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Abstract

INTRODUCTION: Various studies conducted to predict Alzheimer’s disease (AD) indicate that some pupil
light reflex (PLR) features may contain symptoms of the disease. An effective procedure that can predict the
disease using PLRs is needed.
OBJECTIVES: Two analytic approaches were examined in order to estimate the possibility of identifying
Alzheimer’s patients using features of PLR waveforms from chromatic stimuli. In particular, an index of the
probability of being an AD patient is introduced, and the features which contributed to PLRs the most were
extracted.
METHOD: PLRs for three colours of light pulses (red: 635nm, blue: 470nm, white: CIE x=0.28, y=0.31) at two
levels of intensity (10 and 100 cd/m2) were observed at 60Hz for 10s. Pulses consisted of pre-stimulus (2s),
light pulse (1s) and restoration phases (7s). 15 features were extracted from each PLR waveform, such as pupil
constriction velocity, pupil response delay, etc.
Seven AD patients (age:42-84, mean=68.1) and 12 similar-aged control subjects (age:62-89, mean=72.1).
RESULTS: The first approach was based on factor scores of features of PLRs. Two factor scores were extracted
from the 15 features across all measurement conditions, and logistic functions were introduced in order to
calculate the probability of identifying AD patients. Function parameters were estimated using a Bayesian
technique, such as the Markov chain Monte Carlo method (MCMC). In consideration of the number of
participants and biased data distributions, the second approach was based on the sparse modelling technique.
Least absolute shrinkage and selection operator (LASSO) was applied to sets of PLR features from each light
stimulus, together with the ages of subjects, and optimised result sets were obtained. Prediction performance
was higher than with the previous procedure.
CONCLUSION: The use of PLRs features from chromatic stimuli for identifying AD was developed and
evaluated.

1. Introduction
The pupil light reflex (PLR), which produces changes
in pupil diameter in response to a light pulse of

∗Corresponding author. Email: nakayama@ict.e.titech.ac.jp

white or red, was introduced as a means of diagnosing
Alzheimer’s Disease (AD) [1, 2]. In addition to this, the
recent discovery of intrinsically photosensitive retinal
ganglion cells (ipRGCs) [3] reveals the possibility of
using various diagnostic procedures that involve a
shorter light wavelength, such as blue light [4]. For
example, PLRs related to ipRGCs can be used to
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detect symptoms of Age-Related Macular Degeneration
(AMD) [5]. Some critical studies have suggested that
common sources may be the origin of both AD and
AMD diseases [6–9]. Also, because most AD patients
are elderly, the influence of aging on PLRs should be
evaluated carefully.
The authors have been studying a diagnostic

procedure for detecting AD symptoms using PLRs
of various types of light pulses and observing the
conditions the light pulses produce [10]. Though these
results show the possibility of aiding the diagnosis
of the disease, a more flexible procedure is required
because the prediction performance is insufficient to
detect patients with the disease [11]. Though the
authors have been examining a procedure to detect
AD patients using PLR waveforms, new techniques
should be considered to resolve some issues with the
existing procedure [11]. In particular, the number of
AD patients used in the experimental survey was
restricted, and the assessment of the prediction of
accuracy was insufficient. Since most participants for
the experimental survey are elderly, they may already
possess some artefact factors that would affect PLR
observations, such as cataracts, or other age-related
issues. Of course, a larger number of patients may
contribute to accurate estimation of the parameters
of the detection procedure, though this increases the
number of parameters which need to be estimated,
however. The number of samples has been discussed in
order to be establish a causal relationship.
When the information from the data is insufficient,

or only sparse data is obtained, some statistical
procedures can be applied to the modelling of the
causal relationship [12, 13]. These techniques are
introduced to construct a model. Therefore, significant
features of PLRs which can be used in the diagnostic
procedure should be extracted as needed, even if
the number of samples is insufficient. Other factors
should be estimated in order to reduce the influence
of the problem of insufficient data mentioned above.
If the distribution of features can be estimated,
the possibility of diagnosing AD patients may be
predicted using a Bayesian process, such as the Markov
chain Monte Carlo method (MCMC) [13]. During the
analysis, restriction of the distribution of features often
influences optimising procedures for the prediction
models since the extracted features are distributed
sparsely. In order to analyse sparse distributed data
samples, some sparse estimation techniques have been
developed, such as the least absolute shrinkage and
selection operator (LASSO) technique [12, 14, 15],
and examination of the effectiveness of this estimation
procedure is required.
In this paper, features of PLRs are extracted and

the differences between AD patients and control group
subjects are discussed, based on the results of our

previous study [11]. Some procedures for predicting the
probability of diagnosing AD patients are compared
[16]. Also, the additional sparse estimation technique
is applied to this prediction in order to improve its
accuracy. The following topics are addressed:

1. Features of PLRs are analysed and their factors
are extracted. The differences in features and
factor scores between AD patients and control
group subjects are compared. Also, the influence
of aging is evaluated.

