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Abstract

In the last few years power wheelchairs have been becoming the only device able to provide autonomy and
independence to people with motor skill impairments. In particular, many power wheelchairs feature robotic
arms for gesture emulation, like the interaction with objects. However, complex robotic arms often require a
joystick to be controlled; this feature make the arm hard to be controlled by impaired users. Paradoxically, if
the user was able to proficiently control such devices, he would not need them. For that reason, this paper
presents a highly autonomous robotic arm, designed in order to minimize the effort necessary for its control.
In order to do that, the arm features an easy to use human - machine interface and is controlled by Computer
Vison algorithm, implementing a Position Based Visual Servoing (PBVS) control. It was realized by extracting
features from the images captured by the camera and fusing them with the distance from the target, obtained
by a proximity sensor. The Parallel Tracking and Mapping (PTAM) algorithm was used to find the 3D position
of the task object in the camera reference system. The visual servoing algorithm was implemented in an
embedded platform, in real time. Each part of the control loop was developed in Robotic Operative System
(ROS) Environment, which allows to implement the previous algorithms as different nodes. Theoretical
analysis, simulations and in system measurements proved the effectiveness of the proposed solution.
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1. Introduction and State of the Art
The number of people affected by different motor skill
impairments is constantly increasing. The most com-
mon diseases are the Spinal Muscular Atrophy (SMA),
Muscular Dystrophy, Multiple Sclerosis and Duchenne
Dystrophy or Cerebral Palsy. In addition to these dis-
eases, there are many other reasons that can cause
mobility impairments, like the injuries derived by a
car/motorbike/work accident.
For those people, the possibility of autonomously mov-
ing is an important improvement in their psycholog-
ical status, because it gives them independence and
remarkable physical and psychological sense of well-
being. For those who are unable to self-propel a manual
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wheelchair, electric-powered wheelchairs are often a
suitable option. Especially in outdoor scenarios, Elec-
tronic Power Wheelchairs (EPWs) are a perfect mean to
improve the mobility experience of people with motor
skill impairments.

The user typically controls the wheelchair by a
joystick. A multitude of alternative control options
such as proximity switches, sip-n-puff, head arrays,
infrared switches and magnetic angle sensors exist for
those unable to use the standard joystick interface.
Nevertheless, controlling a power wheelchair is still a
quite difficult task for people with low vision, visual
field reduction, spasticity, tremors, or cognitive deficits.
For such reason, a large number of solutions have been
studied by researchers since the 1980s in order to give
also these people a higher degree of autonomy, such
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Figure 1. Manusand RaptorRoboticArm

solutions lead to the born of the smart wheelchairs by
using technologies originally thought for mobile robots.

A smart wheelchair typically is a standard power
wheelchair with the addition of a set of sensors and
actuators. A computer unit collects environmental data
and process them in order to find obstacles and hazards.
Authors in [1] show one of the first examples of
autonomous wheelchairs, equipped with sonars and a
vision system to identify landmarks and correct the
trajectory in a hallway.

Recently, more sophisticated systems also implement
robotic arms for gesture emulation, such as interacting
with objects like bottles, glasses, buttons etc. On the
market there are just a few examples of Wheelchair
Mounted Robotic Arm (WMRA) systems, such as:

• The Manus WMRA (Figure 1a), manufactured
by Exact Dynamics. This system, was developed
since the mid of 80s and entered in production at
the beginning of the 90s. It consists in a 6 Degrees
of Freedom (DoFs) arm that can be programmed
in a manner comparable to industrial robotic
manipulators [2].

• The Raptor WMRA (Figure 1b), manufactured
by Applied Resources. This manipulator is much
simpler in respect of Manus WMRA. Indeed,
it has 4 DoFs robotic arm that can be directly
controlled with either a joystick or a 10-button
controller [3]. Typically, the joystick that controls
the manipulator arm is located on the armrest
opposite to the input device that controls the
steering of the power wheelchair.

• Jaco Robotic Arm by Kinova. This arm has
6 DoFs and can be equipped with a gripper
with two or three under-actuated finger. The
structure in carbon fiber allows the robotic
arm to be very lightweight (5.2 Kg). The
producer provided control software allows sixteen
different movements possible, like opening a door,
drinking a beer, etc.

Those robotic arms and systems like the one
presented in [3] require the user to manually control

the arm position and move it to the desired place.
When the manipulator is controlled by a joystick or
a similar control systems, tasks like pressing button
could be very difficult for people with severe motor
skill impairments, since they require high accuracy and
precise gestures.

