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Abstract. This paper introduces an innovative method for forecasting investments in 
power grid technical renovation projects. By employing the Angle of Inclination 
Correlation and an Enhanced Gray Model, our goal is to enhance investment prediction 
accuracy in the electric power industry. Using data from 2016-2021, we select key 
indicators, such as maximum grid load, power supply capacity, line length renovations, 
electricity sales revenue, installed capacity, line loss rate, unit substation capacity cost, and 
power supply reliability, to evaluate their impact on technical renovation projects. The 
Improved Gray Model is then used to forecast 2022 investments. Subsequently, a Markov 
model is applied to refine predictions and calculate the deviation rate, confirming the 
method's effectiveness in indicator selection. While this approach holds promise, it is 
essential to acknowledge the limitations of historical data, which do not meet big data 
requirements. Further precision improvements are necessary. Recommendations to 
enhance the forecasting model's accuracy and applicability include strengthening 
comprehensive investment lifecycle management and harnessing big data information 
technology for improved data collection. These measures will contribute to more refined 
and efficient investment forecasts, supporting decision-makers in the electric power 
industry. 
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1 Introduction 

With China's growing economy and society, the demand for electrical energy is increasing. 
Investment in power grid technology upgrades is on the rise, leading to new challenges for 
project managers in power grid companies. Poorly planned investments can result in surplus 
funds in technology upgrade projects, impeding efficient management [1]. Thus, forecasting 
investments in power grid infrastructure is essential. Employing diverse management models 
tailored to different projects optimizes resource allocation, enhancing the efficiency and 
rationality of project management [2]. 

Technological upgrades significantly impact power station production and environmental 
efforts, influencing both the development of power industry processes and the economic 
performance of power grid enterprises. Managing technology upgrade projects encompasses the 
entire project lifecycle, from planning and initial review to financial auditing and final 
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acceptance. Effective investment forecasting enables cost control, fund utilization, and impacts 
project management units' economic interests and the future of electrical engineering. This 
paper employs mathematical methods to predict technology upgrade project investments, 
contributing to cost-effective engineering projects and full lifecycle project management. 

Using investment data from completed projects in Beijing Company (2016-2021), this paper 
introduces a methodology for forecasting power grid technology upgrade investments. It utilizes 
the angle of inclination correlation and an enhanced grey model to analyze influencing 
indicators. After thorough calculation and analysis, investment forecasts are generated, 
improving the model's accuracy and applicability. 

2 Construction of an investment forecast model for power grid 
technological upgrade projects based on angle of inclination 
correlation and improved grey model 

2.1 Brief of the angle of inclination correlation and improved grey model 

The angle of inclination correlation introduces a novel approach based on the grey slope 
correlation model, incorporating cosine distance. Unlike traditional methods that calculate 
correlation coefficients for each time interval and average them for factor correlation, this 
approach globally optimizes correlation analysis, reducing local information masking and 
promoting more rational application of correlation algorithms in engineering. 

The improved grey model extends the basic grey GM(1, N) model by investigating the collective 
influence of N-1 variables on a single variable. In predictive analysis using the grey GM(1, N) 
model, it has revealed inherent issues such as initial and background value construction. These 
challenges become more prominent when forecasting data with substantial fluctuations, 
necessitating further optimization of initial values. Moreover, the grey prediction model may 
produce significant errors when dealing with highly volatile and random data. To address this, 
an effective integration of Markov chains with grey models can optimize the grey prediction 
model, enhancing its accuracy in forecasting power grid renovation investments. 

2.1.1 Construction of the correlation model 

Grey slope correlation is a commonly used correlation algorithm, and its fundamental concept 
is defined based on the difference in the relative rate of change between two data sequence 
curves. Slope correlation is based on discrete data sequences, where a higher correlation 
indicates that the slopes of two data sequences are more similar during the corresponding time 
intervals. Conversely, a lower correlation indicates greater differences in the slopes of the two 
data sequences during the corresponding time intervals. The steps for calculating the slope 
correlation are as follows [3]. 

Let the original data sequence be xi = (xi(1), xi(2),..., xi(n)), (i = 0, 1, 2, ..., m). The formula for 
calculating the slope correlation is indicated as can be seen in equation (1). 
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The calculation of 𝜉ሺ𝑘ሻ is in equation (2). 
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Where, ∆xi(k)=xi(k+1)− xi(k),i =0,1, 2,…, m; k=1, 2,…, n −1. 

