
Evolution of Software Systems from Incubation

to Enterprise Solutions

Manimegalai R
1

, Vishnu Charan
2

, and Venkateshwaran M
3

{1drrm@psgitech.ac.in, 2vishnucharanoss@gmail.com, 319cs156@psgitech.ac.in}

1,2,3Department of Computer Science and Engineering

PSG Institute of Technology and Applied Research

Neelambur, Coimbatore, India

Abstract.The review paper includes the milestones and histories involoved

in Software Engineering and the usage of various software procedures and

methodologies in respective timeline of software development. Software

architecture plays a major role in company development. A company should

start from single tier architecture at first as it aids in easier development and

advancement but it has its downsides too. A single point failure or an error in

single tier system may lead to serious damages and loss. Hence it is

mandatory to start development from single tier architecture and migrate to

multi tier architecture in future. Multi tier architecture invloves distributed

computing and cloud technology to avoid traffic and single points of failure.

Introduction of microservies in multi tier architecture opened way to

standalone applications and easier feature enhancements. Once development

is done, deployment is made easier by the introduction of Continuous

Integration and Continuous Deployment with network of nodes. Logging and

auditing should be made mandatory to rectify problems occur during

development.

Keywords: Software Engineering, Software Systems, Single Tier

Architecture, Microservices, Multi Tier Architecture.

1 Introduction

In today’s world, where creation of software applications and products have never

been easier, software enterprises and startups have been steadily on the rise.

However, out of several startups that come into the market, only a handful succeed

in fulfilling their expectations and establish a solid stand in the technology market.

This is because most software startups lack a long term strategy. Every startup gets

ICSETPSD 2023, November 17-18, Coimbatore, India
Copyright © 2024 EAI
DOI 10.4108/eai.17-11-2023.2342836

mailto:drrm@psgitech.ac.in

2

initialized with a low investment, due to this reason, most of the startups always

focus only on their short term goals and meet the required prospects. However,

without a proper plan even though the startups succeed in the initial phase, they are

sure to experience a business failure in the near future. This is why software startups

work on analyzing their field of business, collect all the required data for the

working and testing of their applications. The final end product which is the

software application, needs a well devised architecture to successfully execute its

business logic.

In terms of architecture, it is always advisable for the startup to initially work on the

Single tier system architecture and once the traffic becomes normal it can be

converted into Multi tier system Architecture. Multi tier system architecture and its

success predominantly depends on the cloud technology[3] and the efficient usage

of virtual machines. Generally these Multi tier systems run on different virtual

machines but on the same server. This way each system has its own allocated space.

However its comparatively difficult to code Multi tier architecture compared to

Single tier architecture.

Netflix is a good example of company that successfully converted its application

and business logic from the Single tier architecture to Multi tier system architecture.

Programmer obtains a strong foundation in terms of business logic when he

understands the code and moves his application from the Single tier architecture to

multi tier architecture.Selection of a proper architecture is the root for a successful

business, once that gets done it is a much devised and planned procedure to proceed

on working the application as it hits the market.

2 Milestones and Histories in Software Engineering

The SE timeline’s and periods are described in Table 1 along with the readily

available and most used Procedures. We begin from 1956 since it is commonly

accepted that General Motors initiated and created the inuagral and very first

operating system in that year.

Table 1.

Software engineering timeline.

Software Engineering[12]

Timeline Terms Description Procedures

Mastering machine

(1956–1967)

Batch

Hardware dependent

high level languages

Interactive Online. Code and fix

3

Mastering process

(1968–1982)

Process Crisis. Development

process

software engineering

SREM, SADT

DSED, JSP

SSADM
Formal Ensure correctness.

Models

inapplicability in big

problems

Mastering complexity

(1983–1992)

Structured Personal computer.

Expanding

data and functional

convergence

Modern SSADM

JSD OMT

Booch

Jacobson
Object

oriented
Reusing new

programming approach

Mastering

communications

(1993–2001)

Industrial Internet. Client/server

complex projects

CORBA

RUP/UML
Distributed Integrated methods

quality

Mastering

productivity

(2002–2010)

Abstraction Conceptual level

expansion

Customer productivity

Customer involvement

MDA

XP

Scrum Agile

Mastering market

(2011–…)
Service Outsourcing services

Orchestrating services

Market demands.

Downloads

BPMN/BPEL

SOA-Cloud

APP Mobility

During 1956, Software engineering was not yet a recognized phrase. Outside

pressures had a significant influence on code development. Any piece of software's

primary goal was to maximize the use of the constrained hardware resources. This

led to high risk which paved way to the birth and coinage of Software

Engineering[2]. Advances in data and function modeling conisisting database and

structured methods mastered the complexity with the inclusion of object-oriented

methodologies. The introduction of internet, concurrent and distributed

programming, and various maturity models mastered the communications. The

introduction of various SE procedures and methodlogies mastered the productivity.