Authors in [4] follow a very promising Eye-in-Hand
approach designing a WMRA system, using a 7-DoFs
robotic arm with a camera placed in the end-effector.
The robotic arm control system uses an Image Based
Visual Servoing (IBVS) approach described with a
Speeded Up Robust local Features detection (SURF)
algorithm in order to detect the features from the
camera picture. In an IBVS system, the arm is controlled
through the information about the distance of the object
from a desired position in the image plane, without the
necessity of a pose estimation of the target.

Authors in [5], [6] show a robotic arm capable
to recognize and press buttons. In their works two
different approaches have been followed to control the
system:

• An Image Based Visual Servoing (IBVS) approach,
where the controller use the features in the camera
image space to close the feedback loop.

• A Position Based Visual Servoing (PVBS)
approach, where the image feature are used
to perform the pose of the object in the camera
reference frame.

The fact that the human-machine interface (HMI)
requires only one touch to perform the button pressing
task is one of the most interesting feature of those
works. Indeed, it makes the control of the arm very
simple. In order to do that, the video captured by the
camera is processed and showed on the screen; the
user just have to select the button he wants the robotic
arm to press. After that, the manipulator will move
autonomously to the target.

In addition, the use of a Linux based device and
a monocular camera increases the portability of the
system, also leading to a low-cost, light and small
solution. Nevertheless, such simple setup will have
very reduced computational capability due to the
performance of the involved board, which leads to
limited computer vision performance.

This paper presents an extension of those systems,
based on a Position Based Visual Servoing approach.
The system setup is similar to [6], which is based on the
use of Robotic Operative System (ROS) environment.
ROS takes care of the management of multiple
tasks, implemented as standalone nodes, increasing
the computer vision performance and the quality of
the control feedback. In addition, it provides a set
of libraries which help the designer to develop the
different ROS nodes. The software of the system has
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Figure 2. Jaco RoboticArm

Figure 3. The Raspberry Pi Setup, includingCamera Module
andHCSR-04 sensor

Task Arm
Accuracy

ComputerVision
Complexity DoFs

Doorknocking Low Not required 3

Press Button Medium Simple Shape
(Button) at least 5

Turnon/o˙PC Medium Simple Shape
(Button) at least 5

Table 1. Robottask vs complexity

been developed in order to be flexible, portable and
multi-platform. It is written in C/C++ and Python.

The paper is structured as follows: in Section 2 the
robotic arm architecture is described; starting from
that, it will focus on the Human Machine Interface
(Section 3) and on the Computer Vision routines
(Section 4). Accuracy of the object pose estimation
algorithm and paper conclusion are discussed in
Sections 5 and 7.

2. System Description
The utilized hardware consists of:

• A 5 Degrees of Freedom (DOFs) robotic arm as
shown in Figure 5

• A Raspberry Pi 3 Model B

• A Raspberry Camera Module V1.3

• A Linux Laptop

Figure 4. ROS based softwarestack

• A HCSR-04 Ultrasonic Proximity Sensor

• A Force Sensitive Resistor (FSR)

The Raspberry Camera Module is a light camera
capable of capturing video at up to 1080p at 30 fps.
Thanks to its small dimensions it can be easily placed
on the end effector of a robotic arm without interacting
with the motor movements. The HCSR-04 proximity
sensor is also connected to the Raspberry Pi 3 Board,
using the GPIO port. This sensor provides a wide range
of measurements, from 2 cm to 400 cm with an accuracy
of 3 mm. Figure 3 shows the complete setup of the
Raspberry Pi module, which is connected via Wi-Fi to
a Linux-based computer. The FSR is needed to detect
the contact between the arm end effector and the target.

Table 1 summarizes the tasks performed by the
robotic arm in terms of accuracy, computer vision
complexity and number of necessary DoFs. The
interaction with an elevator panel is definitively the
most complex and computationally intensive task.
Indeed, the computer vision algorithm has to:

• Detect the button in the recorder scene

• Track the button between consecutive frames

• Estimate the button position in the camera frame

As previously described, the software architecture
is developed in a ROS environment, both on the
Raspberry Pi and on the Linux Workstation, as shown
in Figure 4. The Raspberry board holds multiple ROS
nodes, acquiring data from the sensors and control
the arm servo actuators. The Workstation runs the
Computer Vision, and the robot Forward and Inverse
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Figure 5. The roboticarmwithoutthe end-e˙ector

Figure 6. End e˙ector with the camera module, force and
proximitysensor

Kinematic and the Visual Servoing algorithm. Figure 5
shows the robotic arm used in this project, while Figure
6 shows the end effector on which the camera module is
mounted.

