective prediction and improve 
sensory taste, all the forecasted results are presented in two forms: spatial-distribution figure 
and exhaustive table. The plot mainly displays predicted and observational temperature, TA, 
precipitation, and RPA anomaly (Fig. 3). All these results can be shown at province-level 
(Zhejiang province) and city-level (11 cities in Zhejiang province, i. e. Huzhou, Jiaxing, 
Hangzhou, Shaoxing, Ningbo, Zhoushan, Quzhou, Jinhua, Taizhou, Lishui, Wenzhou, not 
shown). Also detailed forecast for each station and corresponding observation are presented in 
a blow-by-blow table (not shown). 

The verification interface: Similar to the exhibition manner of forecast products, the 



verification interface also contains both figures and tables. Figures are mainly used to present 
spatial distribution of stational AB, RB, and SC, and for SC, red and blue dots stand for the 
same and opposite signs respectively (Fig. 4). Other statistical results including the Ps score, 
the Pc score, ACC, SCC, and RMSE, combined with stational biases, are merged into an 
integral table to show forecast skill in diverse aspects at province, city, and country levels (not 
shown). 

3.3 Performance of large-ensemble prediction experiment 

To objectively evaluate the performance of CFSv2 real-time downscaling forecast, a 
large-ensemble (335 independent days, from January 1st 2020 to September 30th 2020) 
prediction is carried out. Generally, after correcting systematic bias, downscaling result can give 
basically satisfying forecasts at both 10-30d and 1-30d range, and the detailed skill for TA and 
RPA (hereafter “RPA” for short) is analyzed as below. 

 

 
Fig. 3 The main prediction interface for future 10-30d TA (a), temperature (b), RPA (c), and precipitation 
(d) as well as comparison with observation (e-h) over Zhejiang province (start from November 30th, 2020). 

 
Fig. 4 The main verification interface of spatial distribution of AB (a), RB (b), and SC (c) for future 10-30d 
temperature prediction over Zhejiang province (start from November 30th, 2020); red and blue dots in (c) 

represent predicted TA and actual observation share the same and opposite signs respectively. 

For 10-30d TA at the ER, mean values of the Ps score and Pc score are 76.5 and 71.8 
respectively, and average ACC is 0.2 (Tab. 1). There are 252d (about 75.2%) and 227d (about 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(a) (b) (c) 



67.6%) the Ps and Pc score appearing positive skills (≥60), and more than half period both 
indices suggesting high skills (215d and 190d respectively). Similarly, there are 219d with ACC 
larger than 0.3, which even exceeds 0.5 for more than 200d (208d) (Tab. 2). Time series of the 
Ps score, Pc score, and ACC are broadly consistent, and the high-skill periods primarily occur 
over three periods: April 11th to June 3rd, July 10th to August 21st, and November 1st to 
November 23rd. It should be noted that all the three indices experience several dramatic 
fluctuations, which indicates the forecast skill may not be stable over some specific ranges (Fig. 
5a-c). Unlike above indices, SCC almost keeps positive except on June 24th (Fig. 5d), and the 
averaged value is as large as 0.8 (Tab. 1), signifying the spatial distribution of forecasted 10-30d 
TA is well in accordance with observation. Temporal evolution of RMSE presents distinct 
season-dependence with small bias in spring and summer (from April to October) but large bias 
in autumn and winter (from November to March) (Fig. 5e), and the mean value of 1.3 ℃ is 
acceptable in the viewpoint of climate prediction (Tab. 1). 

Compared to TA, forecast skill for RPA at the ER scale (10-30d) is relatively weak in all the 
verification indices, and mean Ps score, Pc score, and ACC are 71.3, 57.2, and 0.1 respectively 
(Tab. 1). Although the number of ensembles with positive skill are still more than that with 
negative skill for the Ps score (245d versus 90d) and ACC (197d versus 138d), in the sight of the 
Pc score, ensembles with positive and negative skill are very close (178d versus 176d). Also, for 
the Ps score and ACC, ensembles with high skill remain abundant (163d and 156d), whereas 
which are insufficient for the Pc score (98d) (Tab. 2). Due to temporal and spatial changeability 
of rainfall, stable high-skill is hard to gain, and comparatively persistent high-skill periods 
mainly distribute over the following spans: March 28th to April 7th, May 29th to July 4th, August 
2nd to August 16th, and October 5th to October 23rd (Fig. 6a-c). Although SCC appears positive 
for most ensembles (262d), there do exist some periods with long-term negative skill (January 
1st to January 16th, August 18th to September 7th, September 28th to October 10th, and November 
17th to November 24th), which causes average SCC is only 0.3 (Tab. 1), far lower than that of 
10-30d TA. It is interesting that when SCC is at low-level, the Ps score, Pc sore, and ACC 
sometimes situate at high-level, which implies that SCC is able to reflect a different aspect of 
forecast-level, in contrast to other indices (Fig. 6d). Similar to that of TA, RMSE of RPA also 
displays prominent seasonality with large and small bias occurring during May-August and 
September-April respectively, suggesting the amplitude of forecast bias may be associated with 
climatology (Fig. 6e). 

