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Abstract: With the technological innovation of virtual power plant (VPP), the 

objective demand for optimal dispatching is also constantly improving. The 

research on optimal dispatching of rural VPP based on LMDI (Logarithmic 

Mean Division Index) decomposition method for electricity carbon emissions is 

becoming more and more important. In the construction of the optimal 

dispatching model of the entire VPP, how to improve the market yield of the 

improved model and improve the carbon emissions of the system is the key 

problem that needs to be solved urgently at present. In this paper, based on the 

relevant research on the optimal scheduling of traditional VPP, the application 

of LMDI decomposition method in VPP and the analysis of algorithm process 

steps, combined with the composition structure of rural VPP with carbon 

emissions, and according to the data results, the following conclusions were 

drawn: six regional samples were selected through simulation experiments, and 

the application of LMDI based VPP scheduling model improved the market 

profitability compared with the traditional scheme; the overall average increase 

was about 5%. At the same time, there were also improvements in carbon 

emissions, and the overall average decrease was about 11.2%. This showed that 

the optimal dispatch model of rural VPP based on LMDI decomposition method 

has a good effect in practical application. Finally, the improved VPP optimal 

scheduling model proposed in this paper provides convenience for resource 

allocation in the current electrical field, and has certain reference value. 

Keywords: Virtual Power Plant, LMDI Decomposition, Optimal Dispatching, 

Power Carbon Emissions 

1. Introduction 

At present, with the continuous development of statistical analysis and decomposition 

methods, the technology update speed of VPP is gaining momentum, and people are 

researching and talking about it in new ways. This paper's major goal is to calculate the 

composition structural constraints of rural VPP with carbon emissions in order to 
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enhance the optimum dispatching model of VPP. Therefore, it is very important to 

build a VPP dispatching model based on LMDI.  

There are many theories about the optimal dispatch of rural VPP with different 

electricity carbon emissions As carbon neutral policies and multi energy systems are 

widely concerned in developed countries, Alabi T. M. suggested an optimisation 

model and deep learning technique to get the optimal day-ahead scheduling of zero 

carbon multienergy system VPP. He employed automated encoders for scene 

restoration and established a clean energy marketing approach in technology. Finally, 

the model was validated by an example in a region of the United States, and the 

results showed that the sustainable reliability of the system's practical application was 

high [1]. In the context of power carbon self-scheduling and market participation 

under the uncertainty of wind speed and electricity price, A R M L solved the 

optimization scheduling decision-making problem of VPPs. In order to assess the 

quality of finding solutions, this problem is modelled using random programming 

formulae, which also provide a framework for comprehending and quantifying the 

effect of sample size on the variability of outcomes. Numerical experience showed 

that the obtained scheduling method approaches the optimal solution [2]. A single 

controllable configuration file, which was used for the application of VPP in 

distribution networks, was summarised by Sharma H. based on the growing 

popularity of small-scale distributed energy resources (DER), which have supplanted 

traditional power plants. Sharma H. proposed an improved multi-objective 

optimisation method based on Particle Swarm Optimisation Algorithm in conjunction 

with Power Generation Coordination, such as energy cost minimization and power 

carbon optimal scheduling. At the same time, he conducted a case study on State 

Power Corporation of China and found that the proposed technology is relatively 

more cost-effective than other technologies [3]. Ozge P analyzed the optimal day 

ahead scheduling of a VPP composed of wind power plants, pure heat generating 

units and battery energy storage systems, aiming to adjust the power generation 

system to obtain maximum profits and minimum carbon emissions, and used the 

general algebraic modeling system for modeling and analysis of five application cases. 

The research results showed that the profits of VPP can be increased while the carbon 

emissions can be reduced [4]. Tan Z F examined the value of VPP in assisting the grid 

in connecting dispersed energy resources in light of the rising installed capacity of 

solar photovoltaic and wind power generation. He created a single VPP operation 

scheduling model and a profit distribution model in order to research the economic 

scheduling of distributed energy resources in VPP. Ultimately, the case study 

confirmed that the suggested methodology is workable and efficient. [5]. 

The combination of LMDI decomposition method and the development of VPP 

optimal dispatching model has prompted the energy and electrical fields to re 

optimize the dispatching scheme of rural VPP for carbon emissions [6]. Although 

there is a dearth of study on carbon emissions, the use of the numerous research ideas 

and methodologies mentioned above can successfully boost market returns. 

This study primarily focuses on the application analysis of the LMDI 

decomposition method in VPP optimum dispatching. The objective of this paper's 

design study was to increase market income and reduce carbon emissions. To this end, 

relevant research on the best scheduling of traditional VPP was consulted, along with 

the analysis of simulation trials. The final findings demonstrated the effectiveness of 



the VPP scheduling model based on LMDI in real-world applications. 

2. Relevant Methods and Exploration of VPP Dispatching 

2.1 Optimized Dispatching of VPP 

VPP is a management system that utilizes intelligent communication technology and 

software control systems to achieve spatial range coordination and optimization of 

energy storage processes. It serves as a special power plant in the field of electrical 

engineering to participate in power market power coordination [7-8]. With the rapid 

development of distribution network and transmission network, VPP is used in rural 

power carbon emissions to achieve reasonable allocation of resources, laying a stable 

foundation for the next VPP security model [9-10]. According to the relevant 

knowledge and theoretical achievements of VPP at home and abroad, the relevant 

research and specific contents of optimal dispatching of VPP are shown in Table 1. 