A graphical user interface (GUI) has been developed
to allow the button selection and the simple robotic arm
controlled by the user. The GUI will be described in
Section 3.

3. Graphical User Interface
The Graphical User Interface (GUI) has been designed
in order to provide a simple and effective human-
robotic arm interface and an easy control of the system.
Figure 7 shows a screenshot of the GUI. On the left, the
image captured from the camera is shown. On the top-
right, the two virtual joysticks allow to control the end
effector in the XYZ direction and to control the rotation
of the arm. These controls are needed if the target is
not included in the camera frame. In such situation,
the user can simply move the arm in order to focus
the desired object. Since the joysticks are required only
to focus the target in the camera frame, high accuracy
in the user manipulation skills is not required. On
the bottom right, the last two buttons allows to power
on/off the actuators.

Figure 7. RoboticarmGraphicalUser Interface

The GUI is implemented as a Web Service. In such
way, devices like tablets or PC can connect to the
node via WiFi, increasing the portability of the human
machine interface. From the ROS point of view, the GUI
is a single node that sinks the informations from the
sensors information and streams commands in the ROS
TCP/IP bus.

The user selects the desired target object by pressing
it on the GUI image. In this way, performing the desired
task is extremely simple, because it only requires one
touch. A Region Of Interest (ROI) is selected around the
clicked point and several features are extracted inside
the ROI. These features are necessary to track the object
between consecutive frames and to perform the PBVS
control of the system, as shown in Section 4

4. Position Based Visual Servoing
The control algorithm is shown in Figure 8, as defined
in [7]. As described in Section 3, after the object
selection several features are extracted in a ROI around
the clicked point in order to perform an automatic
control of the system. The system is not based on the
recognition of the button among different frames but
the extracted features are used to track the position of
the object in the camera frame. This kind of control
is called Position Based Visual Servoing, because it
extracts the position in the 3D world of the object by
means of the features.

4.1. ComputerVision
It is possible to separate the computer vision algorithm
into three different tasks:

• Features extraction, using the Scale-Invariant
Feature Transform (SIFT) [8] algorithm;

• Parallel Tracking and Mapping, to extract the 3D
information out of a monocular camera video;
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Figure 8. PositionBased ImageServoingblockdiagram[7]

Figure 9. SIFT extracted featuresmatchedto the ROIkeypoints

• Scale estimation and 3D re-projection of the
tracked button.

SIFT algorithm is applied on a small Region of
Interest (ROI) around the selected button. In the
following frames, the Computer Vision node will
extract SIFT features and match them to the ROI ones,
by using Fast Library Approximate Nearest Neighbor
(FLANN) [9]. It realizes the visual tracking of the
button. Figure 9 shows the extracted keypoints matched
to the original button ones.

Parallel Tracking and Mapping [10] (PTAM) algo-
rithm is used to obtain the 3D position of the 2D
SIFT feature in the camera frame. The PTAM algorithm
exploits the motion of the camera to generate a point
cloud of features, as shown in Figure 10. In order to
find the 3D button position, it is necessary to relate
the tracked SIFT feature with the PTAM point cloud.
For that reason, the PTAM point cloud is projected
into the image plane, as shown in Figure 11. Equation
1 shows the relationship between the two coordinate
systems. The parameters fx and fy are the focal lengths
of the camera, cx and cy are the camera optical centers.
Those parameters are extracted via the OpenCV camera
calibration routine.

xi = fx ∗
Xc
Zc

+ cx

yi = fy ∗
Yc
Zc

+ cy
(1)

Figure 10. Generated Pointcloudby PTAM

However, the motion of the camera is not easily
predictable, because of motion artifacts, robot dynamics
uncertainly, friction, gearing backslash, etc. This non-
linear behavior makes the point cloud coordinates pre-
cise but not accurate, since the 3D points coordinates
are scaled by an a-priori unknown factor λ [11]. In
particular, we can model the PTAM measurements as
Gaussian Random Variable with standard deviation
σP TAM and a mean λµi , where µi is the true position of
the feature in the 3D space, and λ is an unknown scale
factor. Equation 2 shows the z component distribution
of a PTAM point. Because of the previous consideration,
λ factor is the same for all the xyz components.

zP TAM ∼ N (λµi , σ
2
P TAM ) (2)