TAB. 1 MEAN VALUES OF THE PS SCORE, PC SCORE, ACC, SCC, AND RMSE OF SBC FOR THE 10-30D AND 
1-30D PREDICTION FORECASTED FROM JANUARY 1ST, 2020 TO NOVEMBER 30TH, 2020. 

 Ps score Pc score ACC SCC RMSE 

10-30d temperature 76.5 71.8 0.2 0.8 1.3 

10-30d precipitation 71.3 57.2 0.1 0.3 60.1 

1-30d temperature 81.6 76.4 0.2 0.8 1.1 

1-30d precipitation 78.1 64.4 0.2 0.4 68.6 



TAB. 2 DETAILED VERIFICATION OF THE NUMBER OF DAYS WITH DIFFERENT SKILLS CORRESPONDING TO THE 
FOUR INDICES OF THE PS SCORE, PC SCORE, ACC, AND SCC FOR THE 10-30D AND 1-30D PREDICTION 

FORECASTED FROM JANUARY 1ST, 2020 TO NOVEMBER 30TH, 2020 RESPECTIVELY (UNIT: D). 

verification indices 10-30d 
temperature 

10-30d 
precipitation 

1-30d 
temperature 

1-30d 
precipitation 

Ps score 

positive skill (>=60) 252 245 263 279 

high skill (>=80) 215 163 232 206 

excellent skill (>=90) 156 93 198 150 

negative skill (<60) 83 90 72 66 

Pc score 

positive skill (>=60) 227 178 241 205 

high skill (>=80) 190 98 215 135 

excellent skill (>=90) 175 50 195 82 

negative skill (<60) 108 166 94 130 

ACC 

positive skill (>0) 237 197 250 239 

high skill (>=0.3) 219 156 238 209 

excellent skill (>=0.5) 208 133 229 178 

negative skill (<=0) 98 138 85 96 

SCC 

positive skill (>0) 334 262 335 285 

high skill (>=0.3) 323 182 333 223 

excellent skill (>=0.5) 318 108 322 142 

negative skill (<=0) 1 73 0 50 



 
Fig. 5 Time series of the Ps score (a), Pc score (b), ACC (c), SCC (d), and RMSE (e) for the 10-30d 

temperature prediction by SBC forecasted from January 1st, 2020 to November 30th, 2020; the red and blue 
dashed lines in (a) and (b) indicate the score of 80 and 50, and in (c) and (d) stand for correlation 

coefficient of 0.3 and 0.0, respectively; unit of (e) is ℃. 

(a) 

(b) 

(c) 

(d) 

(e) 



 
Fig. 6 Time series of the Ps score (a), Pc score (b), ACC (c), SCC (d), and RMSE (e) for the 10-30d 

precipitation prediction by SBC forecasted from January 1st, 2020 to November 30th, 2020; the red and 
blue dashed lines in (a) and (b) indicate the score of 80 and 50, and in (c) and (d) stand for correlation 
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Fig. 7 Time series of the Ps score (a), Pc score (b), ACC (c), SCC (d), and RMSE (e) for the 1-30d 

temperature prediction by SBC forecasted from January 1st, 2020 to November 30th, 2020; the red and blue 
dashed lines in (a) and (b) indicate the score of 80 and 50, and in (c) and (d) stand for correlation 

coefficient of 0.3 and 0.0, respectively; unit of (e) is ℃. 
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Fig. 8 Time series of the Ps score (a), Pc score (b), ACC (c), SCC (d), and RMSE (e) for the 1-30d 

precipitation prediction by SBC forecasted from January 1st, 2020 to November 30th, 2020; the red and 
blue dashed lines in (a) and (b) indicate the score of 80 and 50, and in (c) and (d) stand for correlation 