The introduction of N-tier, Service Oriented and Multi tier architecture keeps on

mastering and advancing the market.

3 Methodologies and Procedures in Software Engineering

Methodologies and Procedures that are at present in use are an evolution or a fusion

4

of those that were developed and used in earlier periods. The distinctive

characteristics of a few different SE development approaches are compiled in a

succinct description in this section. Structured methods[9], object-oriented

approaches, and agile processes are the three categories of techniques that we

distinguish. The most pertinent approaches are compiled in Table 2 along with the

key characteristics of structured methodologies, some of which are no longer in use

but have a significant impact on current methodologies.

Table 2.

SE methodologies summary.

Artifacts Notation Plans

Structured system analysis and design methodology (SSADM)[12]

Requirement

specification

Analysis model

Design model

Data flow diagrams

Data dictionary

Structured English

Structure chart

Specification or analysis

Design

Coding and test

Maintenance

Data structured systems development methodology (DSSD)[12]

Data model

Functions

Results

Data structured diagram

Warnier/Orr diagram

Assembly-line diagram

Entities diagram

Context definition

Function definition

Results definition

Jackson system development (JSD)[12]

Initial model

Functional model

Entity life history diagrams

Structured English

Entity/action step

Initial model step

Interactive function step

Information function step

System timing step

System implementation step

OMT methodology[12]

Object model

Dynamic model

Functional model

Class and object diagram

Modules diagram

States diagram

Process diagram

Interaction diagram

Conceptualization

Analysis

Design

Evolution

UML and RUP[12]

 Class diagram

Use case diagram

Dynamic:

 inception, elaboration,

5

Use case model

Analysis model

Design model

Deployment model

Implementation model

Test model

Interaction diagram

State diagram

Components diagram

Activity diagram

Components diagram

Deployment diagram

 construction, and

transition

Static:

 business modeling

requirement,

 analysis and design,

 implementation, test, and

deployment

Extreme programming[12]

Software releases

All SE techniques

Communication

Feedback

Simplicity

Courage

Respect

Coding

Testing

Listening

Designing

Scrum[12]

Software releases

Meetings

Main roles:

 Scrum Master

 Product Owner

 Team

Sprint planning meeting

Daily Scrum meeting

Team work

Sprint review meeting

Sprint retrospective

Procedures and Methodologies like SADT and SREM combined Structured System

Analysis and Structured System Design (SSADM) introduced in structured

programming which enhanced modularization extension and extended information

hiding when migrating from design to specification phase. In nineties, the concept

of objects made way to object-oriented procedures and methodlogies to replace

structured programming which was used in the seventies. On using these

methodologies had a downside conflicts on similar methods. So they initiated the

Unified Modeling Language (UML) design. These collaboration between designing

and methodologies gave interoperability. Many recent advances in software

engineering gave a clean software management methodology called Agile. In this

method, the entire project is divided into timeboxes and each timeboxes are assigned

with required resources(stakeholders). Timeboxes are usually small pieces of a

large project

4 Formation and Assembly for Startups

In today’s world every software application has its roots starting from incubations

and startups. Essential communication at the early stages pose the foundation,

laying the blueprint for the entire software application. Typically in a startup the

employee count generally range from an average of 200 with 40 residing in multiple

departments. Passing of valuable information and total transparency between

6

departments will serve as an important pillar for successful production of the

application prior to the deadline. For all this to happen employees must have a basic

knowledge of the entire skeletal picture of the application. This can be made

possible only in a single tier software system.

Single tier software systems are a packed cluster that contain both frontend and

backend information. The reason that the single tier software systems are more

beneficial in the initial stages[1] is because it is much easier to pass on information

from one team to another as all of them share the same root project. Any essential

change or version update being done would notify the entire team of the new

changes, this would streamline the most crucial advancements for the application.

Also in the initial stages, it’s important that the project always stays under constant

supervision. Traffic for a software application[4] refers to the User count currently

being active and using that software system, essentially for these software

applications the traffic would be considerably low during the initial stages.

Therefore these single tier systems work well in this scenario as it would take up

less space and time complexities if the traffic is low, therefore the entire application

can be deployed without any hassle. This could also cut down cost to a very high

level for the company.

Once the application is deployed into the server the first time, it is much easier to

manage and update too. And before sending the application into the market, all the

modules of the application go through a phase of software testing, where the

business logic, flow and the performance is being tested. To state with an example,

if a software application has a login module for the user, profile module for user

information and user history module as well, all these modules are interlinked as all

these three modules share the same user data, therefore during the testing phase it

becomes easier to test these three modules if all three exist under the same

repository. Since the results of one modules may depend on the other, if the logic

for all the required modules exist together it would be much easier to test.