Using a proximity sensor is possible to obtain a better
estimation of the true distance of the objects. This is
particularly true in our scenario, since all the features
lie on the same plane. Equation 3 shows the distance
distribution from the proximity sensor:

zprox ∼ N (µi , σ
2
prox) (3)

It is possible to combine the output of the two methods
by means of a Maximum-Likelihood Estimation method
[11] in order to obtain an estimation of λ and correct
the PTAM points’ coordinates. This is equivalent to
minimize the negative log-likelihood function for a
given number n of acquisitions:

L(µi , λ) =
1
2

n∑
i=1

 ||zP TAM [i] − λµi ||
σ2
P TAM

+
||zprox[i] − µi ||

σ2
prox


(4)

The 3D corrected points are then projected to the
camera plane using Equation 1, and the SIFT points
close to the target are selected. In order to find the Zc
coordinate of the object, it is possible to use the PTAM
features that lie in the ROI to interpolate a plane in the
camera coordinate system. From 3D plane equation in
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Figure 11. Relation between point coordinatein camera and
imagereferencesystems

Figure 12. PBVS controlloop

5, the a, b, c, d coefficients can be calculated by using
the Least Mean Square Methods:

a ∗ Xc + b ∗ Yc + c ∗ Zc + d = 0 (5)

These parameters are used to find the Zc coordinate
of the object:

Zc = − d

a ∗ xi − cx
fx

+ b ∗
yi − cy
fy

+ c
(6)

The real world button position is finally calculated in
Equation 7 by inverting the Equation 1 and by using
the Zc obtained in Equation 6.

Xc =
(xi − cx) ∗ Zc

fx

Yc =
(yi − cy) ∗ Zc

fy

(7)

4.2. RoboticArmControl
Figure 12 shows the architecture of the PBVS control
loop. The position error εx is defined as:

εx = (Cx − C∗x) (8)

where C∗x is the measured object pose in the camera
frame, and Cx is their desired final pose. In this
scenario, Cx is equal to the distance between the
camera and the robot finger. A Proportional-Integral-
Derivative (PID) controller generates the camera speed
vc. The motor speed can be calculated by using the

inverse differential kinematic [12]:

q̇ = J†c (q) · vc (9)

where q̇ is the actuator speed and the J†c is the
pseudoinverse matrix of the manipulator Jacobian,
expressed in the camera frame. Since the evaluation of
the Jacobian matrix requires the actual position of the
joints, each motor is provided with a position sensor. If
the end effector orientation is constrained in all three
directions, the robotic arm has not enough DoFs to
perform the required task. In this situation, the matrix
J†c becomes the LMS solution of the equation.

vc = Jc(q) · q̇ (10)

If the end effector is not constrained in orientation,
the Jacobian matrix in Equation 10 has more columns
than rows, leading to an infinite number of possible
solutions. By choosing the minimum norm solution,
is possible to achieve the fastest response, since
the norm of q̇ is minimized. In this scenario, the
Jacobian pseudoinverse becomes the Moore-Penrose
right pseudoinverse [12]:

J†c = JHc · (Jc · JHc )−1 (11)

5. Results

The system was tested in a controlled environment:
the camera is positioned at a distance in the range of
[18 − 50] cm. Figure 13 shows the measurements taken
on the principal camera axis and Figure 14 shows the
error distribution. Table 2 shows the performance of
the system in this situation. Since the PBVS is a closed-
loop system, this error is divided by the loop gain. It is
possible to find the proper PID coefficient in order to
make that error small and appropriately neglectable.
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MinError MaxError
Std

Deviation
MeanAbsolute

Error
R2

0.05 cm 0.95 cm 0.36 cm 0.31 cm 0.99 %

Table 2. System performanceon principalaxis measurement

Figure 14. MeasuredDistanceErrorHistogram
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7. Conclusion
This paper shows a Position Based Visual Servoing
system based on a monocular camera and a 3D
feature extraction. Accurate informations of the 3D
surroundings can be extracted by means of PTAM
algorithm. It allows to a simple implementation of the
arm control algorithm to generate the arm movement
trajectory using a PBVS approach. The task object
position is extracted by fusing the information coming
from the camera and the proximity sensor. In addition,
a simple and easy to use human-machine interface
allows to easily control the robotic arm also by
people with high motor skill impairments. The use
of the ROS environment leads to a modularity of the
software architecture, making the implementation of
new features possible without modifying the other ROS
nodes. Finally, ROS and all the other softwares and
libraries are open source, and realize a low-cost and

portable system in combination with the Raspberry Pi
and Camera Module.
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