2. Logistic regression is introduced to calculate
the probability of diagnosing the disease in AD
patients and control group subjects. The models
of fitness of the groups are then compared.

3. The MCMC technique is introduced to estimate
the parameters of the models, and the perfor-
mance of the models is discussed.

4. The LASSO technique is introduced to improve
prediction performance, and selected features are
discussed.

The reminder of the paper is structured as follows.
Section 2 reviews previous and related work. Section
3 introduces methodologies to develop prediction pro-
cedures, such as feature characteristics of PLRs. Pre-
diction using logistic regression, parameter estimation,
and prediction with LASSO technique are detailed in
section 4. The performance and validity of the methods
are discussed in the Discussion and Conclusion sec-
tions.

2. Related work
2.1. Diagnostic for Alzheimer’s disease (AD)
In order to diagnose AD patients and persons
presenting symptoms of dementia, such as those with
mild cognitive impairment (MCI) [20], the MMSE
(Mini-Mental State Examination) question inventory
[21] is often used during clinical consultations. As
MMSE is used by observers to mark conditions during
subject observation, the validity of the results depends
on the activity of the subject during the examination.
Therefore, some revisions have been introduced to
improve the accuracy of consultations [22]. Also, more
objective indices of subject’s responses have been
required in order to help medical doctors during
clinical consultations.
Eye pupils and PLRs have been referred as one

of the bio-markers for detecting AD patients [23].
In particular, PLR responses have been analysed in
order to detect symptoms of AD, since ipRGCs and
ipRGC-based PLRs have been discovered [24, 25].
However, the diagnostic procedure using PLRs for
AD patients continues to examine patients using

2 EAI Endorsed Transactions 
on Pervasive Health and Technology 

09 2020 - 12 2020 | Volume 6 | Issue 24 | e6



Detection Procedures for Patients of Alzheimer’s Disease

Table 1. Summary of the related works

MMSE Acoustic features +
ML [17]

Lexical analysis + ML
[18]

Gait features + ML
[19]

ipRGC base PLRs +
ML [11]

Data feature Responses to ques-
tion items

Acoustic features of
speech (3-5min.)

Lexical analysis for
conversation audio

Gait features of walk-
ing with dual tasks

Extracting features of
PLRs

Data sample MD diagnostic AD:9 + control:9 AD:194 + control:98 103 MCI participants AD:19 + control:12
Attribution Clinical observation Age, sex, education,

MMSE score
Corpus base analysis
(546 values)

Task performance,
MMSE score, age

Age, sex

Technique Clinical diagnosis MLP ANN SVM RandomForest
Accuracy N/A 92.0 % 84.4 %, AUC=0.92 AUC=0.747 78.4 %

(AD:57%,Control:90%)

observation, though some clinical procedures have been
introduced [25].

2.2. Predictions of AD patients
Computational diagnostic procedures for detecting AD
patients or patients with dementia have been studied
using human behavioural features. Unfortunately, the
typical features which present AD symptoms are not
currently being examined. Various information from
human actions can be applied to the observation and
prediction of cognitive performance using machine
learning techniques. A summary of related works is
listed in Table 1.
Since speech is observed by medical doctors dur-

ing consultations, acoustic and lexical features are
employed as a diagnostic procedure for a small scale
set of data (9 AD patients and 9 control participants)
[17]. The sound of a patient’s speech can be recorded
during medical consultation, and several projects have
begun to summarise large sets of speech corpus data.
Research groups can conduct computational prediction
and classification of the level of diseases in participants
using a corpus consisting of over 100 AD patients
[18, 26]. Performance depends on the data sets and the
prediction techniques, and it does not seem easy to
compare the accuracy of the two proposed procedures
with previous studies.
Another approach is to observe human gait behaviour