Table 1. Exploration on Optimal Dispatching of VPP 

Research Specifics 

Technical 

VPP 

Optimize the 

power output of 

each internal 

power supply 

Make aggregated resources available to system 

operators to maintain system balance at minimal 

cost 

Leveraging its aggregated resources as well as 

conventional units to serve the transmission system 

Commercial 

VPP 

Regulating each 

resource to 

optimize 

economic goals 

Connect wind power, photovoltaic, electric vehicles, 

etc. to the grid and control the dispatch of each 

resource with the economic optimum 

Aggregate and dispatch small distributed energy 

sources scattered in different areas 

It can be seen from Table 1 that the optimal dispatching of VPP mainly includes 

two aspects: technical and commercial. The commercial VPP mainly adjusts the 

output of various resources to optimize the economic objectives, which can 

effectively solve the unified dispatching of distributed energy and grid connection 

optimization. Moreover, the commercial VPP is the mainstream direction of current 

research [11-12]. In technical VPP, optimizing the output of various internal power 

sources and providing supporting services for the safe operation of the local 

distribution network are the main goals to achieve the lowest cost of maintaining 

system balance [13-14]. Therefore, based on the traditional rural VPP of electricity 

carbon emissions, the introduction of LMDI decomposition method is of great 

significance for day ahead scheduling optimization. 

2.2 Application of LMDI Decomposition Method in VPP 

The LMDI model is a technique for breaking down variations in energy usage. Its 

fundamental idea is to break down variations in energy consumption into the 

contributions of different elements in order to have a better understanding of the trends 

and factors that influence energy consumption. LMDI does not have unexplained 



residuals after decomposing objects, and can use relatively simple conversion 

expressions for addition decomposition and multiplication decomposition [15-16]. In 

the application of optimal dispatch of rural VPP for carbon emissions of electricity, 

based on the LMDI Logarithmic mean decomposition method, carbon emissions can be 

decomposed into three parts: structural effect, intensity effect and combined effect, so 

as to improve the effect and accuracy of the entire model [17-18]. The specific process 

of LMDI decomposition method applied in VPP is shown in Figure 1. 

To sum up, determining the factors and time period to be decomposed is the first 

step of LMDI's day ahead scheduling in VPP. Next, by determining the proportion of 

important factors related to electricity carbon emissions in rural VPP in the time 

period, the logarithmic difference and the contribution rate of each factor are 

calculated and normalized to the percentage form, so as to achieve the verification of 

carbon emissions results [19-20]. Based on the steps of the whole LMDI algorithm, 

the total energy consumption can be divided into the contributions of various factors. 

Combined with the analysis of the components of the VPP below, it is conducive to 

in-depth understanding of the structural changes of carbon emissions. 

Determine the factors 

and time periods that 

need to be broken down

Determine the weight 

of each factor in the 

time period

Calculating the log 

difference

Calculate the 

contribution of each 

factor

Validation of carbon 

emission results

Normalized 

to 

percentage 

form

Logarithmic 

mean weight

 

Fig.1 Flow chart of LMDI application in VPP 

3. Model Construction of VPP Optimal Scheduling 

3.1 Components of Rural VPP for Electricity Carbon Emission 

After a research discussion on the theory related to the optimal scheduling of The study 

of the rural VPP component of power carbon emissions is pursued, along with the use 



of the LMDI decomposition method in VPPs. The intelligent placement of distributed 

generation in the power market based on prediction data for conventional power plants, 

renewable energy sources, and other sources is referred to as the optimal dispatching of 

VPP. energy storage equipment and load demand, and the generation of appropriate 

operation schemes to achieve the safe and stable operation of VPP. The analysis of VPP 

components is the basis of optimal dispatching. Therefore, the composition and content 

of rural VPP related to carbon emission of electricity are shown in Table 2. 

Table 2. Components of Rural VPP for Electricity Carbon Emission 

Structure Description 

Photovoltaic 

Power Generation 

The output power of photovoltaic cells is proportional to solar 

radiation and basically obeys the Beta distribution. 

Wind Turbine 

Power Generation 

The output power of wind power is closely related to the wind speed, 

and often adopts the two-parameter Weibull distribution. 

Gas Turbine 
Consists of a micro gas turbine, a permanent magnet generator and a 

filter 

Energy Storage 

System 

Electricity is purchased from the grid during the low price period and 

supplied to customers during the peak price period 

Flexible Load 
Flexible loads are divided into three main categories: base loads, 

transferable loads and curtailable loads 

It can be seen from the above composition structure of the rural VPP for electricity 

carbon emissions that the entire VPP consists of five parts: photovoltaic power 

generation, wind turbine power generation, gas turbine, energy storage system and 

flexible load. These structures have important reference value for realizing the 

dispatching model of VPP based on LMDI. When scheduling optimization of VPP 

system is involved, it often needs to be solved at the same time, so its scheduling 

flexibility needs to be considered when building the scheduling model. 

