
A Novel, Privacy Preserving, Architecture for Online
Social Networks
Zhe Wang1 and Naftaly H. Minsky1,∗

1Rutgers University, Department of Computer Science

Abstract

The centralized nature of conventional OSNs poses serious risks to the privacy and security of information 
exchanged between their members. These risks prompted several attempts to create decentralized OSNs, or 
DOSNs. The basic idea underlying these attempts, is that each member of a social network keeps its data under 
its own control, instead of surrendering it to a central host, providing access to it to other members according 
to its own access-control policy. Unfortunately all existing versions of DOSNs have a very serious limitation. 
Namely, they are unable to subject the membership of a DOSN, and the interaction between its members, to 
any global policy—which is essential for many social communities. Moreover, the DOSN architecture is unable 
to support useful capabilities such as narrowcasting and profile-based search.

This paper describes a novel architecture of decentralized OSNs—called DOSC, for “online social 
community”. DOSC adopts the decentralization idea underlying DOSNs, but it is able to subject the 
membership of a DOSC-community, and the interaction between its members, to a wide range of policies, 
including privacy-preserving narrowcasting and profile-sensitive search.

Received on 13 March 2015 accepted on 27 May 2015; published on 17 December 2015
Keywords: Online social networks; Decentralization; Control; Privacy; Security

Copyright © 2015 Zhe Wang, Naftaly H. Minsky licensed to EAI. This is an open access article distributed under the 
terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits 
unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.17-12-2015.150806

1. Introduction
An online social network (OSN) can be defined broadly
as a community of people that interact with each
other via some electronic media. The most popular
ones of these are the huge OSNs, like Facebook and
Twitter. But there are many others, mostly small or
mid-size, OSNs that play important social roles. These
include, for example: support groups consisting of
people suffering from a certain illness, such as AIDS;
students who wish to share views of their teachers;
workers discussing their work condition and their
managers; and physicians consulting each other about
their difficult cases. The conventional architecture of
practically all such disparate OSNs—the huge, the
mid-size, and the small— is centralized. That is, the
interaction between members of an OSN is mediated
via a central host—or a virtually central one, which may
run on many computers, but is managed centrally.

∗Corresponding author. Email: minsky@rutgers.edu

Unfortunately, although centralization is a very
convenient way for implementing OSNs, it has several
well known drawbacks, which include: (a) risks to the
privacy and security—these two are related, and we
will, henceforth, use the term “privacy” for both of
them—of information exchanged between the members
of an OSN; (b) lack of scalability; and (c) the existence
of a single point of failure. The last two of these
drawbacks can be mitigated via very large, complex,
and expensive infrastructures—like those used by
Facebook and Twitter. But the main risks to the
privacy of such OSNs is harder to mitigate because
they are rooted in the centralized architectures per se,
independently of the policies imposed on an OSN by its
central host. These risks are due to two main factors.
First, members of centralized an OSN are at the mercy
of the organization that maintains it. This organization
can, in particular, sell the information in its possession
(legally or illegally), or even modify it. Second, the
data maintained by the central host is vulnerable to
various malicious attacks, which can be quite lucrative.

1
EAI Endorsed Transactions on 

Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e3EAI
European Alliance
for Innovation

EAEAI Endorsed Transactions
on Collaborative Computing Research Article

http://creativecommons.org/licenses/by/3.0/
mailto:<minsky@rutgers.edu>


Zhe Wang and Naftaly H. Minsky

Such attacks can be mounted by insiders, say the
programmer that maintains the software of the OSN;
and by attackers from the outside.

Such concerns about centralized OSNs prompted
several attempts to create decentralized OSNs, or
DOSNs, such as LotusNet [2], Safebook [11], PeerSoN
[7], and others. The basic idea underlying all these
attempts at decentralization, is that each member
of the community in question should keep its data
under its own control, instead of surrendering it to a
central host, providing access to it to other members
of the DOSNs according to its own access-control policy.
Such decentralization does enhance the privacy of the
members of DOSNs, but at the cost of losing the ability
to subject the the community in question to any kind
of global control. Specifically, this lose has two serious
limitations, which are tantamount to throwing the baby
with the bathwater.

First, DOSN provides no ability to subject a
given community to any global policy regarding the
membership of the community, and the manner in
which its members interact with each other. Such
policies are generally essential to social communities. In
purely social—not online—communities such policies
are often informal, imprecise, implicit, and only
occasionally enforced. But such policies should be
tightened and enforced under an OSN, because its
membership can be larger than that of a traditional
social community, and there is much less familiarity
and trust between its members.

Second, the lack of global control under DOSN
has another unfortunate consequence. It makes it
impossible to provide important capabilities like
narrowcasting and profile-based search without incurring
massive loss of privacy.

The Contribution of this Paper: We will describe
in this paper a novel way for decentralizing OSNs,
giving rise to an architecture we call DOSC, for Decen-
tralized Online Social Community. DOSC adopts the
decentralization idea underlying DOSNs, complement-
ing it with a powerful means for establishing a wide
range of policies governing the membership of a social
community, and the interactions among its disparate
distributed members. This is done by governing the
exchange of messages between the members of DOSC
using a decentralized—as thus scalable—Middleware
called LGI [17, 18]. Among other consequences of this
architecture is its ability to support capabilities such
as narrowcasting and profile-based search without loss of
privacy. (We note here that we will continue using the
term OSN as a general term for online social network,
implying no specific architecture.)

It should be pointed out, that while DOSC should
be sufficiently fast for human interaction in medium
size communities—with thousands or tens of thousands

members—some of its capabilities, like narrowcasting,
would not scale to the size of OSNs like Facebook
and Twitter. But these huge OSNs may not require
decentralization, as the hundreds of millions of their
members seem not to be very concerned about issues
such as privacy.

The rest of this paper is organized as follows.
Section 2 discusses the need for privacy in various kinds
of OSNs. Section 3 outlines the nature of policies that
OSNs may need to be governed by. Section 4 provides
an overview of the middleware called Law-Governed
Interaction (LGI) which serves as the foundation the
DOSC architecture. Section 5 introduces a basic model
of DOSC. Section 6 is a description of an implemented
case study that demonstrates how this abstract model
can be used for a concrete application. Section 7
complements this case study by introducing more
advanced capabilities available under the basic model.
Section 8 introduces an extension of the basic model
of DOSC. Section 9 discusses the overall performance
of DOSC, and describes its limits. Section 10 discusses
related works, by others, and by the authors. And we
conclude in Section 11.

2. On the Privacy Concerns of Centralized OSNs
Privacy is, or should be, of serious concerns to the
members of many online social networks, particularly
if the messages exchanged in them contain sensitive
information such as private medical and financial data.
But the nature of these concerns is different in two
major types of OSNs, which we call autonomous and
bound OSNs. We will define both types of OSNs below,
and discuss the nature of their privacy concerns, along
with the risks to their privacy due to centralization.

2.1. Autonomous OSNs
We define autonomous OSNs to be those that are not
subject to any outside authority—except the authority
of the law of the country in which the OSN operates.
Of course, the members of an autonomous OSN are
subject to the policy defined by it, which may vary
widely. For example, the policies of an OSN designed
for a support group of people suffering from AIDS is
likely to be very different from the policies established
by Facebook, which is also autonomous. The following
is an example of one such OSN, and a discussion of its
privacy concerns.

Consider an OSN created to enable a set of physicians
to consult with each other about various medical issues
they confront. We call this OSN MC, for “medical
consultation.” The participants in MC may not know
each other, and may practice all over the world. A
member of MC may send a query—that describes an
issue he or she confronts—to all other members; or,

2
EAI Endorsed Transactions on 

Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e3
EAI

European Alliance
for Innovation



A Novel, Privacy Preserving, Architecture for Online Social Networks

more likely, to a subset of its members, based on some
criteria. And the receiver of such a query may answer it.

The information exchanged between the members
of MC is clearly very sensitive, both to the physicians
and to their patients, which would often be the subject
to the queries made by members of MC. Having
the process of consultation mediated by a central
host, and having the information exchanged between
the physicians maintained centrally by this host, can
seriously compromise the privacy of both the physicians
and their patients. The risk here is particularly serious
because the host of such an OSN is likely to become a
target for attacks—by hackers from the outside, as well
as by insiders—since the information maintained by it
can be exploited for illicit financial gains. Therefore, we
have implemented MC in a decentralized manner [15]
more than 10 years ago—before the term OSN has been
introduced. The following are part of the constraints
which have been imposed on this community by that
implementation.

1. Membership: An agent x is allowed to join this
community if it satisfies one of the following two
conditions:

(a) If x is one of the founders of this community,
as certified by a specified certification
authority (CA) called here ca1. (Note: we
assume that there are at least three such
founders.)

(b) if x is a medical doctor, as certified by the CA
called ca2, representing the medical board;
and (ii) if x garners the support of at least
three current members of this community.

And, a regular member (not a founder) is removed
from this community if three different members
vote for his removal.

2. Reputation: Each member must maintain a
reputation value that summarizes other members’
feedback on the quality of his responses to posted
queries, requiring no central reputation server.
Furthermore, this reputation must be presented
along with every response to a query. (Note that
the reputation thus maintained by a member x
cannot be manipulated by x himself.)

Note that although the above provisions where quite
sophisticated, for a decentralized implementation, the
paper that implemented them did not define a full
fledged DOSC. In particular, that paper [15] did not
support any of the advanced features discussed in
Section 7, and did not fully support the basic model of
DOSC introduced in Section 5.