[19]. Since we need to pay a lot of attention to our bodies
while we are walking, some interactions may affect
this behaviour, causing our attention to be distracted.
Recently, image processing techniques which can easily
extract gait features are being applied to diagnosing
elderly people. The possibility of dementia in 103
elderly participants was predicted using a machine
learning technique [19].
As data deviation grows when the number of partic-

ipants increases, AD patient prediction performance or
prediction of the degree of development of the disease,
including prediction using features of PLRs, does not
necessarily improve through the use of larger-sized
sets of data. In particular, feature extraction or feature
assessment for making prediction is still preferred,

before adaptations that would increase the size of data
set are made.
Also, features of PLRs have been applied to the

prediction of AD patients using conventional machine
learning techniques [11]. AD patient prediction perfor-
mance should also be improved using other metrics
from the previous studies, though Table 1 shows an
acceptable level of performance for predicting control
subjects. As AD patients possess various stages of the
disease, the performance of binary classification using
categories such as “patient” vs. “healthy” is sometimes
not useful for the diagnosis, and an intermediate assess-
ment such as the level of MCI may be required. For this
approach, the probability of diagnosing AD patients
would help participants to understand the progress of
the disease.
Therefore, more appropriate feature selection and

a more appropriate prediction procedure should be
considered, using the data sets for PLRs with various
chromatic stimuli [11]. The following sections intro-
duce new techniques in order to improve performance.

3. Method
An experimental survey was conducted with the
participants. The detailed procedure that was used has
been described in a previous study [11]. In this paper,
the data set was used to develop prediction procedures.

3.1. Participants
A conventional PLR experiment was performed on 19
participants (42∼89 years old, mean age:70.6), 12 of
which were healthy individuals with normal vision
(Control group: 62∼89 years old, mean age:72.1) and 7
of which were patients with Alzheimer’s Disease (AD
Patients: 42∼84 years old, mean age:68.1) who had
already been diagnosed by medical doctors.
Informed consent was obtained from all participants

prior to the experiment.

3.2. PLR measurement
The stimuli consisted of three chromatic lights, red
(635nm), blue (470nm) and white (CIE x:0.28, y:0.31),
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Figure 1. An example of PLRs for a control group subject and
an AD patient [11, 27]
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Figure 2. Feature extraction from PLR responses

at two levels of brightness (10 and 100 cd/m2). These
stimuli were labelled as r10, r100, b10, b100, w10 and
w100.
The duration of observations was 10 seconds, with

the first 2 seconds being a pre-stimulus phase used as
a rest period, followed by a 1 second light pulse and
a 7 seconds restoration phase. Pupil diameters were
measured in mm at 60Hz using a system developed
by some of the authors [27]. PLRs for each stimulus
were observed in single trials using a repeated-measure
design.
Examples of measurements for a healthy individual

and for an AD patient are shown in Figure 1. In these
figures, PLRs are illustrated in response to 6 stimuli,
namely the 3 colours and two levels of brightness. All
subjects in the experiment participated 6 times, and a
short break was taken between each set of observations.

3.3. Feature definitions
A typical PLR waveform shape is illustrated in Figure 2.
In the figure, the light pulse overlaps for a period of 2∼3
seconds. As the figure illustrates, there are pupillary
response delays due to the shrinking of pupil and its
restoration to normal size.
Some features are extracted to specify the PLR

response, and these variable features are summarised
in Table 2. They are pupil size, velocity of pupillary
change, duration of change, and integration of the

Table 2. Definitions of PLR features

Variable Definition & notes
ps_base Mean of the pupil size for time before light pulse
ps_lon Pupil size where light pulse is on
ps_loff Pupil size where light pulse is off
ps_min Minimum pupil size
RA Range of pupil size (ps_lon - ps_min)

v_con Max amplitude of pupil constriction velocity
v_rest Max amplitude of pupil re-constriction velocity
ac_max Min amplitude of pupil acceleration
t_delay Pupil response delay
t_min Time when “ps_min” appears
t_v_con Time when “v_con” appears
t_v_rest Time when “v_rest” appears
int_con Integration of constriction phase
int_rest Integration of restoration phase

int Overall integration (int_con + int_rest)

waveform. The features correspond with the informa-
tion in the small circles in Figure 2. In total, 15 features
were extracted from the recorded pupillary changes
using a MATLAB program. These features were calcu-
lated for each PLR response.

4. Results

4.1. Characteristics of features in response to stimuli
Comparison of features. The features extracted for each
stimulus were compared between the two groups. The
results are summarised in Table 6. When there is a
significant difference between pairs of values, the values
are displayed in bold face. As the table shows, there are
many significant pairs for the b100 and r10 conditions,
but few pairs for the white stimulus. In regards to
the significant differences for the b100 condition, such
as pupil size, velocity and acceleration of pupillary
change, the pupil size for AD patients is relatively
small, and responds slowly.
All participants are elderly, and in addition to being

AD patients, their ages may affect pupil responses.
Therefore, the effect of the two factors (participant
group and age level) on pupillary changes is examined
using two-way ANOVA. These means change along
with age levels. Most variables selected are related to
velocity and time delay. Since there are few significant
interactions between the two factors, they may be
independent of each other in regards to PLR features.