7

Fig. 1. Monolithic Architecture

5 Downsides of Single Tier Systems

As the single tier software systems prove to be a great choice, they do come with

their own drawbacks as well. The application is prone to several security risks if the

entire business logic exists under one common root project[7]. Generally a typical

user does not visit every page in a web application, as every user has their own

needs and they utilise the software system to just complete their request, it would

be completely useless to provide the user with every page. But this could be a

problem in terms of Single tier systems as they do not have any other choice except

to provide everything because both frontend and backend[11] for all the pages are

packed together under common deployment.

The front end and backend information are volatile as they undergo changes

dynamically for each user, however the data that resides in the database needs to be

static and undergoes changes only when prompted. So when the web application is

under attack, if the database does not have any replica, the user data and any other

8

crucial information might get lost, therefore its not always a good choice to pack all

the information together.

6 Multi Tier Software System

A multi tier software system generally refers to the microservice architecture. A

single tier system typically contains all the code and the required data stacked up in

one place but in the case of a multi tier system all the codes are separated into

individual deployable chunks that are interdependent. With the advancements in the

cloud technology, multi tier system architecture has reached great heights. Earlier

in single tier application the entire code logic exists in one main project. Therefore

for any new update the entire application needs to undergo change, rebuild and

needs redeployment. However in the case of multi tier system, since the main

business logic is separated into multiple chunks of code. If a particular service needs

an update or change it does not affect the other services, only that particular service

needs to undergo rebuild and redeployment[6]. This could save a lot of time.

In the initial stages due to lower traffic and demand it is preferable for the startups

to program their software system using the Single tier architecture. However as their

software system widens and the traffic increases, it’s a better choice for the startups

to adapt to the multi tier architecture. As this is highly scalable and helps the startups

to meet up with their demands and deadlines much easily.Also since in the initial

stages for a startup, they lack resources and a strong workforce, it is important for

them to easily detect and understand the flow of code. This is difficult in the case

of a Single tier architecture as the codebase and logic is quite vast. But when that

codebase is broken down into smaller chunks it is much easier for the team to

understand.

To explain in terms of a general scenario, suppose a customer visits the website of

a National Bank. This website generally comprises of several services offered by it.

However the user does not visit all those services, he simply wishes to just satisfy

his need and completes it. When this is imagined in terms of Single tier architecture,

the server loads the entire application in which only a certain part of it is being used.

However in terms of Multi tier architecture, since each service is deployed

independently, when the user makes use of a service he does not need other services,

hence this saves up much memory and therefore increases the performance.

However every architecture has its own downsides, in a single tier architecture,

since one common codebase contains the entire business logic, it can be easily

deployed in a set of servers. However for Multi tier based architecture it is deployed

among several servers, therefore each of these multiple services being deployed

needs to be properly monitored.

9

Fig. 2. Microservice Architecture

And increased coordination from the team side is required while working on multi

tier architecture, this is because while working on the single tier architecture the

entire code resides in only one codebase therefore it is easier for the programmer to

understand not just his code but also someone else’s service which might be needed

by him, but in terms of multi tier architecture since each programmer has idea on

his service alone he needs to have better clarity on other independent services as

well for proper integration[8] and communication between multiple services. This

causes issues in terms of global testing, since communication between two different

services might be needed sometimes, testing that dependancy in service

communication can be difficult. In a startup level this can be highly difficult as team

chemistry is still budding.

It is always a general practice for teams to being with single tier architecture and

then shift into multi tier architecture which migrates into microservices[5], this

enables the team to have a broader picture in terms of business logic while

programming for the single tier architecture as it contains the bigger picture,

however after the codebase is established tested and deployed in the market, it is a

more viable option to shift to the multi tier architecture style which is cost efficient.

10

And by this time team collaboration would also have reached stronger foundations

therefore it would be easier for the teams to shift their code from the single tier

architecture to the multi tier architecture.

7 Seamless Collaboration

To meet deadlines, boost up productivity and provide regular updates, it is highly

mandatory that automated integration of code changes made by multiple people

comes into picture. This is done with the help of Continuous Integration (CI). With

the help of CI people belonging within the same team or multiple teams can work

on their changes and collaborate their changes into a single final product. Consider

that the main project exists in one space, and each person or team works on adding

new features to that main project, so from the current state of the project, they build

on their changes within their own allotted space. Once they complete their changes,

proper evaluation and reviewing takes place, then the changes can be included

within the space of the main project, and that becomes the main state of the project.