Slope correlation primarily evaluates local similarity between two data sequences. Unlike 
Deng's relational degree, it preserves the relative order of correlation sequences during sequence 
transformations, making it order-preserving. However, slope correlation has limitations in 
representing negative correlations between two data sequences. Additionally, it faces challenges 
when x0(k) or xi(k) are very small, resulting in correlation values approaching zero and losing 
meaning. Furthermore, correlation is unattainable when values are zero. Some scholars have 
introduced modifications to address these issues, such as using the mean of X0 and Xi to replace 
x0(k) and xi(k). 

In response to the limitations of existing grey correlation methods, this paper proposes an 
enhanced angle slope correlation based on grey slope correlation for indicator selection in power 
grid renovation investment prediction, as depicted in Fig 1. 

Original data sequence

Data preprocessing

Calculate the slope vector

Calculate the weight vectors for 
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Apply weight processing to the 
slope vector
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Fig. 1. The process of calculating angular slope relevance algorithm. 

The specific construction steps of the angular slope relevance model, as illustrated in Fig. 1., 
are as follows: 

For ease of description, let's start by defining and explaining the variables used. The system 
behavior sequence and relevant indicator data are obtained for a specific time period. We collect 
the system behavior sequence Y={y(1), y(2),…, y(N)}, where y(n) represents the value of the 
behavior sequence at the nth time point tn, with n ranging from 1 to N, where N represents the 
number of time points. Simultaneously, we gather M related factor sequences, denoted as Xi = 



{xi(1), xi(2),…, xi(N)}, where xi(n) represents the value of the m-th related factor at the nth time 
point tn, with i ranging from 1 to M. 

Preprocessing of data sequences: Both the system behavior sequence Y and the M related factor 
sequences Xi undergo preprocessing to obtain dimensionless sequences. This results in 
Y'={y'(1), y'(2),…, y'(N)} for the system behavior sequence and X'i ={x'

i(1), x'i(2),…, x'i(N)} 
for each related factor sequence. The calculation formulas for preprocessing are as equation (3-
4). 
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Calculate the slope vectors by computing the slopes between adjacent time points for both the 
dimensionless system behavior sequence Y' and the M related factor sequences X'

i. This process 
yields the slope vector for the system behavior sequence and M slope vectors for the related 
factors, as equation (5-6): 
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The formula for calculating the slope is as equation (7-8). 
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Where k = 1, 2, …, N - 1. 

Calculate the weight vector for each related factor. Based on the initialized system behavior 
sequence Y' and the M related factor sequences X'i, calculate the weight for each historical time 
point in each related factor sequence. Represent these weights in vector form as Ci = {ci(1), 
ci(2),…, ci(N-1)}. The calculation formula is as equation (9). 
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Apply weight processing to the slope vectors by multiplying the slope vector of the related 
factors, i∆X, with the weight vectors for each time point to obtain the weighted slope vector 
∆X'. The calculation formula is as equation (10). 
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Where,  denotes element-wise multiplication. 

Calculate the relevance of each related factor by separately computing the similarity γ between 
the slope vector ∆Y of the system behavior sequence and the vector ∆X' for each of the M related 
factor sequences. The higher the similarity, the stronger the relationship between the 



corresponding related factor and the behavior sequence. In this context, we use the cosine of the 
angle between two slope vectors as the measure of similarity between two data sequences. The 
calculation formula is as equation (11). 
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In the angular slope correlation algorithm model, weight vectors play a crucial role by reflecting 
the spatial proximity between two data sequences. This contradicts the practical interpretation 
of relevance. When two indicators are geometrically parallel, the closer the associated factor is 
to the reference sequence in space, the higher the calculated relevance. 

The angular slope correlation method utilized in this study considers both the slope factors 
between sequences and their spatial positioning. It offers a more versatile approach, addressing 
various aspects of the relationships within data sequences. 

2.1.2 Construction of an enhanced grey prediction model with improved initial values 

The Grey GM(1,N) model is a result of studying the comprehensive impact of N-1 variables on 
one variable. When using the model for predictive analysis of a system, some shortcomings of 
the model itself were observed, particularly in constructing initial values and background values. 
Errors in predicting data with a certain degree of fluctuation were relatively significant, 
necessitating further optimization [4]. 