Factor analysis. There are significant differences in
some of the PLR features between the AD and control
groups. Though their variables exhibit the qualitative
tendencies of a pupillary change, the sources could
not be determined, as the physical variables and
measurement units are completely different; some are
expressed using sizes and others are expressed as
velocities or accelerations.
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Table 3. Means of PLR features [11]

Feature b10(N=19) b100(N=17) r10(N=18) r100(N=19) w10(N=19) w100(N=19)
Variable Control Patient Control Patient Control Patient Control Patient Control Patient Control Patient
ps_base 19.88 16.69 20.51 14.21 20.16 14.37 19.59 16.41 19.2 16.40 19.20 16.46
ps_lon 20.24 16.72 20.81 14.18 20.29 14.22 20.00 16.26 19.56 16.54 19.45 16.46
ps_loff 10.90 8.02 9.76 6.76 13.02 9.29 10.15 7.68 11.61 8.80 9.14 7.03
ps_min 10.68 7.59 9.20 5.88 12.75 8.96 9.76 7.21 11.31 8.56 8.77 6.29
RA 9.56 9.13 11.60 8.30 7.53 5.27 10.24 9.05 8.26 8.08 10.69 10.17
v_con -0.46 -0.47 -0.51 -0.31 -0.36 -0.22 -0.44 -0.37 -0.40 -0.40 -0.48 -0.42
v_rest 0.13 0.10 0.18 0.08 0.13 0.08 0.16 0.10 0.14 0.10 0.14 0.11
ac_max -0.06 -0.07 -0.07 -0.04 -0.05 -0.03 -0.06 -0.05 -0.06 -0.05 -0.07 -0.06
t_delay 0.24 0.26 0.23 0.24 0.25 0.26 0.24 0.25 0.26 0.28 0.23 0.23
t_min 1.13 1.31 1.30 1.43 1.09 1.26 1.22 1.36 1.10 1.22 1.26 1.41
t_v_con 0.34 0.35 0.33 0.36 0.35 0.39 0.37 0.37 0.37 0.38 0.32 0.33
t_v_rest 1.84 1.78 1.91 2.14 1.65 2.06 1.88 2.11 1.67 1.96 1.74 1.98
int_con 293.1 277.0 345.0 211.0 230.0 144.5 301.5 260 249.4 241.6 330.5 300.3
int_rest 748.5 823.0 1015.9 802.7 532.1 444.1 849.8 796.9 612.6 652.3 906.9 941.7
int 1041.6 1100 1361 1014 762.1 588.7 1151.3 1056.9 862.0 893.9 1237.3 1242.0
Pairs of bold means show significant differences

Table 4. Factor loading matrix for PLR features with Promax
rotation

Variables Factor 1 Factor 2
ps_base 0.596 0.586
ps_lon 0.596 0.586
int_rest 1.007 -0.271
RA 0.997 -0.064
int_con 0.988 0.006
v_con -0.906 -0.067
ac_max -0.902 -0.021
t_v_con -0.737 0.110
t_delay -0.712 0.062
v_rest 0.643 0.099
ps_min -0.111 1.025
ps_loff -0.079 0.999
t_min 0.086 -0.643
t_v_rest 0.066 -0.438
Contribution ratio (1) 0.42 0.21
Contribution ratio (2) 0.52 0.32
Correlation between factors r=0.38
(1): Each factor with other factors eliminated
(2): Each factor with other factors ignored

Factor analysis was used to extract latent sources of
the variables, which were measured repeatedly in order
to reduce the number of dimensions of the features of
PLRs. As the number of features is too great for all to be
evaluated, some features are correlated with others. In
general, the factors extracted represent the variations.
Since overall integration (int) is a summation of two
parts, such as int_con and int_rest, have been omitted
during the analysis, thus 14 variables were measured.
A two-factor structure was estimated using a principal
component solution and a screw plot. A factor loading
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Figure 3. Distribution of factor scores with error bars showing
standard errors

matrix using Promax rotation was produced, as shown
in Table 4.
The fundamental variables of each participant, such