2.2. Bound OSNs
We say that an OSN is bound if it operates in the context
of some organization that has jurisdiction over it, and
may own the information exchanged by the members of
the OSN in question.

There is a growing realization[31] that OSNs that
operate within an organization—such as manufactur-
ing, commercial enterprises, medical centers, or even
the military—can be beneficial for it. This seems to
be particularly the case for OSNs that provide for
micro-blogging, as is evident from the purchase of the
Yammer—a prominent micro-blogging OSN that serves
organizations—by Microsoft, for $1.2 Billion. We will
have more to say about Yammer itself, but first we
outline some of functional features one can expect from
this kind of OSNs.

Consider a large and geographically distributed
enterprise E that provides a centralized micro-blogging
OSN for its employees. Suppose that such an OSN—
which we call WP, for “WorkPlace”— distinguishes
between groups of employees, enabling the members
of each groups to communicate with each other. Such
groups may be the following: (a) all the employees of
E; (b) the non-managerial staff of E; (c) the managerial
staff of E; and (d) members of various task forces
operating in E. Note that these groups may overlap
partially, as a single employee may belong to several
groups. And the enterprise in question may impose
some control over the membership of the various
groups, and may establish some constraints regarding
the communication between the members of different
groups. For example, suppose that two of the task forces
of enterprise E, which form groups in WP, consult to
other companies, which may compete with each other.
It is obviously paramount for these subgroups not to
have access to each other’s information.

There are several types of privacy concerns in
the context of such OSNs. First, like in autonomous
OSNs, individual members would be concerned about
their own privacy. For example, a staff member
would not want members of the management to
read their complains about the workplace. Second,
the information exchanged between the employees of
enterprise E can carry sensitive information about the
business of this enterprise. It is therefore important for
the enterprise for this information not to be exposed
to the outside, at least not on a large scale. Third, the
enterprise is likely to be concerned about violations of
its constraints on the communication between different
groups of WP.

The Risks to Privacy due to Centralization: There
are two types of centralization to be considered here,
which we call strong and weak centralizations. Strong
centralization is like the one practiced by Yammer,

3
EAI Endorsed Transactions on 

Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e3
EAI

European Alliance
for Innovation



Zhe Wang and Naftaly H. Minsky

the Microsoft OSN mentioned above. Yammer provides
services to a host of different enterprises—they claimed
to serve about 200,000 different enterprises. Of course,
Yammer establishes policies that provide necessary
separation between the various enterprises it serves.
But the information belonging to all these enterprises
is maintained centrally by the Yammer system.
Such centralization of commercial and industrial
information of many different companies is very risky,
as it is likely to attract attacks from the inside of
Yammer, and from the outside—thus compromised the
privacy of many of the clients of Yammer.

A much better approach would be to use an
intramural Yammer-like OSN. This, weaker form of
centralization, would be much safer than using
Yammer. But if this system relies on a centralized
database, it would still be vulnerable to breaches of
privacy. Indeed, if all the information generated by
the WP is available to its software, then the rogue
programmers of this OSN will have a fairly free
access to all of it, disregarding the required boundaries
between different groups.

3. On the Nature of Policies that OSNs May Need
to be Governed by
We survey here various types of communal policies that
an OSN may need to establish. By “communal” we mean
either global policy that is to govern all members of
an OSN, or a policy that governs some subgroup of
its members. All the policies discussed here can be
easily established, by enforcement, under centralized
OSNs—but none of them can be established under the
DOSN architecture. All these kinds of policies can be
established under our DOSC, as we will show for some
of them in Section 6 and in Section 7.

Membership Control: Control over membership is
crucial to many social communities whether they are
autonomous or bound. The set of members may be
predefined. Alternatively, and more commonly, the
membership can be limited to individuals that satisfy
certain predefined criteria, which can be checked by
various credentials. For example, the membership of
our OSN example MC, of medical consultation, is
limited to physicians; and the membership of the
workplace OSN example WP is limited to the employees
of a given enterprise. Moreover, in addition, or instead,
of such characterization of acceptable members, the
OSN may condition the admission of new member on
the approval of a number of existing members of the
OSN.

Another important aspect of membership, is the
removal of existing members. There are many possible
types of procedure for doing that. As a simple example,
consider an OSN that has a member that plays the role

of a manager, which provides him/her with the power
to remove any existing member x by simply sending a
message “leave” to it; and this, in turn, should force x
to leave the community in question.

Identification of Members: Practically every OSN
needs to establish a coherent manner in which its
members identify themselves to each other. One can
distinguish between three basic mode of identification:
(1) Members may be allowed to be anonymous.
(2) Members may be allowed to operate under a
pseudonym of their choice. And (3) members may be
required to use they real and authenticated names.
For example, under WP, members may be required to
identify themselves via their unique names within the
enterprise in question—which is to be authenticated by
certificates provided to them by a certification authority
(CA) of this enterprise.

Besides their name, such as above, members may
identify themselves by a certain profile—that may
contain such things as their medical specialty in the case
of MC; or by their roles in the enterprise, in the case of
WP. The authenticity of such a profile and the way it is
being used needs to be established by the policy of the
OSN in question.

Constraints on the Behavior of Members of an OSN:
Sometimes one needs to impose constraints on what
members can do. Such constraints may depend on the
profile of individual members, and on the history of
their interaction with others. We have just seen an
example of such constraints: only a member that plays
the role of manager can send a “leave” message to
others. And any member that gets such a message must
cease to operate within these community. As another
example, in the context of WP, the type of messages that
members are entitled to send, or the type of posts that
they are entitled to make, may depend on their roles in
the enterprise in question.

Global Access Control (AC) Policies: One of the
intended consequences of decentralization under
DOSNs is that it enables each member to apply its own
AC policy to its own data—e.g., to the set of posts it
produced, which are maintained in its own database.
This is useful, but certainly not sufficient. Because an
OSN may want to impose some global AC policies.
This is particularly true for bound OSNs, such as WP.
The posts being produced by the various members
of this OSN really belong to the enterprise E in the
context of which it operates, and which thus has an
authority over their treatment. The enterprise may
relegate to individual members the right to apply their
own AC policies, provided that these policies conform
to the global policy of an enterprise. For example,

4
EAI Endorsed Transactions on 

Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e3EAI
European Alliance
for Innovation



A Novel, Privacy Preserving, Architecture for Online Social Networks

the global policy of the WP may be that a group of
members assigned to deal with the business of a given
client-company can communicate only with each other,
as long as they belong to the same group.

And global constraints are common even in
autonomous OSN. A case in points are the various
friendship-related rules that govern the interaction
between members of Facebook.

Cooperation Protocols: In Section 1 we pointed
out that the DOSN architecture does not provide
certain important capabilities such as search for
members whose profile satisfies a specified condition,
and narrowcasting based on the profile of members.
However, as we shall show in Section 8, such
capabilities can be provided even in decentralized
OSN, if all its members can be trusted to cooperate
in providing them. Such cooperation can be ensured
by imposing a suitable cooperation protocol on all
members of an OSN.

4. The (LGI) Middleware—a Partial Overview
Governance of interactions among the members of a
decentralized OSN requires a suitable middleware at
its foundation. We have chosen the middleware called
law governed interaction (LGI) for this purpose. LGI
is broadly related to conventional access control (AC)
mechanisms such as RBAC [20] and XACML [14]. But it
differs from them in several aspects that are critical for
decentralizing OSNs; the most important of which are:
(a) LGI is completely decentralized; and (b) it is fully
stateful, which means that it is sensitive to the history
of interaction; and (c) LGI control is quite scalable,
even for stateful policies. But it should be pointed
out that LGI is somewhat incidental to this model, as
one can device other kinds of middlewares that can
serve this purpose. Consequently, we will not make
any systematic comparison here between LGI and other
middlewares, because LGI is not the subject of this
paper—it is just a tool.

We present here only a partial overview of LGI,
focusing on the following key aspects of it, which are
most relevant to this paper: (1) the local nature of LGI
laws (LGI replaces the term “policy” with the term
“law,” for a reason not discussed here); and (2) the
decentralized enforcement of laws. Another important
aspect of LGI is discussed in Section 8. We also give,
below, a simple but complete example of an LGI law
and on its effect.

A more detailed presentation of this middleware,
and a tutorial of it, can be found in its manual
[17]—which describes the release of an experimental
implementation of LGI. For additional information the
reader is referred to a host of published papers, some of
which will be cited in due course.

4.1. LGI Laws, and their Local Nature
Although the purpose of LGI is to govern the exchange
of messages between different distributed actors, the
LGI laws do not do so directly. Rather, a law governs
the interactive activities of any actor operating under it,
in particular, by imposing constraints on the messages
that such an actor can send and receive.

A law L is defined over three elements—described
with respect to a given actor x that operates under this
law: (1) A set E of interactive events that may occur
at any actor, including the arrival of a message at x,
and the sending of a message by it. (2) The control-
state (or, simply, state) Sx associated with x—which is
distinct from the internal state of x, of which the law
is oblivious. And (3) a set O of interactive operations—
such as forwarding a message and accepting one—that
can be mandated by a law, to be carried out at x upon
the occurrence of interactive events at it.

Now, the role of a law is to decide what should be
done in response to the occurrence of any interactive
event at an actor operating under it. This decision,
with respect to an actor x, is formally defined by the
following mapping:

E × Sx → Sx × (O)∗. (1)

In other words, for any a given (event, state) pair, the
law mandates a new state, as well as a (possibly empty)
sequence of interactive operations to be carried out at
x. Note, in particular, that the ruling of the law upon
the occurrence of an event depends on the state of x at
that moment; and that the same law determines how
the state can change. LGI laws are, therefore, stateful—
i.e., sensitive to the history of the interactive-events, at a
given actor x. Moreover, although this is not evident
from the above abstract definition, an LGI law can be
proactive, in that it can force some messages to emanate
from an actor, under certain circumstances, even if the
actor itself did not send such messages—thus these laws
can ensure both safety and liveness properties.