3.2 Dispatching Model of VPP Based on LMDI 
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Fig.2 LMDI based optimal dispatching model of VPP 

According to the relevant research on the optimal dispatching of traditional VPP, 

combined with the application and process of LMDI decomposition method in VPP, 

the optimal dispatching model of VPP based on LMDI decomposition method is 

divided into coordination control module, intelligent metering module and information 

communication module according to the key technology by virtue of the composition 

structure of rural VPP with electricity carbon emissions. Therefore, the optimal 

dispatching model design of VPP based on LMDI is shown in Figure 2. 

According to the optimal dispatching model of VPP built in Figure 2, the entire 

VPP provides management and auxiliary services for distribution network and 

transmission network. Subsequently, the model constraint conditions are calculated, 

and the supply-demand balance constraint conditions of electricity carbon are 

calculated as follows in Formula (1):  
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Among them,  and  are respectively the free quota and actual 

carbon emissions of gas turbine in the VPP through allocation of t period;  is 

the amount of carbon dioxide absorbed by the Power-to-gas equipment during 

operation in period t;  is the carbon emission quota size of VPP trading with 

other participants in the carbon emission trading market at time t. Therefore, the 

optimization scheduling problem model is calculated as Formula (2):  
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Among them, α is the intermediate variable; fa(t), fb(t) and fc(t) respectively 

represent the market income of electric heating energy, the market income of Carbon 

emission trading and the operating cost of Power-to-gas equipment. 

4. Simulation Experiment Results 

Following the completion of the design of the best dispatching model for rural VPP 

based on the LMDI decomposition approach for electricity carbon emissions, 

simulation tests were used to evaluate the model's real performance in various 

scenarios. 

Six regions—Region A, Region B, Region C, Region D, Region E, and Region 

F—were chosen as sample parameters for this experiment, and they were trained and 

evaluated as datasets. The market returns and carbon emissions of the VPP optimal 

scheduling model based on LMDI decomposition method in six regional samples 

were obtained after 100 rounds of data testing and analysis using the Monte Carlo 

method within a certain amount of time, and were compared with the outcomes of the 

traditional VPP scheduling method. Figure displays the outcomes of using both 

conventional techniques and the enhanced scheduling model to market returns 3. 

 

Fig.3 Market yield of improved scheduling model and traditional methods 

In Figure 3, the blue line represents the market return rate of the optimized 

dispatching model of rural VPP based on LMDI for electricity carbon emissions, and 
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the orange line represents the market return rate of the traditional dispatching model 

of VPP. It can be seen that the market return rate of the improved LMDI algorithm 

model in region B had the best effect, increasing from 9.8% to 16.2%, with an 

increase of 6.4%. The market return rate of the sample in other regions increased from 

left to right by 5.4%, 3.8%, 4.6%, 4.2% and 5.2%, respectively. It can be seen that the 

comprehensive average increase of the market return rate of the improved and 

optimized dispatching model of VPP was about 5%. This showed that the optimal 

dispatching model of VPP based on LMDI decomposition method was an improved 

scheme in terms of market revenue. 

Following a discussion of the aforementioned market return findings, more 

simulation tests were conducted. Analysis was done on the carbon emissions of the 

rural VPP optimum dispatching model as well as the model's decrease in carbon 

emissions. based on LMDI decomposition method compared with traditional methods 

is shown in Figure 4. 

 

 

Fig.4 Improved scheduling model for reducing carbon emissions 

In Figure 4, the blue column showed the reduction of carbon emissions in the 

optimal scheduling model of VPP based on LMDI decomposition method. The carbon 

emissions of VPP in each regional sample were reduced. The reduction ranges of 

different sample groups from bottom to top were 12.3%, 12.1%, 11.3%, 11.8%, 9.5% 

and 10.1% respectively. It can be seen that the comprehensive average reduction of 

the improved optimal dispatching model was about 11.2%. This showed that the 

application of the optimal scheduling model of VPP based on LMDI decomposition 

method had a good application effect in carbon emissions. 

5. Conclusions 
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A rural VPP optimum dispatching model based on the LMDI decomposition approach 

may be widely employed in the power market and distribution network system due to 

the quick advancement of science, technology, and statistical analysis techniques. The 

pertinent study on the best scheduling for conventional VPP is the foundation of this 

work. Through the analysis of the application of LMDI decomposition method in VPP 

and the algorithm process steps, and with the help of the composition structure of rural 

VPP with electricity carbon emissions and simulation experiments, it was concluded 

that the improved model of optimal scheduling of rural VPP based on LMDI 

decomposition method has a good application effect on market profitability and carbon 

emissions. This paper expected that through theoretical and empirical research, it can 

provide the optimal dispatching model design of rural VPP based on LMDI 

decomposition method for China. The number of regional samples selected is too 

small, and the analysis of the composition and structure of rural VPP with carbon 

emissions is not perfect. The optimal scheduling model of VPP designed in this paper 

has many defects and deficiencies, which would be further improved in the future 

research. 
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