as pupil size, commonly contribute to both factors. The
second factor contains variables which are concerned
with features of the progress of restoration of the pupil
after a pulse of light, and the first factor contains
the remaining variables of the features of PLR. As
mentioned above, both factors contain two variables,
and there is a significant correlation between these two
factors (r = 0.38). Since even the contribution ratio of
each factor when the other factors are eliminated is over
60%, the two factors can account for the deviation of
features of PLRs.
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The factor scores (f actor 1, f actor 2) were calculated
using the factor loading matrix, and the means for
each stimulus are summarised in Figure 3, according
to group. The horizontal axis represents the first factor,
and the vertical axis represents the second factor. The
error bars show standard errors. The two groups are
indicated using suffixes, such as “p” for patients, and
“c” for the control group.
When means for red (r10 and r100) or white (w10

and w100) light stimulus between the two groups are
compared, they are located proximate to each other,
but the means for blue (b10 and b100) light stimulus
of the two groups are relatively far apart from each
other. Pupil reactions in response to light colours are
represented in Figure 3. In the results of t-tests applied
to pairs of means for the two subject groups, there are
significant differences in the first factor scores for b100
(t(15) = 2.64, p < 0.05), in the second factor scores for
b100(t(15) = 2.88, p < 0.05) and for w100(t(17) = 2.15,
p < 0.05). Also, differences with little significance were
observed for the second factor scores for b10(t(17) =
2.07, p < 0.10) and for r10(t(17) = 1.77, p < 0.10).
The results show that between the two subject

groups there are significant differences in both factor
scores for the b100 condition. As Table 6 shows many
significant differences, the factor scores also represent
these differences. The second factor seems to reflect the
difference in features of PLRs between the two groups.
Although the influence of age level on factor scores

was analysed, it did not affect either factor.

4.2. Introducing logistic regression
Function optimisation. As mentioned in the Introduction,
this paper introduces the probability of diagnosing
AD patients in order to estimate the progress of the
disease using logistic regression analysis to predict
binary response variables (p) and features of PLRs.
Here, p = 1 for the control subject and p = 0 for the AD
patient, so that p is given using the following equation
with logit function.

ŷi = a + b1 ∗ f actor1i,j + b2 ∗ f actor2i,j

pi = logit−1(ŷi) =
1

1 + exp(−ŷi)

Suffix i represents the subject, and suffix j represents
the light stimulus condition.
Logistic regression analysis was applied to the above

factor scores for several conditions, such as the two
factor scores for a specific light stimulus condition
(light intensity: 10 or 100 cd/m2), the four factor scores
for one colour condition (blue, red or white, including
light intensities 10 and 100 cd/m2) and further
combinations such as two colours or all conditions
(6 conditions and 2 factor scores). Every model was
evaluated for fitness of model using AIC (Akaike

Table 5. Performance of models

Stimulus AIC R2 Accuracy AUC
b10 25.16 0.26 82.1 0.82
b100 17.24 0.47 89.4 0.89
r10 27.33 0.17 73.8 0.74
r100 28.05 0.14 72.6 0.73
w10 27.35 0.18 69.0 0.69
w100 24.70 0.28 79.8 0.80
b(10+100) 21.07 0.48 89.4 0.89
r(10+100) 30.26 0.22 71.4 0.71
w(10+100) 22.94 0.47 90.5 0.91
b+r 18.50 0.73 100 1.00
r+w 29.70 0.50 95.2 0.95
b+w 18.00 0.73 100 1.00
b+r+w 26.00 0.73 100 1.00

b10
b100
r10
r100
w10
w100

False positive

T
ru

e
 p

o
s
it
iv

e

Figure 4. Comparison of ROC curves

Information Criteria), and for prediction accuracy using
R2. During validation of parameters, the likelihood
or fitness of the prediction is evaluated using AIC
or other statistical indices in addition to the level of
accuracy. Accuracy was measured using an appropriate
threshold, and performance was summarised using two
dimensional metrics such as true and false positives.
The relationships are then illustrated as ROC (Receiver
Operating Characteristics) curves. Figure 4 shows ROC
curves for every stimulus condition. The surface area of
the curve is also a measure of the AUC (the area under
the ROC curve). Their indices are summarised in Table
5.
The results of analysis suggest that discriminant

performance is higher for blue light stimuli, in
particular for the b100 condition. The ROC curves show
step-wise changes, since the number of participants
influenced the results. However, the performance of
AUC for b100 produced the highest reaction of any
single stimulus condition.
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Model parameter estimation. Table 6 shows the possibility
of discriminating between AD patients and control
group subjects using a logistic regression function.
However, the parameters of these functions can not be
estimated sufficiently because the amount of data is
too limited. In order to obtain accurate parameters for
the estimation function, a Bayesian technique such as
the Markov chain Monte Carlo (MCMC) method was
introduced. This technique generates distributions of
parameters, and thus the most appropriate parameters
can be extracted. As a result, a more accurate estimation
of the parameters can be conducted. In regards to the
data generation procedure using the MCMC technique,
the burn-in period was 2000 and the number of samples
was 10000 [28]. The parameters were estimated from
the distributions generated in the 8000 samples which
remained after convergences was confirmed. Using this
procedure for the b100 condition, the parameters are
estimated as follows.