Note that LGI laws are local in the sense that they
depends only the occurrence of events at a single actor,
and on the interactive state of this actor alone; and a law
can effect directly only the interactive behavior of the
actor operating under it. It is worth pointing out that
although locality constitutes a strict constraint on the
structure of LGI laws, it does not reduce their expressive
power, as has been proved in [17]. In particular, despite
its structural locality, an LGI law can have global sway
over a set of actors operating under it.

Finally, note that the law is a complete function,
so that any mapping of the type defined above is
considered a valid law. This means that a law of this
form is inherently self consistent—although a law can, of
course, be wrong in the sense that it may not work as
intended by its designer.

5
EAI Endorsed Transactions on 

Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e3EAI
European Alliance
for Innovation



Zhe Wang and Naftaly H. Minsky

About Languages for Writing Laws: Formula 1 is an
abstract definition of the semantics of laws. It does
not, in particular, specify a language for writing laws.
In fact, the current implementation of LGI supports
three different law-languages, based on Prolog, Java, and
JavaScript—respectively. But the choice of language has
no effect on the semantics of LGI, as long as the chosen
language is sufficiently powerful to specify all possible
mappings defined by Formula 1.

Space limitation preclude the description of any of
these languages, but to give a sense of how LGI operates,
and to illustrate the use of dynamically changing state
of agents for establishing coordination protocol, we
introduce here a simple but potentially useful law,
written in the Prolog-based law-language.

A Law of Polite Conversation—an Example: This
law, which we call the ping-pong law, or LP P , establishes
a communication protocol that may be viewed as
supporting polite conversation. Specifically, the effect
of this law can be described, informally, as follows:
All members of the LP P -community are able to
communicate with each other, via messages of the forms
ping(M) and pong(M)—with arbitrary text M—subject
to the following protocol. Once a member x from this
community sends a ping message—representing such
things as a request or a question—to another member
y, x would not be able to send other pings to y until it
gets a reply from y in the form of a pong messages. And
y can send only one pong message to x for every ping it
gets from it. (The sense in which such exchange may be
considered polite is fairly self evident.)

The formal statement of this law—written in the
Prolog-based law language of LGI, which is a kind
of event-condition-action language—is displayed in
Figure 1. The gist of this law may be clear from its text,
and a complete explanation of it can be found in [17].

P reamble: law(PP,language(prolog)).

R1. sent(X,ping(M),Y) :- not(pingTo(Y)@CS),

do(add(pingTo(Y)),do(forward).

R2. arrived(X,ping(M),Y)

:- do(add(pingFrom(X))), do(deliver).

R3. sent(X,pong(M),Y) :- pingFrom(Y)@CS,

do(remove(pingFrom(Y))),do(forward).

R4. arrived(X,pong(M),Y)

:- do(remove(pingTo(X)@CS)), do(deliver).

Figure 1. The Ping-Pong Law

4.2. The Decentralized Law Enforcement, and the
Concept of L-agent
The local nature of laws enables their decentralized
enforcement, because a law can be enforced on every
actor subject to it with no knowledge of, or dependency
on, the simultaneous interactive state of any other actor
of the system. Such enforcement is scalable even for
highly stateful policies that are sensitive to the history
of interaction (cf. [18]). Here is how the enforcement of
LGI works.

To communicate under a given LGI law L, an actor
x needs to engage a generic software entity called
controller1, which generally does not reside on the host
of its patron x. The controller is built to mediate the
interactive activities of any actor that engages it, under
any well formed law that the actor chooses. Once such
a controller is engaged by an actor x, subject to a law
L, it becomes the private mediator for the interactive
activities of x, and is denoted by T Lx . The pair 〈x, T Lx 〉
is called an L-agent—or, more generally an LGI-agent,
and sometimes simply an agent. And a set of interacting
L-agent, for a given law L, is called an L-community.

Figure 2 depict the manner in which a pair of agents,
operating under possibly different laws, exchange a
message. (An agent is depicted here by a dashed oval
that includes an actor and its controller.) Note the
dual nature of control exhibited here: The transfer of
a message is first mediated by the sender’s controller,
subject to the sender’s law, and then by the controller of
the receiver, subject to its law. This dual control, which
is a direct consequence of the local nature of LGI laws,
has some important consequences which are beyond the
scope of this paper.

Mutual Recognition: It should be pointed out that a
pair of interacting LGI-agents can recognize each other
as such, and can identify each other law by its one-
way hash. This enables them to recognize when they
operate under the same law, thus belonging to the same
L-community. And if they operate under different laws,
they are able to get the text of each other’s law.

About the Trustworthiness of Controllers: Consider
a set S of agents interacting via LGI, and let TS be the
set of controllers employed by them. TS is, essentially
the trusted computing base (TCB) of S. There are several
reasons for trusting the controllers in TS , despite the
fact that unlike most TCBs, TS is to be distributed. Some
of these reasons are, briefly, as follows.

First, TS can be maintained by what is called a
controller service (CoS), which is to be managed by

1Controllers can can actually be hosted by controller-pools, each of
which can host a number of private controllers, which may operate
under different laws.

6
EAI Endorsed Transactions on 

Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e3
EAI

European Alliance
for Innovation



A Novel, Privacy Preserving, Architecture for Online Social Networks

II

CSx CSx’ x’x

L L’

Tx
L

age
nt x

agent x’

Tx’
L’

Figure 2. Interaction between a pair of LGI-agents, mediated by a pair of controllers under possibly different laws.

some trustworthy company—which may well be the
company, or the virtual organization, that uses the CoS
as its TCB. Second, controllers are generic and, like
language compilers, can be well tested, and thus more
trustworthy than the disparate actors that use them.
Third, the distributed TS is more fault tolerant than a
single, central, reference monitor, because it does not
constitute a single point of failure. And, fourth, TS is
more secure than a central, reference monitor, because
it does not constitute a single point of attack.

About Performance: A comprehensive study of the
overhead incurred by LGI control had been published
in [19]. Broadly speaking, this overhead turns out to
be relatively small, often smaller than the overhead
incurred by control mechanisms such as XACML—
beside being scalable. Moreover, this overhead is quite
negligible for communication over WAN. The average
contribution to this overhead by the computation in a
controller was found—in circa 2000—to be around 50
microseconds. It is considerably lower with the present
hardware.

5. A Basic Model of a Decentralized Online Social
Community (DOSC)
We introduce here a model of a decentralized OSN that,
unlike the DOSN architecture, enables the governance
of an OSN via enforced policy—which we call a law—
that can establish its overall structure and behavior. We
call this model DOSC (for Decentralized Online Social
Community); and we refer to a specific OSN under this
model as a DOSC-community, or simply a community.

The DOSC model is generic, and rather abstract,
in the sense that it does not have any built-in
communal structure. But it can support a wide range
of different types of communities, whose structure
and behavior is determined by the laws chosen for
them. We do, however, present a concrete example of a
specific communal structure. This is done in Section 6,
and continues with some more advanced communal
capabilities in Section 7.1.

The model of DOSC described here is basic. Some
more advanced aspects of this model are introduced
in Section 8. This section is organized as follows.

Section 5.1 is a definition of this model; Section 5.2
describes the launching of a DOSC-Community;
Section 5.3 discusses the manner in which such a
community operates; and Section 5.4 discusses the
analysis of networks in the decentralized context of
DOSC.

5.1. A Definition of a DOSC-Community
A community C under the DOSC-model is defined as
a 4-tuple 〈M, L, T , S〉, where M is the set of members
of C; L is the law that governs this community, and is
often denoted byLC ; T is a set of generic LGI controllers
that serve as the middleware trusted to enforce any law
L loaded into them; and S, called the support of C,
is a set of components that provides various services
to community C, and is mostly specific to it. We now
elaborate on this definition of the DOSC-model by
providing some details about its four elements, and
about the relations between them. This overall structure
of a DOSC-community is depicted schematically in
Figure 3.

The Set M of Members of a community: An
individual member x of a community C is a triple
〈user,mediator, database〉, where user is usually a
human, operating via some kind of computational
platform, like a smart phone; mediator is one of the LGI-
controllers in T that mediates all interactions between x
and other members of C, and which has direct access to
both the user of x and its database—subject to law LC ;
and database, is an optional repository of information
that is accessible directly only to the mediator of x, as
well as to the user himself (but the access of the user to
its own database is not subject to the lawLC , as depicted
by dashed arrows in Figure 3.

Note that the function of the database of x—if it
exists—is to maintain information associated with this
member, such as the set of Twitter-like micro-blogs
posted by x, or its Facebook-like page—information
that may be made accessible to other members, via
the mediator, subject to law LC . All such databases,
used by members of a given community, must have
the same APIs, which must be consistent with the
law of that community. (The tool-set associated with

7
EAI Endorsed Transactions on 

Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e3EAI
European Alliance
for Innovation



Zhe Wang and Naftaly H. Minsky

L

S

L

S

L

S

L

S

L

S

L

S

L

S

DB DB

DB

DB

DB DB

DB

UserUser

Controller

Controller

Directory
Law 

Server

L

S

Legend

Member

Support component

Controller with law L and state S

Message between members

Message not subject to the law

Message between parts of a member

Figure 3. The Anatomy of a DOSC Community

the DOSC-model—which is not part of the definition
of this model—contains a tool for constructing and
deploying a database, with a default API. But the law of
a specific community might require a different API; and

the support of that community may contain the means
for constructing databases with that API.)