This paper primarily focuses on optimizing the initial values of the Grey GM(1,N) model, with 
the following steps in the construction plan: 

(1) Determine technical indicators related to power grid renovation investment 

Using the angular slope correlation method described in Section 2.2.1 of this paper, calculate 
the relevance between various technical indicators in the power grid and the investment in power 
grid renovation. Arrange the power grid technical indicators in descending order of relevance 
and, based on the collective expertise of power experts, select N-1 power grid technical 
indicators as the relevant technical indicators for power grid renovation investment. 

(2) Obtain historical data for power grid renovation investment 

Gather the values of power grid renovation investment and N-1 power grid renovation-related 
technical indicators corresponding to M time points. Let the vector representing power grid 
renovation investment be X1 = (x1(1), x1(2),…, x1(M)), where x1(j) represents the investment in 
power grid renovation at the jth time point, with j ranging from 1 to M. Also, let the vectors 
representing N-1 power grid renovation-related technical indicators be Xi = (xi(1), xi(2),…, 
xi(M)), where xi(j) represents the value of the ith-1 power grid renovation-related technical 
indicator at the jth time point, with i ranging from 2 to N. 

(3) Establish a Grey model optimized by the least squares method 

In this paper, the vector of power grid renovation investment, X1 = (x1(1), x1(2),…, x1(M)), is 
considered as the system characteristic sequence of the Grey model, also known as the behavior 
variable. The vectors representing N-1 power grid renovation-related technical indicators, Xi = 



(xi(1), xi(2),…, xi(M)), are considered as factor variables with a high degree of correlation to 
the system characteristic sequence. Let Xi(1) = (xi(1)(1), xi(1)(2),…, xi(1)(M)) be the first-order 
cumulative sequence of the power grid renovation-related technical indicator vector Xi, where 
xi(1)(j) represents the first-order cumulative value of the ith-1 power grid renovation-related 
technical indicator at the jth time point. Z1(1) = (z1(1)(1), z1(1)(2),…, z1(1)(M)) is the first-order 
cumulative sequence of the vector representing power grid renovation investment X1(1)'s 
adjacent mean value sequence. z1(1)(j) represents the adjacent mean value of power grid 
renovation investment at the jth time point. The Grey model GM(1,N) for power grid renovation 
investment prediction is defined as equation (12). 
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In this context, "a" denotes the development coefficient, while "bi" signifies the coordination 
coefficient. Let P = [a, b1, b2, ..., bN] T represent the parameter column. 

Based on the historical data of grid technology transformation investments in Step S2, the 
estimated values of the parameter column P are obtained as equation (13). 
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Therefore, the approximate response of the grey GM(1, N) model is as equation (16). 
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Where 𝑥ොଵ
ሺଵሻሺ𝑘ሻ represents the accumulated investment value of grid technology transformation 

at the k-th time point, and e denotes the base of the natural logarithm. 

The original model assumes that 𝑥ොଵ
ሺଵሻሺ𝑘ሻ  passes through the initial point ((1, 𝑥ଵ

ሺଵሻሺ1ሻ ). 
However, the actual grid technology transformation investment prediction model may not 
necessarily pass through this point. In order to improve the accuracy of the prediction, this study 
adopts the principle of minimizing the sum of squared errors between simulated and real values. 
The specific method is as equation (17). 
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Taking the derivative of the above equation and setting f'(c) = 0, we obtain equation (18). 
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Substituting the obtained c into Equation (16), we obtain the optimized grey model as equation 
(20). 
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(4) Grid Technology Transformation Investment Prediction: 

Obtain the first-order cumulative value of the relevant technical indicators for grid technology 
transformation investments at the predicted time point k and the preceding time point k-1, 
denoted as xi

(1)(k-1). For the indicator value at time point k, this paper employs the GM(1,1) 
model. It is then incorporated into the grey model from Step S3 to acquire the first-order 
cumulative values of grid technology transformation investment predictions for time points k 
and k-1, denoted as 𝑥ොଵ