ŷi = 5.4229 + 0.4722 ∗ f actor1i + 7.3801 ∗ f actor2i

The magnitude of the coefficient for the second factor
(f actor 2) is 15 times that of the coefficient for the first
factor (f actor 1).
As an additional example, the parameters for blue

light stimuli were estimated as follows:

ŷi = 9.1664 + 2.5320 ∗ f actor1i,b10 − 1.1366 ∗ f actor2i,b10
−1.4011 ∗ f actor1i,b100 + 12.0891 ∗ f actor2i,b100

The magnitude of the parameters suggests that the
coefficient for the second factor at a high level of
brightness (b100) is relatively larger than for others
(b10 and the first factor at a low level of brightness).
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Figure 6. Change in λ coefficients (b10 condition)

As the patterns of coefficients depend on the light
stimulus, the wavelengths of the stimuli may affect
these reactions.

In regards to the discussion in the previous section,
the probability of correct discrimination between
control group subjects (1) or AD patients (0) may be
illustrated using two dimensional information (f actor 1
and f actor 2), as shown in Figure 5. Figure 5 shows that
the probability distribution against patients with AD
depends mainly on the scores of the second factor. Also,
the score of the first factor helps to more finely adjust
the probability during the period where the curve is
steep.

In regards to the experimental procedure, the
features of PLR can be best measured during a one
second high brightness level pulse of blue light (b100).
Also, factor scores were calculated using the factor
loadingmatrix shown in Table 4. Finally, the probability
of diagnosing AD patients can be predicted using the
above function.

However, the possibility of developing amore flexible
procedure for use in future experiments involving
additional new participants will be a subject of our
further study.

7 EAI Endorsed Transactions 
on Pervasive Health and Technology 

09 2020 - 12 2020 | Volume 6 | Issue 24 | e6



W. Nowak et al.

Table 6. Coefficients of β for features of PLR waveforms

Features Blue Red White Blue Red White
Variables b10(N=19) b100(N=17) r10(N=18) r100(N=19) w10(N=19) w100(N=19) b10&b100 r10&r100 w10&w100
ps_base - - - - - - -/- -/- -/-
ps_lon -5.20 - -2.74 - - - -/- -/- -/-
ps_loff - - - - -6.01 - -/- -/- -/-
ps_min - -6.81 -1.75 -10.81 - -1.57 -/- -/-11.16 -/-2.36
RA - - - - - - -/- -/- -/-
v_con - - - -0.50 - - -/2.57 -/- -/-
v_rest -6.73 - - -5.23 - - -1.31/- -/-0.88 -/-
ac_max - 8.64 11.20 - 1.10 15.05 -/4.27 -/- -/5.56
t_delay 1.43 -5.63 -4.21 -1.15 - -10.59 -/-1.85 -2.37/- -/-1.14
t_min 11.43 3.80 - 3.54 0.82 -4.30 4.53/- 0.87/2.08 -/2.95
t_v_con - - -3.13 -2.74 -3.67 1.75 -/- -/- -3.44/-
t_v_rest - 0.34 3.35 2.67 8.45 2.02 -/- -/- 0.53/0.85
int_con - - - - - - -/- -/- -/-
int_rest - 0.35 - - - 1.76 -/- 1.58/- -/-
age 4.64 -.28 -2.64 -1.46 - - (-) (-) (-)
Intercept -2.29 -5.88 -4.79 -4.16 -3.38 -5.40 -2.84 -4.22 -2.94
AIC[#] 0.11 0.25 1.41 1.17 0.60 0.02 0.48 0.76 0.48
AUC 1.00 0.92 0.83 0.92 0.92 1.00 1.00 0.93 0.83

AIC[*] 4.13 10.56 15.19 10.46 11.36 5.14 5.05 12.33 8.53
CV error[*] 0.12 0.10 0.19 0.06 0.06 0.05 0.01 0.07 0.08
#: Minimum of AIC
*: AIC and error rates in cross-validation method using the minimum λ as an optimum value
(-): “age” was not introduced for converged conditions

b10&b100

b10

b100

r10

r100

w10

w100

r10&r100

w10&w100

Coefficients (β)