8
EAI Endorsed Transactions on 

Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e3
EAI

European Alliance
for Innovation



A Novel, Privacy Preserving, Architecture for Online Social Networks

The Law LC of community C: This law endows
a DOSC-community with its overall structure, in
particular by controlling its membership, as well as
the interactive behavior of its members. The generality
of LGI laws (cf. Section 4) endows this model with
great deal of generality regarding the nature of the
community governed by it. In particular, suitable
laws can make a community behave like our medical
consultation community MC, or like the WorkPlace
community WP. For that matter, laws can be written to
create analogs of Facebook or Twitter as well, although
our decentralized model would not be able to sustain
the present size of such OSNs.

The set T of Controllers: T is meant to be the trusted
computing base (TCB) of a DOSC. Every user can create
its own controller, using the software provided by the
released LGI middleware. But if malicious corruption of
controllers by their users is of concern, then it is better
for the members of a community to adopt controllers
created and maintained by a trusted controller service
(CoS), so that they can authenticate each other as bona
fide LGI controllers. For such a CoS to be trusted to
provide genuine controllers, this service needs to be
managed by a trusted organization. In particular, in the
case of bound-community, such as WP, the CoS may be
maintained by the organization in the context of which
the community is to operate—as in the case discussed in
Section 6. It should be pointed out that the organization
that maintains the CoS does not have the kind of access
to the data exchanged between the members of the
community in question for several reasons. First each
individual controller has access only to very small part
of the exchanges, and even these are maintained for
just a fleeting moment. For more about the privacy and
trustworthiness of controllers see Section 4, and the
manual of LGI [17].

The Support S of a Given Community C: A DOSC-
community C may require various services provided
by web-servers that are not themselves member of C;
and, with one exception, most of them are not defined
by the generic DOSC-model. Such services may be
designed specifically for the community at hand, or
may exist independently of it. Member of C interacts
with such services subject to law LC , while the services
themselves may or may not communicate subject to
this or any other LGI-law. The only member of the
support of a community that is required by this model
is the law-server LS, which would contain law LC , and
possibly other laws, as we will see in Section 8. Here
are some examples of other services that may belong
to S: (a) a certification authority (CA), which may be
used for the authentication the various members of the
community; (b) a naming service that provides unique

names of community members; (c) an index service for
searching; and (d) a reputation service that maintains
the reputation of members of C.

Note that the existence of central support service
would not compromise significantly the scalability of
a DOSC-community, if it is used relatively rarely. And
it would not compromise significantly the privacy of
a DOSC-community, if it does not contain sensitive
information. The law-server LS is certainly in this
category, as it is used only when a new member joins
the community, and it is not generally a secret. The
other potential parts of the support, such as the naming

The Profile of members—a Convention: Although
the DOSC model is generic, and has nothing to say
about the structure and behavior of any community
operating under it, we introduce here a useful
convention. It is about what is commonly called a
profile. The profile of a member x, which we denote by
px, is a set of attributes that can be made visible to
other members, subject to the law of the community
in question. Technically the profile of x is part of
the control-state maintained by the controller. And the
specific attributes that belong to the profile and the
manner in which they are created and modified, depend
on the law as well. We will see an example of a profile
in Section 6.

5.2. The Launching of a DOSC-Community

A specific DOSC-community C is launched by con-
structing its foundation, and then having individual
members join it incrementally. The foundation of a
community consists of: (1) the law LC under which
this community is to operate, which is to be placed in
the law-server LS; (2) the controller service CoS, whose
controllers would enforce this law; and (3) the support
S to be used by this particular community. Each of these
parts of the foundation of C can be either built specif-
ically for it, or selected from existing such items. In
particular, the controller service CoS may be managed
and maintained specifically for C, but it may already
exists, serving many different DOSC-communities, as
well as other applications. And some, or all, parts
of the support S of C—such as its CA—may have an
independent existence, serving other applications.

Once the foundation of C exists, anybody can attempt
to join it as a member via the following four steps:
First, the user needs to deploy its private database, if
it is required by law LC . Second, the user needs to
acquire an LGI-controller from the CoS used by C,
and instruct this controller to download law LC from
the law-server. Third, the user must provide its newly
adopted controller with a link to its private database, if

9
EAI Endorsed Transactions on 

Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e3

service, probably belong to this category as well. 

EAI
European Alliance
for Innovation



Zhe Wang and Naftaly H. Minsky

any. Finally, the user should adopt this controller as its
mediator.

Note, however, that the adoption is governed by law
LC , which may require, among other things, certain
certificates to be provided by the user. If the user
does not satisfy the requirements of law LC then the
adoption will fail. This is one way for the law to control
the membership of a given community.

5.3. The Operation of a DOSC-Community

Consider a member x of a community C sending a
message m to another member y. The message first
arrives at the controller of x, that operates under
law LC . If this controller forwards the message m to
y—note that it may decide to block it—then m first
arrives at the controller of y, which decides what to do
with it according to law LC . In other words, members
of a community interact with each other via their
controllers, and the controllers communicate with each
other subject to the law LC of the community.

Figure 3 may help understanding the situation. This
figure depicts several members, represented by ovals,
each of which encloses the three components of a
member: the user, its mediator (controller), and its
(optional) database. The interaction between members,
and between them and the components of the support
is depicted by the thick arrows. The component parts
of a member interact with each other as depicted by
the thin arrows, while the doted arrow represent the
unregulated access that a user has to its own database.

It is worth pointing out here that LGI provides
an important trust modality which is critical to this
model. This trust modality is called law-based trust,
or simply L-trust, which is based on the following
property of LGI: any pair of interacting LGI-controllers
can identify, cryptographically, each other as genuine
controllers, and can identify the law, under which their
interlocutors operate. Now, L-trust can be defined as
follows: members of a community C can trust each other’s
interactive behavior to comply with their common law LC .

Another important observation about the behavior
of a community under this model needs to be made.
The ruling of a law for a given event that occurs at a
controller depends on the state of this controller, which
may be different for different members. This difference
can come from some certificates submitted by the user
to its controller, which may authenticate the role of the
user in the organization in question. And the state may
change dynamically in response to some interactive
activity of the community. For example, the manager
of the community under our WP community, may be
allowed by the law of WP community to transfer its
managerial baton to some other member, which would
then be able to send leave messages, introduced in

Section 3. In other words, the members of a community
C may not be equal under its law LC .

5.4. On the Analysis of Networks
In the context of OSN, a network means a graph
generated by relationships between members, such
as following in Twitter, and friend in Facebook. Such
relationships can be easily represented in a DOSC
by suitable attributes in the profile of members.
Unfortunately, the analysis of the resulting graph is
very hard in our context because it is highly distributed.
However, if such a graph is not considered very
sensitive—for example, if members would not mind
if the information about whom they follow would be
revealed to the public—then analysis of such a graph
can be facilitated in the following way.

First, one builds into the support of the community
a service called Gr, say. Second the law of the
community should be written to ensure that Gr
would be notified whenever the following relation (for
example) is established or removed. So, the entire graph
would be represented in the Gr service, and it can be
analyzed fairly easily by it.

And note that the use of such a central service
as part of a decentralized community does not make
the community significantly less scalable. Because
communication with Gr is done relatively rarely, and
because it is essentially off line—since Gr itself, which
receives all these messages, is not part of the community
itself.

Of course, if the graph in question is too sensitive
to be placed in a central service, this analysis cannot
be done. But this would not be a big loss for many,
if not most, member of a DOSC. First, it seems to us
that network analysis is of interest mostly to researchers
rather to the users of an OSN. And second, such analysis
is less interesting for small and medium size OSNs—
the domain of DOSC—than for the huge OSNs like
Facebook and Twitter.

6. Basic Capabilities of DOSC—an Implemented
Case Study
This is the first part of a description of an implemented
case study, which is meant to serve as a proof of
concept of the DOSC architecture. It also serves here
as a concrete example of the rather abstract model
of DOSC provided above. This case study deals with
the WP community, broadly introduces in Section 2.2;
which is designed to operate in the context of a
large and geographically distributed enterprise E,
providing a micro-blogging for its employees. WP has
been tested with slightly more than two hundred,
mostly simulated, members. This section describes the
implementation of some basic capabilities of DOSC;

10
EAI Endorsed Transactions on 

Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e3EAI
European Alliance
for Innovation



A Novel, Privacy Preserving, Architecture for Online Social Networks

The implementation of more advanced capabilities are
discussed in Section 7.

We start this section with a presentation of the support
of the WP community; and then, in Section 6.2, we
describe various structural and behavioral aspects of it.

6.1. The Support of the WP Community
As mentioned in Section 5, a DOSC-community may
require various services. Our WP community employs
the following three services: a law-server (LS), a
certification authority (CA), and a naming service, which
we call the secretary of this community.

The law-server, which has been introduced in
Section 5, maintains the law of this community. The
CA issues digital certificates to the employees of
E, certifying some of their attributes, such as their
unique names within E, the role they play within this
enterprise, etc. Finally, the secretary plays several roles
in this community. First, it receives and maintains the
certified name of every new member of WP. Second, it
ensures that a given employee can be a member of WP
just once. And third, the secretary serves as a location
service, which is available for use by all members to
WP. We do not show here the detailed implementation
of such a secretary, and its use. But such details are
provided by [30], where we also show how a secretary
can implement pseudonymous naming structure.

