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Abstract. The increase in the number of automobiles has expanded the scope of 

public travel, bringing great convenience to people's lives and bringing many 

social problems such as traffic accidents, urban road congestion and the gradual 

increase of foggy weather. As an important part of the intelligent transportation 

system, intelligent networked vehicles are of great value and significance in 

solving the negative problems that exist in current hybrid transportation. The 

objective of this paper is to study the multi-objective tracking algorithm for 

intelligent networked vehicles based on hybrid traffic. A robust VB-RMTCT 

multi-target tracking algorithm is proposed. Considering the unknown 

localization noise statistics and random wild values of the relative positions of 

Hv and Cv, the mean-field theory is used to model the student t-distribution and 

non-Gaussian properties for numerical simulation of the localization noise, and 

the results show that the VB-RMTCT tracking algorithm can effectively and 

consistently improve the target state estimation performance compared with 

other traditional research methods. 
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1 Introduction 

In recent years, with the rapid development of the national economy, China's transport 

business has achieved unprecedented rapid development. In particular, China's surface 

transportation has formed a national network of radial roads, starting with different 

levels of roads such as national highways and local motorways. At the same time, 

great progress has been made in the construction of urban roads [1-2]. The 

construction of urban roads and the upgrading and addition of traffic management 

equipment have improved urban traffic conditions [3]. However, with the rapid 

socio-economic development and the rapid increase in traffic mobility levels, urban 

traffic problems have become more and more serious, with traffic congestion and 

traffic accidents occurring so frequently that road expansion alone is not sufficient to 

fully solve the traffic problems [4-5]. 

In order to assess the risk of non-collision decisions of intelligent vehicles in 
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complex road traffic environments, the state of various vehicle targets should be 

continuously tracked and evaluated. Arnob Ghosh therefore proposes a 

multi-objective tracking method that conforms to priority data association rules. 

Firstly, a standard coordinate rotation process model for two-dimensional ground 

vehicle translational rotation is derived. Secondly, a traceless Kalman filtering 

algorithm is proposed with a non-linear radar measurement model as the target. 

Finally, since vehicle targets (e.g. inertial systems) do not immediately show or 

disappear, a priority data association rule is created to place targets in a priority queue 

based on the number of target associations for filtered noise [6]. keya Roy 

investigates tracking control of external and network-induced disturbances in 

intelligent vehicle network control systems. A new high-order adaptive discrete-time 

sliding mode control algorithm (H-ADSMC) is proposed. First, a high-order adaptive 

sliding mode function is constructed to track the error and reduce the influence of 

external disturbances by using the estimated external input disturbances as the 

adaptive factor. The adaptive sliding mode controller is then obtained and the 

convergence of the sliding mode motion is checked. In addition, the effect of network 

disturbances on the sensor output is considered. A new observer is designed to 

compensate for the disturbances caused by the network. Finally, the tracking error is 

analysed and the effectiveness of the proposed H-ADSMC algorithm and the designed 

observer is verified by simulation [7]. Today, accurate and real-time vehicle tracking 

is crucial to ensure the safety of intelligent vehicles. However, tracking in complex 

traffic environments remains a challenge.Mehrdad Tajalli introduced a Gaussian 

mixed probability hypothesis density filter (RA-GMPHD) for tracking several 

automotive radar vehicles. Since road maps are usually available in traffic scenarios, 

we focus on using road map information to improve tracking performance. They first 

model the vehicle dynamics in a two-dimensional road coordinate system, then 

consider map errors and assign them roughly to the earth coordinate system. In 

addition, several variable structure interaction models are integrated into the ra - GMP 

HD filter due to the dynamic uncertainty of the targets and the geographical 

constraints of the roads. In addition, they perform extensive simulations and physical 

tests to demonstrate the superiority of their method over state-of-the-art methods. 

Experimental results show that their approach improves the quality and continuity of 

follow-up operations [8]. 

In a typical mixed traffic system such as ours, non-motorised vehicles and 

pedestrians are among the main participants in urban traffic and cannot be ignored by 

motorised vehicles. Mixed traffic flows of motor vehicles, non-motor vehicles and 

pedestrians will continue to be a prominent feature of urban traffic in China in the 

future. In the current research on urban transport systems, vehicles are the focus and 

traffic of unmanned vehicles and pedestrians, therefore, this paper's research on the 

detection of traffic data for mixed traffic is crucial to achieving safe and efficient 

urban transport. 

2 Research on Multi-objective Tracking Algorithms for 

Intelligent Networked Vehicles in Hybrid Traffic 

2.1 Smart Connected Cars 



The smart connected car consists of six main components: car/road communication, 

high precision positioning and navigation, environmental awareness, intelligent 

decision making, route planning and vehicle control. Among them, car-vehicle-road 

communication is responsible for intelligent information interaction between the car 

and surrounding vehicles or road facilities, such as obtaining area maps, obtaining 

signal lights and obtaining the location of surrounding vehicles, thus helping to locate 

and sense the smart car. High-precision positioning navigation provides mainly 

high-precision positioning information and topological maps of the environment. The 

environment recognition component relies on various heterogeneous sensor fusion 

data sources to identify and understand the environment in which the vehicle is 

located [9-10]. Based on these three components of comprehensive communication, 

localisation and sensing, smart Internet vehicles can make informed decisions and 

plan routes. The planned route includes location and speed information that will be 

submitted to the Vehicle Control Section. Highly accurate trajectory tracking 

algorithms are combined with route control technology to achieve precise motion 

control of the Internet-connected vehicle. The efficient collaboration of these six 

components allows online intelligent vehicles to work together safely, efficiently and 

easily [11-12]. 