Figure 7. Comparison of coefficients of features using prediction
functions

4.3. LASSO technique application

Optimisation using the LASSO technique. In order to
improve prediction performance while the sparse dis-
tribution of pupillary features for PLRs is considered,
an optimisation procedure such as LASSO (Least Abso-
lute Shrinkage and Selection Operator) [12, 13, 29] is
introduced for discriminating AD patients and con-
trolled subjects. In the previous section, factor analysis
was introduced to reduce the dimensions of the fea-
tures of PLRs. Two factor scores cover 63∼84% of the
overall features, as shown in Table 4. In this section,

Error rate (%)

1
0
-f

o
ld

 C
V

Figure 8. Comparison of error rates for detecting AD patients
(Logit: previous section, RF: performance using Random Forest
[11])

the features are selected and their performance is exam-
ined. Discrimination is made using a logistic regression
function with the features of PLRs, as was done in the
previous section. Since a logistic function is introduced
as a link function, the probability of AD patients can be
calculated. Here, performance is evaluated as a binary
classification in order to optimise feature selection from
all of the features as was done in the previous section.
The LASSO technique calculates that some of the coeffi-
cients are driven to zero, thus making feature selection
easy using the algorithm. The optimisation of selected
variables and their weights for the prediction function
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using logistic regression is calculated using the LASSO
procedure [14, 15] with a package ’glmnet’ [30]. An
example of optimisation progress for a condition with
a stimulus 10 cd/m2 blue light (b10) is illustrated in
Figure 6. The horizontal axis indicates parameter λ,
and the vertical axis indicates weights of variables (β).
As the figure shows, weights for all variables converge
to zero along with the parameter λ. This indicates a
variable selection procedure. When a certain value of λ
is optimised, the appropriate weights for the variables
are extracted from the features of PLRs.

Results of the optimisation with LASSO. Optimisation was
conducted using AIC values which can be calculated
using an index “sAIC” [31]. The optimised functions
for each chromatic stimulus and for combinations of
conditions, such as a blue light condition consisting
two light intensities of 10cd/m2 and 100cd/m2, were
calculated. The optimised weights (βs) at the minimised
AIC are summarised in Table 6. Since the minimum
parameter λ is produced by calculating the 10-fold
cross validation (CV) value, the optimised weights are
influenced by variances during the procedure. Another
set of AICs and CV values at the minimum λ is attached
to the table.
The selected variables and their weights are sum-

marised in Figure 7. The bars indicate the weights of the
9 conditions, while the variables which have have been
omitted have no weights. In comparing the number of
variables, more variables were selected for conditions of
100cd/m2 than for condition of 10cd/m2. Some of the
selected variables concern factors for time and speed
of pupillary change. Also, the ages of participants for
blue and red light conditions were selected when the
variable “age” is added to the selectable variables.
In evaluating AIC as a model of fitness for single

light conditions (b10, b100, r10, r100, w10, and w100),
the minimum AIC occurs under conditions “w100” and
“b10”, as a result of optimisation using AIC. The area
under the curve (AUC) is 1.00 for both conditions when
a different method of classification performance is used.
The CV rates are zero for all conditions using this
procedure. When the optimum solution is based on the
minimum of λ, the condition for “b10” is the lowest of
all AICs for all of the single light conditions. The CV
rates for “w10” and “w100” are the lowest for any of
the conditions.
The evaluation was extended to converged conditions

that converged (b10&b100, r10&r100, and w10&w100).
The CV rates mostly decrease though the AICs increase
with the number of variables, however. The 10-fold CV
rates are summarised in Figure 8. The error rates using
logistic function with factor scores from the previous
section and using the random forest technique [11]
are also displayed at the bottom of the bar graphs.
As the figure shows, the error rate for the converged

Table 7. Comparison of weights of variables (b100 condition)

LASSO Random Forest Factor+Bayes
Logistic regression Importance F1/F2

ps_base - 0.37 0.60 / 0.59
ps_lon - 0.28 0.60 / 0.59
ps_loff - 0.19 -.08 / 1.00
ps_min -6.81 0.84 -.11 / 1.02
RA - 0.19 1.00 / -.06
v_con - 0.81 -.91 / -.07
v_rest - 1.24 0.64 / 0.10
ac_max 8.64 0.84 -.90 / -.02
t_delay -5.63 0.09 -.71 / 0.06
t_min 3.80 0.80 0.09 / -.64
t_v_con - 0.28 -.74 / 0.11
t_v_rest 0.34 0.48 0.07 / -.44
int_con - 0.61 0.99 / 0.01
int_rest 0.35 0.13 1.01 / -.27
Error rate 0 17.7 10.6

condition “b10&b100” is the lowest, and this rate is
significantly lower than the prediction performance
using logistic regression with factor scores and Random
Forest technique.