6.2. On the Structural and Behavioral Nature of the
WP Community
We start with some comments about the pseudo code we
use for describing the law that governs this community.
We then discuss how a user becomes a member of the
WP community and its groups, how it configures its
profile, and how a member is removed. Finally, we
discuss one of the forms of communication between
members, and how it is regulated.

On the Description of the Law of the WP Community:. We
describe here the law LWP of the WP community via
a pseudo-code consisting of event-condition-action rules.
This informal code is fairly close to the the Prolog-based
law-language of LGI. The event-condition-action rules
that constitute the pseudo-code used below have the
form:

UPON <e> IF <c> DO <[o]>

where e is an interactive event that occurs at one of
the members of the community—or, more precisely, at
the controller of this member; c is the condition of this
rule, defined over the event itself, and over the state
of the controller at hand; and [o], the action, is a list
of one or more primitive operations. These rules are
evaluated from top down, until the condition of one of

them succeed—the action o of this rules is the ruling of
this law.

Also, the following notations are used in this pseudo-
code: (a) sent(x,m,y) denotes a sent event, namely the
sending the message m by x to y; (b) arrived(x,m,y)
denotes an arrived event, namely the arrival at agent y
of message m from x; (c) forward(x,m,y) denoted the
primitive operation that forwards message m from x to
y; (d) deliver represents a permission for the actor to
accept the message arriving at it; (e) add(t) operation
adds term t to the control-state; and (f) remove(t)

operation removes from the control-state a term that
matches t, if any.

The law LWP —described via this pseudo code—is
split into several parts, according to their functional-
ities. For the sake of brevity, we introduce here only
the parts of LWP that deal with the functionalities
discussed here.

Member Profile and Membership Control:. What we call
a profile of a member is a set of attributes maintained
in its control-state, that is, the state maintained by
the controller of this member. All these attributes
are visible to the law of this DOSC, and can
be made visible to other members of the DOSC,
subject to its law. We distinguish between three types
of these attributes: (a) Authenticated Attributes; (b)
Discretionary Attributes; and (c) Controlled Attributes.
The Authenticated Attributes are those provided by
the certificate used by an employee for joining this
community. They include the name of the employee,
its role, and the group (or groups) to which it belongs,
etc. These attributes are not mutable, and can thus
be easily used for indexing. But we have implemented
here only name-based index, provided by the secretary.
The Discretionary Attributes are those that a member
can define and modify at will, to be visible by all
members of the DOSC—they may contain such things
as the interest or expertise of the member. Finally, the
Controlled Attributes are those whose very existence, and
the manner they are defined and updated is governed
by the law—they include, in particular, a follower list
and a list of last ten posts the member published.

Now, to join the community, a member needs to adopt
a controller under law LWP . Rule R1 allows a user to
join the community by presenting a certificate signed
by the CA employed by the enterprise in question, to
authenticate its employees. Once certificate is verified
by the controller, the set of attributes will be inserted
into the user’s profile. An example of an attribute
is role(manager). The certified name gets sent to the
secretary of the naming service. Rule R2 enables a
member to add discretionary attributes to its profile,
and Rule R3 enables their update.

Rule R4 enables a member to add an attribute called
filter to its control-state. As we shall see below, the filter

11
EAI Endorsed Transactions on 

Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e3
EAI

European Alliance
for Innovation



Zhe Wang and Naftaly H. Minsky

R1. UPON adopted(X,cert(issuer(ca),

subj(X),attr(A)))

DO[ add(A), forward(X, A(name(N)),

Secretary)]

R2. UPON sent(X,

addProfile(Attribute(Value)),X)

IF ¬ (Attribute in

reservedAttributes)

DO[add(Attribute(Value))]

R3. UPON sent(X,

updateProfile(Attribute(Value)),X)

IF ¬ (Attribute in

reservedAttributes)

DO[remove(Attribute),

add(Attribute(Value))]

R4. UPON sent(X,

addFilter(Attribute(Value)),X)

DO[add(filter(Attribute(Value)))]

R5. UPON sent(X,#leave#,Y)

IF role(manager)@p_x DO[forward]

R6. UPON arrived(X,#leave#,Y)

DO[Quit]

Figure 4. Law LWP : Member’s Profile and Membership Control

will provide the means for the member in question to
block a specified set of members from following him.

Finally, rules R5 and R6 regulate the removal of
members from the community. Rule R5 enables only a
manager can remove a member from the community,
by sending the message leave to it—which, according
to Rule R6, would cause the removal of this member
from the community. Non-managers are not allowed to
to send the messages leave.

Communication:. There are three modes of communica-
tion in this community: direct messaging, post/follow
and narrowcasting. Direct messaging allows members
to send messages to each other when specifying the
address of the receiver as the destination. Post/follow is
an analogy to Twitter’s tweet/follow mechanism, where
members can subscribe to another member and get
notification when there is a new post. Narrowcasting
is a mechanism for sending a message to a group of
members whose profile satisfies a specified condition.
All messages and post in this system have a type asso-
ciated with them, which is analogous to the concept of
hashtag in twitter. For the sake of simplicity, we discuss
here only the details of post/follow, and we discuss
narrowcasting in Section 7.1—we do not discuss in this

paper the simplest of these modes of communication,
i.e., direct messaging.

The control over communication via post/follow has
two complementary parts: global and local. The global
control is imposed on every member of the community,
but can be sensitive to the profile of members, while
the local control is discretionary to each member. We
discuss both controls below, and the law that establishes
them.

R7. UPON sent(X,requestFollowing,Y)

DO[forward(X,requestFollowing(p_x),

Y)]

R8. UPON
arrived(X,requestFollowing(p_x),Y)

IF G(p_x, p_y) and ( filter(F)@CS

and F(p_x) )

DO[updateFollowerList]

R9. UPON sent(X,post(P),X)

IF typeof(P) = ¬#management#
or ( typeof(P) = #management# and

role(manager)@p_x )

DO[updateProfile(lastTenPosts(P)),

updateDB(P),

forward(X,P,followerList)]

R10.
UPON arrived(X,P,Y)

DO[deliver]

Figure 5. Law LWP : Communication

Global Control: The global control over post/follow
is imposed on both posting and following. The control
over posting is on what types of posts members can
send. For example, only managerial staff can send posts
with type management.

The control on following regulates who can follow
whom. Essentially, it is defined in the law by a
constraint on the profiles of publisher and follower. An
example of such global policies is that only the members
from a same group can talk to each other. The problem
is that there is no single place where these profiles can
be evaluated because of the decentralization. To solve
this problem, our law forces every following request
to include the profile of the follower. And then the
constraint will be evaluated at the publisher side. The
example we just mentioned can be achieved by checking
the profiles of the publisher and follower and rejecting
the following request if the two members are from
different groups.

12
EAI Endorsed Transactions on 

Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e3EAI
European Alliance
for Innovation



A Novel, Privacy Preserving, Architecture for Online Social Networks

Local Control: If one does not want to be followed by
certain members, it can block the following requests
from them. To achieve this, a member can add a term
filter to its control-state, which is a local constraint
on the profile of the would be follower. Whenever a
member f sends a following request to a member s,
it will be forced to attach its profile pf along with it.
When the request arrives at the publisher’s controller, f
will not be added to s’s follower list if its profile does
not satisfy the filter.

The Law: The rules of law LWP that implements these
provisions are defined in Figure 5 and described below.

According to Rule R7, any one can send a following

request to any member. The controller will attach its
profile to the request. By Rule R8, when the request
arrives at a member, the controller checks whether
the global constraint, denoted by G in the law, on
the profiles of publisher and following requester is
satisfied. Then the controller will also check whether
there is a filter in its profile. If there is none, the
controller can add the requester to the follower list. If
there is a filter, the controller will examine whether the
filter on the profile of the requester. If both conditions
are satisfied, the controller will add the requester to the
follower list.

In Rule R9, when a member wants to send a post to
its followers, the controller will read its follower list
and send the post to each of them. It will also update
its database and an attribute called lastTenPosts in its
profile. A management post is allowed to be sent only
when the publisher has the attribute role(manager) in its
profile. When the follower receives the post, according
to the Rule R10, controller will deliver the post to it.

7. Privacy-Preserving Narrowcasting and
Profile-Based Search—the Case Study Continued
We introduce in this section two important capabilities
available under the basic model of DOSC. They have
been fully implemented in our case study, but omitted
from Section 6 for the sake of simplicity. These
capabilities are: (1) privacy-preserving narrowcasting;
and (2) profile-based search, which is really an
application of narrowcasting. Both of these capabilities
are essential for many kind of OSNs, and are not
available under DOSN.

7.1. Privacy-Preserving Narrowcasting
By the term narrowcasting we mean here the delivery
of a message to a subset of the membership of a
community, consisting of the members whose profile
satisfies a given condition. We define a narrowcast
as a pair 〈M,C〉, where M is the messages to be
delivered to every community member x, whose profile

px satisfies condition C. This is obviously very useful
mode of communication, particularly for fairly large
OSNs, where members are generally not familiar with
most of their peers, but may knows what kind of people
they wants to communicate with.

It is easy to provide for narrowcasting in centralized
OSN, because its host has direct access to all profiles
of the members of a community in question. But
it is problematic under decentralized OSN, whose
profiles are maintained locally at each member. Yet,
narrowcasting can be accomplished reasonably well
even in a decentralized OSN via what is called gossip (or
flooding) protocol. We will not describe here the Gossip
protocol in details, except of saying that it is analogous
to the real life process of gossip. But the following
aspect of this protocol is important for what follows.
Although the message M of a narrowcast 〈M,C〉, is to
be delivered only to its intended targets—i.e., to the
community members whose profile satisfies condition
C—practically all members of the community need to
participate in the transfer of this message to its targets.
We call these non-target participants in the gossip of a
given narrowcast its conveyors, as their role is to help in
the transmission of message M to its various targets.