coefficient of 0.3 and 0.0, respectively; unit of (e) is mm. 
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Generally speaking, the forecast ability for the 1-30d range is slightly better than that for the 
10-30d span, which demonstrates the prediction model may have better skill for long period. For 
1-30d TA forecast, mean values of the Ps score, Pc score, and ACC lift to 81.6, 76.4, and 0.2 
respectively (Tab. 1), and the Ps score is statistically close to that of subjective forecast; even for 
some special range, objective prediction exhibits obvious higher-skill[45]. Also, the number of 
ensembles with positive skill for the Ps score (263d), Pc score (241d), and ACC (250d) are 
moderately more than that in the 10-30d forecast case, and more importantly, ensembles with 
excellent skill go up noticeably (198d versus 156d for the Ps score; 195d versus 175d for the Pc 
score; 229d versus 208d for ACC). Comparatively speaking, the number of ensembles with 
high-skill is far more than that with negative skill (232d versus 72d for the Ps score; 215d versus 
94d for the Pc score; 238d versus 85d for ACC), which further confirms the operational 
usefulness of this objective result (Tab. 2). Specifically, the ranges with high-skill primarily 
reside over the following spans: January 1st to January 16th, January 23rd to March 11th, April 
11th to June 10th, July 10th to August 21st, and October 16th to November 22nd (Fig. 7a-c). As for 
SCC, all the ensembles show positive skill, and more than 90% ensembles present excellent 
skill (Tab. 2). It should be noted that for the 1-30d TA forecast, seasonality of RMSE is 
markedly decayed. Although the amplitude of RMSE during May-September is slightly weaker 
than that during October-April, the difference is subtle (Fig. 7e). Mean RMSE for 1-30d 
forecast (1.1 ℃) is moderately smaller than that for 10-30d forecast (1.3 ℃), which also 
certifies the superiority of long-term prediction. 

Statistically, general performance for 1-30d precipitation forecast is skillful and the mean Ps 
score, Pc score, and ACC reach 78.1, 64.4, and 0.2 respectively (Tab. 1). Long-term evaluation 
has attested that mean ACC of operational monthly rainfall prediction is smaller than 0.1, so the 
objective result is distinctly superior to subjective prediction[45]. There are more ensembles with 
positive skill for the Ps score (279d), Pc score (205d), and ACC (239d) than that in the 10-30d 
forecast case (245d, 178d, and 197d, respectively). In addition, more than half ensembles appear 
high-skill (206d for the Ps score, 135d for the Pc score, and 209d for ACC), which remarkably 
exceed current operational level (Tab. 2). Similar to the 10-30d rainfall prediction, stationary 
high-skill period is hard to acquire, and temporal distribution of high-skill periods is relatively 
dispersive (January 1st to January 25th, March 29th to April 11th, May 24th to July 8th, July 25th to 
August 18th, September 9th to September 28th, and October 5th to November 6th) (Fig. 8a-c). 
Temporal evolution of SCC can be divided into two stages: from February to July, SCC mainly 
displays positive skill and generally keeps stable, however, from August to January, SCC turns 
to changeable and occurrence of ensembles with negative skill becomes frequent (Fig. 8d). Also, 
daily evolution of RMSE does resemble that in the 10-30d case, characterizing by large and 
small bias occurring during May-September and October-April respectively with a small peak 
in November (Fig. 8e), which may suggest it is hard for climate models to predict extreme 
precipitation[46]. 

4 CONCLUSION AND DISCUSSION 

In this paper, a downscaling strategy correcting systematic bias of climate model and its 
real-time forecast performance in an operational platform are introduced. Various assessment 
schemes of the Ps score, Pc score, ACC, SCC, RMSE, AB, RB, and SC are applied onto 
long-term temperature and precipitation verification for two forecast prescriptions of 1-30d and 



10-30d. Given the behavior of 335 independent forecast ensembles from January 1st to 
November 30th in 2019, prediction ability of the downscaling-model is basically satisfying. 
Result of the 1-30d forecast is moderately superior to that of the 10-30d case. While the 
capability of 1-30d temperature prediction is close to current operational level, the result of 
monthly-scale precipitation prediction is statistically better than subjective forecast. Therefore, 
based on the CFSv2 forecast products, an operational prediction platform is built with the 
downscaling method, whose actual performance demonstrates this system is practically useful 
and valuable. 

Although the climatology-recovery strategy is effective in reducing modeling-bias, systematic 
errors have not been totally removed (e.g. Fig. 2b, d). In order to further improve modeling 
forecast-level, other statistical and physical means such as cumulative distribution function 
transform[47], predictable components extraction[48], and multi-model ensembles integration[49] 
can be brought in and more forecast experiments need to carry out, which will be our future 
work. 
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