5. Discussion
When logistic regression analysis was introduced, the
probability of classifying AD patients was calculated
using features extracted from PLRs. Prediction accuracy
improved to nearly perfect using generated factor
scores or some specific features of PLRs. The results
confirm that some variables concerning factors for
time and speed of pupillary changes contribute to the
prediction of the probability of diagnosing patients
with AD. In comparing the prediction performance
with the performance in previous studies, the accuracy
reaches to the levels of comparable without considering
the sample size. However, as performance is based
on the surveyed data set in this paper, a more
generalised procedure may be needed using larger
clinical samples. Before gathering increased numbers
of samples, experimental conditions for stimulus using
different colours of light and at varying intensities, and
the validity of various features should be examined.
These points are discussed as follows.
As shown at the end of the previous section, the

prediction performance of the proposed procedures
in our study should be compared and discussed. In
some cases, performance using the LASSO technique
is higher than for other techniques. When LASSO
is applied to the converged condition “b10&b100”,
the error rate for 10-fold CV values can be reduced
to 0.01. Also, some of the conditions can produce
error rates lower than 0.10, as shown in Table 6.
The results suggest that an optimisation technique can
reduce the error rate of prediction performance for
AD patients using PLR features. Also, optimisation
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of prediction using the LASSO technique differs from
other techniques. Conventionally, the contribution of
the colour of the light, in particular blue light, is key
to accurate prediction. Performance using PLR features
of blue lights is the highest, while performance using
features of white lights with conventional techniques is
not high at all. As white light covers a wide range of
light wavelengths, which stimulate ganglion cells on the
retina, it is thought that the specific responses may not
be detected. When the LASSO technique is introduced,
error rates can also be suppressed, as is shown in Figure
8. Therefore, the technique can select the significant
variables which are capable of predicting AD patients.
In order to confirm the weight selectivity which

was hypothesised, weight patterns of three procedures
for variables with the “b100” condition are compared
in Table 7. Here, weight patterns using LASSO,
importance values using Random Forest, and factor
loadings using Bayes technique with factor scores are
compared. The last factor loadings depend on whole
responses, so they are not specific values with the
“b100” condition.
As Table 7 shows, selected variables using LASSO

have certain weights using the two other techniques,
but some of the non-selected variables also have
large weights. Regarding prediction performance using
error rates, the LASSO technique may be able to
select significant variables, as its performance is the
highest. It may be a benefit of the technique, as
the effectiveness of the LASSO technique has been
confirmed. However, more detailed analysis of means
to improve performance is needed in order to establish
a more robust procedure for predicting AD patients will
be a subject of our further study.

6. Conclusion
This paper presents a procedure for predicting the
probability of diagnosing AD patients using features of
PLR, which respond to the activities of ipRGCs.
Three colour lights at two levels of brightness were

illuminated for 1 second, and pupil light responses
were observed. 15 features were extracted from each
PLR, and two factor scores were calculated using a
factor loading matrix. In order to predict AD patients
using these feature variables, two techniques were
introduced: logistic regression and LASSO technique
for optimisation. The following results were obtained.

1. There are significant differences in some features
between AD patients and control group subjects,
in particular for the b100 condition. Also, for a
few features for white light there are significant
differences between age levels.

2. Logistic regression analysis was introduced to
discriminate AD patients from the control group

using two factor scores in response to chromatic
stimuli. Performance was evaluated using the
indices of the fitness of equations. In the results,
the performance for b100 was the highest.

3. The MCMC technique was introduced to estimate
the parameters of the regression functions. The
model provides a distribution of probability for
AD patients and the control group.

4. In order to predict AD patients using the
extracted features of PLRs, LASSO technique
was introduced to logistic regression analysis.
As a result, the error rate for prediction can
be reduced to 0.01 using a converged condition
of “b10&b100” where significant variables of
features are selected.

5. In comparing weight patterns for feature variables
of PLRs, the features which contributed to
prediction were discussed.

The validity of the probability estimations should be
confirmed using the PLR data of existing and additional
new patients. This will be a subject of our further study.
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