The gossip protocol has two well known drawbacks,
which are not very serious for its use in OSNs.
First, gossip is not a very efficient way to do either
narrowcasting or broadcasting. But the experience of
Gnutella [21] with gossip, and our own experience
with it [15] demonstrated that if the gossip protocol is
carried out correctly by all its participants, its speed
is sufficient for human interaction, even for fairly
large communities with tens of thousands of members.
Second, gossip-based narrowcasting is likely to miss a
small percentage of its targets. But this is not considered
a serious problem for many applications.

There are, however, two additional problems with
gossip-based narrowcasting, which cannot be addressed
under the DOSN architecture, but can be addressed
under DOSC, because of its ability to impose constraints
on the interaction between its members.

One of these problems is that the gossip protocol
can be seriously undermined by the malicious or
inadvertent misbehavior of even one of its participants.
But as we have shown in [15] this problem can be
addressed by defining a key part of this protocol via
an LGI law, which is imposed on all participants in the
gossip process. The second problem is that he gossip
process poses a serious risk to the privacy of members.
We describe this risk below, along with a way to counter
it.

The Risk to Privacy posed by gossip-based Narrow-
casting, and its Mitigation: The risk to privacy in
question is that once a conveyor gets a narrowcast
〈M,C〉, to convey to others, it can read it itself, although

13
EAI Endorsed Transactions on 

Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e3
EAI

European Alliance
for Innovation



Zhe Wang and Naftaly H. Minsky

a narrowcast is intended only for its targets, and not for
its conveyors. This is a massive privacy violation as the
number of conveyors for a given narrowcast is likely to
be far higher than the number of its targets; and all of
them can get information not intended for them.

But this problem can be solved under DOSC, because
under this architecture, it would be the mediator part
of the conveyor that gets the narrowcast, not its user.
And the mediator is a trustworthy LGI controller that
operates subject to the law L of the community in
question. So, one can prevent this privacy violation
by writing this law to have a conveyor to just convey
this message according to the gossip-protocol, but
not to deliver it to its own user. Law LWP of the
WP community, introduced in Section 6, supports
narrowcasting in this way, although this part of LWP
has not been discussed in that section. A simplified
version of the part of LWP that handles narrowcasting
is displayed in Figure 6.

R11.
UPON sent(X,narrowcast(M,C),X)

DO[forward(X, narrowcast(M,C,p_x),

X)]

R12.
UPON arrived(X,narrowcast(M,C,p_x),Y)

IF C(p_y)

DO[deliver,

forward(Y, narrowcast(M,C,p_x),

followerList)]

R13.
UPON arrived(X,narrowcast(M,C,p_x),Y)

IF ¬C(p_y)
DO[forward(Y, narrowcast(M,C,p_x),

followerList)]

Figure 6. Law LWP : Narrowcast

Here is how narrowcasting operates under the this
simplified part of LWP . First, a narrowcast 〈M,C〉,
is initiated by a member x0 sending the message
narrowcast(M,C) to itself, and Rule R11 attaches the
profile of the initiator x0 to this message.

Second, the arrival of this message at any member y,
who may be the initiator x0, is handled by RuleR12 and
if this rule fails, then by Rule R13. Rule R12, succeeds
if condition C(py) is satisfied, that is, if y is a target.
The ruling of this rule will be to deliver the message
to y, and then to “gossip” it to its set of followers
(actually to a relatively small part of the followers, but
we are simplifying here). Alternatively, Rule R13 will
be evaluated and will succeed because now the the
condition C(py) is not satisfied, and its ruling is not to

deliver this message to y, because y is not a target, but to
gossip it farther.

Note, however that this partial version of the
treatment of narrowcasting is oversimplified to the
point of being incorrect. It is incorrect because it
does not have any way of stopping the gossip process.
This is provided by the actual gossip protocol, which
is part law LWP ; this protocol also ensures that
the narrowcasting would not overwhelm the whole
community. There are two further aspects of law
LWP which are missing here. One is the imposition
of a global constrain on who can target whom by
narrowcasting. Second this law enables the arrival of a
narrowcast at its nominal target to be blocked by the
local filter defined by his target.

Finally, one has to take into account the unlikely
possibility that a controller t serving as the mediator of
member x has been corrupted so that would deliver to
its user all narrowcasts arriving at it, whether x is their
target or not. In this way the user of x would siphon
in practically all narrowcast communication between
members of the community, which could be a massive
violation of privacy, of practically all members of the
community.

This risk to privacy can be mitigated by systemati-
cally and periodically replacing the controller of every
member of a community, with a fresh controller—which
can be done while the community operates. The code
of the replaced controller can then be refreshed, and
these controllers can be reused to serve other members.
In this way, a corrupt controller would have only a
relatively short span of time for getting illegal messages.

7.2. Profile-Based Search
Profile-based search is a necessary capability for any
but the smallest OSNs. One can provide for such a
search in a decentralized OSN simply by maintaining
the profiles of all he members of the community in a
central database. But this would endanger the privacy
of community member. This is probably the reason why
none of the proposed DOSNs support such search.

Fortunately, under DOSC, profile based search can
be carried out via narrowcasting, in the following way:
the message M delivered to the group of peers whose
profile satisfies condition C can be a request to all of
them to identify themselves via a return message.

8. Hierarchical Organization of DOSCs—an
Extension of the Basic DOSC Model
Communities under our basic DOSC model are
monolithic, in a sense that their structure is defined
by a single law. Such a law may distinguish between
members based on their profile. For example, the law
of the WP community, uses this method to make

14 EAI Endorsed Transactions on 
Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e3

EAI
European Alliance
for Innovation



A Novel, Privacy Preserving, Architecture for Online Social Networks

distinctions between its members based on the groups
to which they belong. But it could be useful for large
and heterogeneous community to provide its subgroups
with a limited of autonomy—i.e., the freedom to define
their all laws, and to change them at will, while
conforming to the law of the community at large. Such
capabilities of DOSCs can be established via the concept
of conformance hierarchy of laws of LGI [4], which is
described broadly in Section 8.1.

We then introduce briefly two different, and very
beneficial, extensions of the basic DOSC model, whose
implementation is beyond the scope of this paper. The
first of these, discussed in Section 8.2, enables the

second extension, discussed in Section 8.3, enables the
support of families of DOSC-communities.

8.1. The Concept of Conformance Hierarchy
LGI enables the organization of a collection of laws
into what is called a conformance hierarchy. This is a
tree of laws, rooted by law called LR, in which every
law, except of the root LR itself, conforms transitively
to its superior laws, in a sense to be described below.
Moreover the conformance relation between laws is
inherent in the hierarchy, requiring no extra validation.
For a formal definition of such hierarchy of laws, and a
detailed example of its use, see [4]; here we provide just
an informal introduction of this concept.

Under access control [5, 14], the conventional view
of conformance between policies is as follows: policy P ′

conforms to policy P if and only if P ′ is more restrictive than
P , or equal to it. But this simple view of conformance
would not do for LGI-laws, for the following reason:
The ruling of an LGI-law is not confined to a decision
whether to approve or reject an action by an actor; it
can also require some other actions to be carried out
in response to an event—such as changing the state of
the acting agent in a specified manner, or changing the
message being sent, and its target,in some way. And it
is generally not meaningful to ask if one such action
is more or less restrictive than another. So, instead of
using a uniform definition of conformance, based on
restrictiveness, LGI lets each law define what it means
for its subordinates to conform to it. This is done,
broadly, as follows.

A law that belongs to a conformance hierarchy has
two parts, called the ground part and the meta part.
The ground part of a law L imposes constraints on
interactive behavior of the actors operating directly
under this law—it has the structure defined by
Formula 1. While the meta part of L circumscribes the
extent to which laws subordinate to L are allowed to
deviate from its ground and meta parts. In particular,
this allows a law, anywhere in this hierarchy, to
make any of its provisions irreversible by any of its

subordinate law, by not permitting any deviation from
it, by any of its subordinate laws. But it can also permit
subordinates to either weaken or strengthen some of its
own provisions.

One application of such conformance is setting
out defaults. For example, the root law LR may
prohibit all interaction between actors, while enabling
subordinate laws to permit such interaction, perhaps
under certain conditions. Alternatively, law LR may
permit all interaction, while enabling subordinate laws
to prohibit selected interactions.

On the Structure and Formation of a Conformance
Hierarchy of Laws: A conformance hierarchy H is
formed incrementally via a recursive process described
informally below. First one creates the root law LR of H .
Second, given a law L already in H , one defines a law
L′ , subordinate to L, by means of a law-like text called
delta, denoted by ∆(L,L′), which specifies the intended
differences between L′ and L. Now, law L′ is derived
dynamically from law L and ∆(L,L′), essentially by
dynamic consultation, as described informally below.

Consider the special case involving the root law LR,
and its subordinate law Ls derived from LR by the delta
∆(LR,Ls). And consider an agent x operating under law
Ls. Now, when an event e occurs at an agent x it is
first submitted to law LR for evaluation. Law LR may
consult the delta ∆(LR,Ls) of Ls before deciding on its
ruling—although it may, instead, render its own ruling,
not involving the delta. If consulted, the delta will do
its own evaluation of this event, and will return its
advice about the ruling to law LR. LR would render its
final ruling about how to respond to event e, taking the
advice of the delta into account—but not necessarily
accepting it, because this advice might contradict the
meta part of LR. In this way, the dynamically derived law
Ls naturally conforms to its superior law LR, requiring no
further verification.