2.2 Bayesian Tracking Framework 

Target tracking is an estimate of the state of one or more moving targets, based on 

time-series observations obtained by sensors. The main goal of target tracking is to 

align the estimated target with the actual target. The second is the accurate estimation 

of moving target motion, such as position, velocity, acceleration, target 

characteristics, etc. [13-14]. A typical target tracking system includes data alignment, 

data linking, filtering and tracking management, and requires iterations when 

updating the target path. Data alignment is primarily based on data format 

requirements for data pre-processing, including differencing, and removal of noise 

external to the tracking port. Some observations on the tracking port are compared 

below with target tracking and observations, and tracking results are compared with 

specific data partner strategies. Data correlation is a challenge when the target is high 

density and incorrectly detected due to noise and noise interference observed by the 

sensor. When information is associated with a target, a screening algorithm is used to 

predict and update the target status. Finally, a trajectory management target tracking 

process is initiated and maintained to enable the entire target tracking process [15]. 

The basic block diagram of target tracking is shown in Fig.ure 1. 

An important step in the Bayesian target state estimation algorithm is to consider 

the observation assumptions of all sensors, where sensor observations are often 

incomplete, inaccurate and ambiguous. If the sensor is characterised by detection 

Pd<1 probability and pf>0 pseudo-space alarm density, the 
)( k

k xZg
 likelihood 

function in equation (1) typically contains all possible interpretations of the sensor 

observations. The target may or may not be detected due to Pd<1. Because pf>0, the 

current set of sensor observations also contains a certain number of false detection 

observations. 
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Fig. 1.Basic principle block diagram of target tracking 

2.3 Variational Bayesian Inference Principles 

Inference methods for probabilistic graphical models are usually grouped into two 

types:exact and approximate inference. The first method includes deletion of 

variables, propagation of beliefs, and other exact values designed to resolve restricted 

distributions or conditional distributions of systematic variables, but the computation 

of this method doubles as the maximum group size increases. The latter includes 

methods such as MCMC sampling, variable inference, and others designed to provide 

approximate solutions to the original problem at a lower time cost, thus better meeting 

real-time requirements. 

The xk target state variables, accuracy k
, uk bootstrap variables and degrees of 

freedom k
 are chosen as the system parameters to be estimated. The posterior 

distribution 
),( :1 kkk zp 

 is derived from Bayesian theory: 
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where:
},,,{ kkkkk ux =

 system parameter, 
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hyperparameter of the localisation noise prior distribution. 

In the case of large data, closed solutions or numerical calculations of the 

normalised coefficients are not available. To solve this problem, the variational 

distribution 
)( kq 

 is introduced to approximate the true posterior distribution 

),( :1 kkk zp 
. Starting from mean field theory, the variational distribution is 

assumed to satisfy the following set of coefficients for the estimated parameters: 

)()()()()( kkkkk quqqxqq =

   

(3) 

In turn, the variational posterior distribution is obtained by maximising the free 

energy 
)( kFq 

. By the nature of the variable-parameter coupling, the optimal 

)( i

kq 
 can be alternated and the general solution is as follows: 
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where 
[.]i

k

E −
 is the expectation of the logarithmic joint probability distribution 

with respect to the remaining parameters excluding 

i

k
. 

3 Numerical Simulation Experiments 

3.1 Scenario Description 

The multi-objective collaborative tracking scenario considered in this paper includes 

the primary vehicle Hv, Cv collaborative vehicle, and Tvs target vehicles (motor 

vehicles, non-motor vehicles, pedestrians). Where Hv and Cv are equipped with target 

detection radar, positioning navigation system and V2V communication devices. hv 

and Cv collect Tvs information within sensing range based on their respective vehicle 

sensors, and Cv sends its Tvs measurement and positioning data to Hv using V2V 

communication devices. finally, Hv is a fusion centre that combines the sensing data 

with the data sent by Cv to provide accurate TV state estimation. 

Assume that Hv and Cv are moving in a two-dimensional plane at a constant 

velocity. The initial states of Tvs and Cv are set to [12, 0, 1, 0]T, [6, 3.5, 1.1, 0]T, [10, 

-3.5, 1.1, 0]T and [15, 0, 1.2, 0, 0, 0]T. wk process noise is constrained by the q 

covariance of Gaussian mean white noise 0. The model parameters: st 1.0= , 

K=400, are established as 40s. The convergence condition for the variable fractional 

Bayesian iteration was set as follows:
6105 −= , B=10. The number of simulations 

of MC in the performance evaluation metric was T=100. 