This way multiple updates and add-ons are done to the main project. Without CI it

would be a great problem, if every person works on the main project, it leads to

issues like code overwriting, removal of essential code or data, version irregularity

etc. This CI pipeline provides features to both run the code as well as test the code.

Since CI provides user friendly code monitoring capacity, the team lead can approve

the code only if the code meets the necessary test requirements.CI tool is the most

important concept in the area of Developer Operations (DevOps).

8 Automated Deployment

The final outcome of any software system is successful deployment to a server, as

it can be used not just locally but on a network or a cluster of nodes. This can be

done with the help of Continuous Deployment (CD). A CD pipeline[10] takes care

of the deployment of any software application. Startups must adapt the idea to

deploy their application in spaces. These spaces denote the testing levels of the

software application. Each space undergoes rigorous testing under multiple levels

so that a refined product can be squeezed out in the end. For this to happen the

deployment of the software application must take place in all these multiple spaces

progressively. This is done with the help of Continuous Deployment Pipeline.

11

Fig. 3. CICD Pipeline

9 Conclusion

Software systems are dynamically handled through multiple teams over a period of

time. Different people work on a particular code segment to provide updates, and

since teams always work on a constrained time frame to deliver the code prior to

the deadline, it’s highly important that it becomes easy for each person to debug a

code or correct any errors. For this to happen proper logging and auditing of the

program scripts needs to take place. Logging at appropriate places gives the

programmer an idea about the flow of the program. Therefore even if the same script

gets handled by multiple programmers over a period of time, it becomes easy for

12

them to understand the code and find the errors easily. So in the initial phase it is

highly mandatory that a programmer properly includes logs for his code so that it

can be made easy for others to understand the flow of code. Logging in the means

of documentation aids for easier auditing.

References

[1] Blinowski G., Ojdowska A., Przybyłek A.: Monolithic vs. Microservice Architecture: A

Performance and Scalability Evaluation// IEEE Access -Vol. 10, (2022), s.20357-20374
[2] F. Meziane and S. Vadera, Artificial Intelligence Applications for Improved Software

Engineering Development: New Prospects, Advances in Intelligent Information

Technologies, Information Science Reference, 1st edition, 2009.

[3] Villamizar, M., Garces, O., Castro, H., Verano, M., Salamanca, L., Casallas, R., & Gil,

S. (2015). Evaluating the monolithic and the microservice architecture pattern to deploy web

applications in the cloud. In O. Gonzalez, & M. Sanchez (Eds.), 2015 10th Computing

Colombian Conference (10CCC) : Universidad de los Andes, Bogotá, Colombia, September

21st to 25th, 2015 (pp. 583-590). Article 7333476 Institute of Electrical and Electronics

Engineers. https://doi.org/10.1109/ColumbianCC.2015.7333476

[4] M. Harman, “The current state and future of search based software engineering,” in

Proceedings of the Future of Software Engineering (FoSE '07), pp. 342–357, IEEE Computer

Society, May 2007.

[5] L. Händel, ‘Microservices in the context of a fast-growing company’, Dissertation, 2020.

[6] Al-Debagy, Omar and Peter Martinek. “A Comparative Review of Microservices and

Monolithic Architectures.” 2018 IEEE 18th International Symposium on Computational

Intelligence and Informatics (CINTI) (2018): 000149-000154.

[7] Arachchi, S.A.I.B.S. and Indika Perera. “Continuous Integration and Continuous

Delivery Pipeline Automation for Agile Software Project Management.” 2018 Moratuwa

Engineering Research Conference (MERCon) (2018): 156-161.

[8] Shahin, Mojtaba et al. “Continuous Integration, Delivery and Deployment: A Systematic

Review on Approaches, Tools, Challenges and Practices.” IEEE Access 5 (2017): 3909-

3943.

[9] B. G. Buchanan, D. Barstow, R. Bechtal et al., “Constructing an expert system,” in

BuildIng Expert Systems, F. Hayes-Roth, D. A. Waterman, and D. B. Lenat, Eds., pp. 127–

167, Addison-Wesley, London, UK, 1983.

[10] Chaudhary, Ashutosh & Gabriel, Mary & Sethia, Rishabh & Kant, Shubham & Chhabra,

Sonia. (2021). Cloud DevOps CI -CD Pipeline.

[11] Auer, Florian & Lenarduzzi, Valentina & Felderer, Michael & Taibi, Davide. (2021).

From monolithic systems to Microservices: An assessment framework. Information and

Software Technology. 137. 106600. 10.1016/j.infsof.2021.106600.

[12] Águila, Isabel & Palma, Jose & Túnez, Samuel. (2014). Milestones in Software

Engineering and Knowledge Engineering History: A Comparative Review.

TheScientificWorldJournal. 2014. 692510. 10.1155/2014/692510.