A notable property of the hierarchical organization
of laws is that interacting agents operating under laws
in a common hierarchy can identify the position of each
other’s laws within this hierarchy.

8.2. Handling Complex Multi-Group DOSCs

Consider a DOSC-community WP’, which is similar to
community WP presented in Section 6, except that it
is governed by a hierarchical law-ensemble H like the
one depicted in Figure 7. People who belong to group
g1, for example, are meant to operate subject law Lg1,
while people who belong to subgroup g11 are meant to
operate under law Lg11; and those who belong to the
enterprise in question, but not to any of these groups
are meant to operate subject to the root law LR. These
laws may accept only the people who certify themselves

15 EAI Endorsed Transactions on 
Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e3

handling of very complex Multi-Group DOSCs.       The

EAI
European Alliance
for Innovation



Zhe Wang and Naftaly H. Minsky

LR

Lg1 Lg4Lg2 Lg3

Lg11 Lg12 Lg13

Figure 7. A Hierarchical Law-Ensemble that Governs a Complex DOSC-Community

as belonging to the enterprise at large, and to a specific
group, if any.

Law LR of H would be written to establish the various
provisions that are to be shared by all groups. Such as
membership control in the community at large, and the
various modes of communication like direct messaging
and narrowcasting. It might also regulate the inter-
group communication. The laws of a particular group,
can provide control over the membership in this group,
as well as over its intra-group communication.

Note that the creation of a new group to WP’ can
be done very flexibly—unless this is prohibited by
the root law—without changing anything else in this
community. Every such addition requires the creation
of a new law, as subordinate of law LR. The changing of
the law of a group is similarly flexible.

A very important consequence of such hierarchical
organization of laws is that it facilitates seamless
interoperability between different groups, provided
that the laws of the respective groups permits
exchange of messages between them on the basis that
they both conform to the root law. This would be
possible, however, only if such interoperability is not
prohibited by the root law. For much more about this
interoperability, and its advantages, the read is referred
to [4].

8.3. Supporting Families of DOSC-Based
Communities
Consider a family of DOSCs—such as support groups
of people who suffer from various diseases—which may
have nothing to do with each other but have similar
structures. For example they may require similar
capabilities, such as narrowcasting, and may used the
same mode of addressing, such as anonymous. But
despite such similarities, the individual DOSCs may
want to establish their own structure. In particular, it

is likely that each such DOSC would want to establish
its own membership control.

This can be easily accomplished via a conformance
hierarchy H , whose root law includes what is common
to a given family of DOSCs, while each individual
DOSC in this family has its own provision formulated
by a law subordinate to the root of H . This arrangement
can be facilitated by having the entire hierarchy H
maintained by a single publicly available law-server.
The structure and API of such a law-server would
depend on the nature of the family of DOSC that it
serves.

9. On the Performance of DOSC, its Drawbacks,
and an Open Problem Raised by it
Performance: Recall that in a paragraph called
“performance” in Section 4.2 we reported that the
the overhead incurred by LGI controllers is relatively
small—often smaller than the overhead incurred by
control mechanisms such as XACML. And given that
the computation time of a controller is about 50
microseconds, depending on the complexity of the law
in question, it is quite negligible for communication
over WAN. Moreover, the enforcement of laws is
scalable, being decentralized.

That said, certain operations such as narrowcasting
and profile-based search, which require access to all
members of the community, are clearly less efficient
under DOSC than under the centralized OSN. And
they are not scalable under DOSC. Yet for small
and medium size communities (up to few scores of
thousands of members), the narrowcasting generally
concludes virtually instantaneously, from the viewpoint
of a human user. We have using DOSC-like control over
narrowcasting in Gnutella [21], which had close to 20
thousands of distributed members, and the response
was almost instantaneous. Of course this would not

16
EAI Endorsed Transactions on 

Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e3
EAI

European Alliance
for Innovation



A Novel, Privacy Preserving, Architecture for Online Social Networks

be the case with a community of the size of the
membership of Facebook.

Drawbacks: Besides the limited scalability of narrow-
casting, we see two limitations of DOSC. The first of
these can be viewed as an advantage, and the sec-
ond is fairly minor. The first limitation is that unlike
a centralized OSN, DOSC does not lend itself to an
analysis of everything that happened in the community
in the past, because the history of the communication
between community members is not maintained. This
is a problem for researchers who wish to study such
communities, but one may view as an advantage to most
community members, for privacy reasons.

The second limitation of DOSC is for communities
that requires its members to maintain a database of
their past contributions, as is required by our case study
of the WP community. A centralized OSN would keep
such contribution on their web site. But DOSC requires
each member to have its own database maintained
somewhere, and be more or less always available.
However, the easy and cheap availability of space on
the cloud makes this limitation of little importance.
Besides, some DOSCs—like the medical consultation
community MC described in Section 2.1, which has also
been implemented as a DOSC—are just conversational,
and do not require any databases.

On the Evolution of the Law of a DOSC, while the
Community Operates—an Open Problem: Like any
other piece of software, the law of a DOSC is bound
to change. The problem addressed here is how to
enable safe change of the law of a given community
while this community continues to operate. We refer
to such a change as being in vivo (i.e., carried out in a
living organism, as it where). The importance of such
evolution for a long lived system that must operate
continuously is self evident.

The main difficulty with carrying out in-vivo
evolution of laws stems from the decentralized
nature of our enforcement mechanism. This means,
in particular, that in order to update a law L to
L′ one needs to update the law in all controllers
associated with actors operating under law L in a
virtually atomic manner. By “virtually atomic” we
mean, in particular, that during the distributed update
process no functionally meaningful messages should
be exchanged between agents operating under different
versions of the law. We have solved [23] this problem for
a group of agents operating under a single law. But the
in vivo evolution of laws belonging to an hierarchical
law ensemble is still an open problem.

10. Related work

The concern about the privacy issues of centralized
OSNs motivated several attempts to decentralize them,
creating several versions of DOSNs. These include
PeerSoN[6–9, 24], Safebook[10–12], and LotusNet [2,
3]; as well as some others [1, 13, 16, 22, 25, 26,
29]. The basic idea underlying all these projects is
that each member of the social networks keeps the
data under its own control, instead of surrendering
it to a central host. This is a necessary measure of
decentralization, but it is not sufficient. As explain in
Section 1, OSNs need to be governed by policies (or,
in our terminology, laws) regarding their membership
and the interactions between its members. But none of
the variants of DOSNs known to us provides any means
for establishing such global policies. Consequently, they
are unable to provide privacy-preserving narrowcasting
and profile-based search—capabilities that are very
important for OSNs.

Moreover, the indexes provided by many of the
DOSN variants, are based on distributed hash table
(DHT), whose components are managed by the
members of the DOSNs at hand. But these members
are heterogeneous, and not particularly reliable or
trustworthy, and any one of them can compromise the
DHT, either inadvertently or maliciously, as has been
argued in [27]. In fact, a DHT can be made much more
secure under DOSC, if it is managed subject to an
appropriate law, like the rest of a DOSC-community. We
did not do it in this paper. Instead, we implemented our
name-index via a central service, which can be made
much more secure than DHT under DOSNs.

10.1. Relationships of this Paper to Previous Work
by the Authors

Besides the use of the LGI—our own middleware—as a
basis for DOSC, we have published three papers that are
related to social networks, and one of them is a direct
precursor to the present work.

The first of these papers [15] implemented essentially
our medical consultation MC example of an OSN in
Section 2.1. It was done in a decentralized manner,
providing secure gossip-based communication, but
without the mechanism used here for ensuring that
conveyors do not read all messages. The second paper
[30] implemented some aspects of our WorkPlace WP
example of an OSN in Section 2.2. Neither of these
papers introduced a generic model of decentralized
OSNs—not surprising, perhaps, as these papers were
written before the concept of OSN became popular,
or before it existed. The third paper [28] is a direct
precursor of the present one, as it introduced what we
call here the “basic DOSC model.”

17 EAI Endorsed Transactions on 
Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e3

EAI
European Alliance
for Innovation

EAI
European Alliance
for Innovation



Zhe Wang and Naftaly H. Minsky

The main novelties of the present paper relative
to our previous work: These novelties are mainly:
(1) privacy-preserving narrowcasting; (2) privacy-
preserving profile-based search; and (3) the hierarchical
structure of DOSC. mentioned above, is the advanced
model of DOSC introduced in Section 7.

11. Conclusion
The centralized nature of conventional OSNs poses
serious risks to the privacy and security of informa-
tion exchanged between their members. These risks
prompted several attempts to create decentralized
OSNs, or DOSNs. The basic idea underlying these
attempts, is that each member of a social network keeps
its data under its own control, instead of surrendering
it to a central host; providing access to it to other
members according to its own access-control policy.
Unfortunately all existing versions of DOSNs have a
very serious limitation. Namely, they are unable to
subject the membership of a DOSN, and the interaction
between its members, to any global policy—which is
essential for many social communities. Moreover, the
DOSN architecture is unable to support useful capabil-
ities such as narrowcasting and profile-based search.

We described in this paper a novel architecture
of decentralized OSNs—called DOSC, for “online
social community”. DOSC adopts the decentralization
idea underlying DOSNs, but it is able to subject
the membership of a DOSC-community, and the
interaction between its members, to a wide range of
policies—including privacy-preserving narrowcasting
and profile-sensitive search. Moreover, DOSC’s control
over the interaction between its members is scalable.
Furthermore, DOSC provides flexible supports for
complex, multi-group, communities; as well as to
families of distinct communities.