Wild values in the location data can seriously affect the performance of 

collaborative tracking. Due to the thick-tailed nature of the student t-distribution, 



wild-value data processing is more powerful in parameter estimation than Gaussian or 

mixed finite Gaussian models. Therefore, using this distribution to model the 

thick-tailed, non-Gaussian localisation noise 
22 m

k Rv 
, the probability density 

function of the m2 -dimensional student t -distribution is defined as follows: 
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where Γ(∙) is the gamma function with the thickness of the tail end determined by 

the degree of freedom k
. As   decreases, the tail end decays more slowly. 

3.2 Robust Multi-target Collaborative Tracking Process 

In this paper, a robust multi-target cooperative tracking algorithm based on variable 

Bayesian inference is introduced to solve the problem of low accuracy of traditional 

tracking algorithms, and the process is shown in Fig.ure 2: 

 

Fig. 2. Multi-target collaborative tracking model flow chart 
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3.3 Comparing Algorithms 

In order to verify the effectiveness and robustness of the VB-RCMTT algorithm in 

dealing with wild-value localization noise, this paper conducts performance 

comparison simulation experiments on the following methods: 

(1) a non-collaborative tracking algorithm (KF-SMTT) that relies only on Hv to 

estimate Tvs states. 

(2) An EKF-based collaborative tracking algorithm (EKF-MTCT) using a fixed 

value of potential localisation noise variation. 

(3) A variational collaborative tracking algorithm (VB-MTCT) modelled as the 

position acoustic covariance of the inverse gamma distribution. 

(4) The VB-RMTCT algorithm proposed in this paper. 

4 Analysis of Experimental Results 

4.1 Tracking Error Analysis 

In this paper, we visually describe the variation in tracking performance for 

uncommon target states in localization noise based on parameter settings and 

forgetting factor p = 0.95. The estimated position and velocity RMSEs of the four 

filtering algorithms in the simulation results are shown in Fig.ure 3 and Fig.ure 1, 

respectively. Analysing the experimental results, we can see that the EKF-MTCT, 

VB-MTCT and VB-RMTCT tracking errors are significantly better than KF-SMT, 

indicating that target measurement data can be fused to effectively improve target 

tracking accuracy through co-vehicle fusion. Due to the wild values of the localisation 

measurement noise, the localisation data exhibit coarse, non-Gaussian wake 

characteristics.EKF-MTCT sets the covariance of the localisation noise to a fixed 

value, based on the assumption of Gaussian measurement noise, and failure to adapt 

to wild values leads to covariance variations, resulting in lower performance than the 

VB-MTCT and VB-RMTCT algorithms.Although the VB-MTCT algorithm is also 

suitable for adjusting the covariance, it is more sensitive to atypical values. At high 

atypical rates, the target tracking performance is significantly reduced. The algorithm 

in this paper uses a student t-distribution than a Gaussian coarse-tailed distribution to 

model the localisation noise. The tracking results are significantly better than other 

algorithms. It is shown that the algorithm can effectively handle coarse, non-Gaussian 

tail noise measurements, with position and velocity estimation errors 37.4% and 

25.3% lower than the conventional KF-SMT bicycle tracking algorithm. 

Table 1. Improvement of Tracking Error Performance 

algorithm seat Performance 

improvement 

Velocity 

ARMSE/(m) 

Performance 

improvement 

KF-SMTT 0.567 / 0.211 / 

EKF-MTCT 0.521 11.2% 0.208 10.5% 

VB-MTCT 0.503 21.5% 0.195 18.8% 

VB-RMTCT 0.488 37.4% 0.184 25.3% 



 

Fig. 3. Performance of tracking error under different algorithms when p=0.95 

4.2 Algorithm Time Degree Analysis 

 

Fig. 4. Running time of various algorithms based on different missed detection rates 
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Fig.ure 4 shows the running times required for the four algorithms based on 

different leak detection rates. In terms of time complexity, KF-SMT does not need to 

combine the target state with the perceived measurements, which takes less time. the 

VB-CMTT and VB-RCMTT algorithms take a long time because they have to switch 

to estimate the subsequent distribution parameters and noise of the target state in the 

state update step. The algorithm proposed in this paper runs in about 0.29 seconds, 

without affecting the real-time performance of the algorithm. 

5 Conclusions 

Smart Internet-connected vehicles are an important direction for the development of 

the automotive industry. Smart Internet-connected vehicles with advanced assisted 

driving functions are an important transitional stage of autonomous vehicle driving. 

By continuously enhancing the main safety functions and passive safety functions of 

vehicles, it can not only improve vehicle safety, but also reduce road traffic safety 

accidents, improve traffic efficiency, relieve traffic congestion and save energy. The 

study of multi-objective cooperative tracking technology for intelligent networked 

vehicles is still an immature research area, and so far there is no systematic and 

comprehensive solution in academia and industry. In this paper, a robust multi-target 

cooperative tracking algorithm based on variable Bayesian inference is proposed for 

mixed traffic scenarios, and good tracking results are achieved. However, due to time 

constraints, many complications that exist in real driving scenarios, such as non-linear 

target motion and communication lag, are not considered. 
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