References
[1] S. M. A. Abbas, J. A. Pouwelse, D. H. J. Epema, and

H. J. Sips. A gossip-based distributed social networking
system. In Proceedings of the 2009 18th IEEE International
Workshops on Enabling Technologies: Infrastructures for
Collaborative Enterprises, WETICE ’09, pages 93–98,
Washington, DC, USA, 2009. IEEE Computer Society.

[2] Luca M. Aiello and Giancarlo Ruffo. LotusNet: Tunable
privacy for distributed online social network services.
Computer Communications, December 2010.

[3] Luca Maria Aiello and Giancarlo Ruffo. Secure and flexi-
ble framework for decentralized social network services.
In Pervasive Computing and Communications Workshops
(PERCOM Workshops), 2010 8th IEEE International Con-
ference on, pages 594–599. IEEE, 2010.

[4] Xuhui Ao and Naftaly H Minsky. Flexible regulation of
distributed coalitions. In Computer Security–ESORICS
2003, pages 39–60. Springer, unknown, 2003.

[5] A. Belokosztolszki and K. Moody. Meta-policies for
distributed role-based access control systems. In Proc. of

the IEEE 3rd International Workshop on Policies, Monterey,
California, pages 106–15, June 2002.

[6] Oleksandr Bodriagov and Sonja Buchegger. Encryption
for peer-to-peer social networks. In SocialCom/PASSAT,
pages 1302–1309. IEEE, 2011.

[7] Oleksandr Bodriagov and Sonja Buchegger. P2p social
networks with broadcast encryption protected privacy.
In Privacy and Identity Management for Life, pages 197–
206. Springer, 2012.

[8] Sonja Buchegger and Anwitaman Datta. A case for
p2p infrastructure for social networks - opportunities
& challenges. In Proceedings of the Sixth international
conference on Wireless On-Demand Network Systems and
Services, WONS’09, pages 149–156, Piscataway, NJ, USA,
2009. IEEE Press.

[9] Sonja Buchegger, Doris Schiöberg, Le-Hung Vu, and
Anwitaman Datta. Peerson: P2p social networking: early
experiences and insights. In Proceedings of the Second
ACM EuroSys Workshop on Social Network Systems, SNS
’09, pages 46–52, New York, NY, USA, 2009. ACM.

[10] L. A. Cutillo, R. Molva, and T. Strufe. Safebook: A
privacy-preserving online social network leveraging on
real-life trust. Comm. Mag., 47(12):94–101, December
2009.

[11] Leucio Antonio Cutillo, Refik Molva, and Thorsten
Strufe. Safebook: Feasibility of transitive cooperation
for privacy on a decentralized social network. In
WOWMOM, pages 1–6. IEEE, 2009.

[12] LeucioAntonio Cutillo, Refik Molva, and Thorsten
Strufe. On the security and feasibility of safebook:
A distributed privacy-preserving online social network.
In Michele Bezzi, Penny Duquenoy, Simone Fischer-
HÃĳbner, Marit Hansen, and Ge Zhang, editors, Privacy
and Identity Management for Life, volume 320 of IFIP
Advances in Information and Communication Technology,
pages 86–101. Springer Berlin Heidelberg, 2010.

[13] Anwitaman Datta, Sonja Buchegger, Le-Hung Vu,
Thorsten Strufe, and Krzysztof Rzadca. Decentralized
online social networks. In Handbook of Social Network
Technologies and Applications, pages 349–378. Springer,
2010.

[14] S. Godic and T. Moses. Oasis extensible access control.
markup language (xacml), version 2. Technical report,
Oasis, March 2005.

[15] M. Ionescu, Naftaly H. Minsky, and T. Nguyen.
Enforcement of communal policies for peer-to-peer
systems. In Proc. of the Sixth International Conference on
Coordination Models and Languages, Pisa Italy, February
2004.

[16] Andreas Loupasakis, Nikos Ntarmos, and Peter Tri-
antafillou. exo: Decentralized autonomous scalable
social networking. In CIDR, pages 85–95, 2011.

[17] Naftaly H. Minsky. Law Governed Interaction (LGI):
A Distributed Coordination and Control Mechanism (An
Introduction, and a Reference Manual). Rutgers, February
2006. (available at http://www.moses.rutgers.edu/).

[18] Naftaly H Minsky. Decentralized governance of
distributed systems via interaction control. In Logic
Programs, Norms and Action, pages 374–400. Springer,
unknown, September 2012.

18
EAI Endorsed Transactions on 

Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e3EAI
European Alliance
for Innovation



A Novel, Privacy Preserving, Architecture for Online Social Networks

[19] Naftaly H. Minsky and V. Ungureanu. Law-governed
interaction: a coordination and control mechanism for
heterogeneous distributed systems. TOSEM, ACM
Transactions on Software Engineering and Methodology,
9(3):273–305, July 2000.

[20] S. Osborn, R. Sandhu, and Q. Munawer. Configuring
role-based access control to enforce mandatory and
discretionary access control policies. ACM Transactions
on Information and System Security, 3(2):85–106, May
2000.

[21] Matei Ripeanu. Peer-to-peer architecture case study:
Gnutella network. In Peer-to-Peer Computing, 2001.
Proceedings. First International Conference on, pages 99–
100. IEEE, 2001.

[22] Daniel Sandler and Dan S. Wallach. Birds of a
fethr: open, decentralized micropublishing. In Rodrigo
Rodrigues and Keith W. Ross, editors, IPTPS, page 1.
USENIX, 2009.

[23] C. Serban and Naftaly Minsky. In vivo evolution of
policies that govern a distributed system. In Proc. of the
IEEE International Symposium on Policies for Distributed
Systems and Networks, London, July 2009.

[24] Rajesh Sharma and Anwitaman Datta. Super-
Nova: Super-peers Based Architecture for Decentralized
Online Social Networks. Computing Research Repository,
abs/1105.0, 2011.

[25] Patrick Stuedi, Iqbal Mohomed, Mahesh Balakrishnan,
Zhuoqing Morley Mao, Venugopalan Ramasubramanian,
Doug Terry, and Ted Wobber. Contrail: Enabling
decentralized social networks on smartphones. In

Middleware, pages 41–60, 2011.
[26] Sebastian Tramp, Philipp Frischmuth, Timofey Ermilov,

Saeedeh Shekarpour, and SŽren Auer. An Architecture
of a Distributed Semantic Social Network. Semantic
Web Journal, Special Issue on The Personal and Social
Semantic Web, 2012.

[27] Guido Urdaneta, Guillaume Pierre, and Maarten Van
Steen. A survey of dht security techniques. ACM Comput.
Surv., 43(2):8:1–8:49, February 2011.

[28] Zhe Wang and Naftaly Minsky. Establishing global
policies over decentralized online social networks. In
Proc. of the 9th IEEE International Workshop on Trusted
Collaboration, October 2014.

[29] Tianyin Xu, Yang Chen, Jin Zhao, and Xiaoming
Fu. Cuckoo: towards decentralized, socio-aware online
microblogging services and data measurements. In
Proceedings of the 2nd ACM International Workshop on Hot
Topics in Planet-scale Measurement, HotPlanet ’10, pages
4:1–4:6, New York, NY, USA, 2010. ACM.

[30] Wenxuan Zhang, Constantin Serban, and Naftaly H.
Minsky. Establishing global properties of multi-agent
systems via local laws. In Danny Weyns, editor,
Environments for Multiagent Systems III, LNAI 4389.
Springer-Verlag, 2007.

[31] Dejin Zhao and Mary Beth Rosson. How and why people
twitter: the role that micro-blogging plays in informal
communication at work. In Proceedings of the ACM
2009 international conference on Supporting group work,
GROUP ’09, pages 243–252, New York, NY, USA, 2009.
ACM.

19
EAI Endorsed Transactions on 

Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e3
EAI

European Alliance
for Innovation


	1 Introduction
	2 On the Privacy Concerns of Centralized OSNs
	2.1 Autonomous OSNs
	2.2 Bound OSNs

	3 On the Nature of Policies that OSNs May Need to be Governed by
	4 The (LGI) Middleware—a Partial Overview
	4.1 LGI Laws, and their Local Nature
	4.2 The Decentralized Law Enforcement, and the Concept of L-agent

	5 A Basic Model of a Decentralized Online Social Community (DOSC)
	5.1 A Definition of a DOSC-Community
	5.2 The Launching of a DOSC-Community
	5.3 The Operation of a DOSC-Community
	5.4 On the Analysis of Networks

	6 Basic Capabilities of DOSC—an Implemented Case Study
	6.1 The Support of the WP Community
	6.2 On the Structural and Behavioral Nature of the WP Community
	On the Description of the Law of the WP Community:
	Member Profile and Membership Control:
	Communication:


	7 Privacy-Preserving Narrowcasting and Profile-Based Search—the Case Study Continued
	7.1 Privacy-Preserving Narrowcasting
	7.2 Profile-Based Search

	8 Hierarchical Organization of DOSCs—an Extension of the Basic DOSC Model
	8.1 The Concept of Conformance Hierarchy
	8.2 Handling Complex Multi-Group DOSCs
	8.3 Supporting Families of DOSC-Based Communities

	9 On the Performance of DOSC, its Drawbacks, and an Open Problem Raised by it
	10 Related work
	10.1 Relationships of this Paper to Previous Work by the Authors

	11 Conclusion