ሺଵሻሺ𝑘ሻ and 𝑥ොଵ
ሺଵሻሺ𝑘 െ 1ሻ respectively. Consequently, the grid technology 

transformation investment prediction at time point k is given by equation (21). 
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2.1.3 Construction of an enhanced grey prediction model for improved forecasting 

When forecasting data characterized by high volatility and randomness, the Grey Prediction 
Model may sometimes yield significant errors, which exhibit a stochastic nature. The Markov 
model, dedicated to studying transition patterns among random states, provides a method to 
effectively integrate with the Grey Model. By employing specific techniques to merge the 
Markov chain with the Grey Model, the Grey Prediction Model is optimized. This enhancement 
further elevates the forecasting precision of grid technology transformation investments. The 
process of refining grid technology transformation investment predictions using the Markov 
model is depicted in Fig 2. 
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Fig. 2. The process of Markov model for grid technology transformation investment forecast correction. 

(1) Acquisition of Reference Data 

Set the number of reference data time points to be Q, selecting Q time points from historical 
data. Typically, to enhance prediction accuracy, it is advisable to choose the Q time points 
nearest to the predicted time point, denoted as k. Let the actual electric power grid renovation 
investment values at these Q time points be denoted as yq, where q = 1, 2, ..., Q. Employ 
parameter-optimized grey models to compute the corresponding electric power grid renovation 
investment predictions, denoted as ŷq. 

(2) Calculation of Prediction Errors 

Calculate the prediction errors corresponding to each time point for electric power grid 
renovation investments as equation (22). 
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(3) Division of State Intervals 

Let the minimum and maximum values of the electric power grid renovation investment 
prediction errors be denoted as emin and emax, respectively. Divide the prediction error interval 
[emin, emax] into H state intervals [E1h, E2h], where h = 1, 2, ..., H. To facilitate predictions, the 
value of H should not be less than the difference between the nearest time point k' among Q 
time points and the prediction time point k, i.e., H≥k-k'. 

(4) Acquisition of State Transition Probability Matrix: 

Record the state transitions of prediction errors between two time points. Let the number of 
times state Ej transitions to state Ej' after h steps be denoted as ajj'(h), where j, j' = 1, 2, ... . The 
number of times transitions originate from state Ej is denoted as βj. Therefore, the probability of 
prediction error transitioning from state Ej to state Ej' after h steps is defined as pjj'(h) = ajj'(h)/βj. 
This leads to the h-step state transition probability matrix P(h) as equation (23). 
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In the practical computation process, it is common to first calculate the one-step state transition 
matrix based on the error states between real values and predictions from historical data, where 
h takes the value of 1. Then, the two-step to H-step state transition matrices are derived based 
on the relationships between the state transition matrices. 

(5) Correction of Electric Power Grid Renovation Investment Predictions: 

Select G time points from the Q time points where the difference between their time and the 
prediction time point k is less than H. Let the number of such time points be G, and denote these 
time points as kg, where g = 1, 2, ... , G. Using the prediction error states at these G time points 
and the H state transition probability matrices P(h), calculate the probabilities of transitioning 
to various state intervals from these G time points kg to the prediction time point k after k-kg 
steps. Determine the total probability for each state interval and select the state interval Eh* 
corresponding to the maximum total probability as the prediction error state interval for the 
electric power grid renovation investment prediction at time point k. Calculate the average value 
of the prediction errors in state interval Eh* as e*. Then, adjust the electric power grid renovation 
investment prediction x̂1(k) based on the following formula to obtain the corrected electric 
power grid renovation investment prediction x̂1(k). 

3 Case study analysis 

3.1 Indicator selection 

One of the most critical aspects in the process of estimating electric power grid renovation 
investment is the selection of relevant indicators. The appropriateness of indicator selection 
directly affects the effectiveness of investment predictions. The selection of indicators for 
electric power grid renovation investment must begin with a clear understanding of the general 
structure of the relevant indicators. The indicator extraction plan for electric power grid 
renovation investment constructed in this paper primarily involves three aspects. 

First, a preliminary organization and categorization of the data is performed. This involves 
clarifying the physical meanings of each indicator and consolidating and organizing data that 
are duplicated or closely related. Data sequences that show minimal variation over time are 
removed. For data with a small number of missing values, appropriate methods are used for data 
imputation to fill in the gaps. Common methods include mean imputation and interpolation. 
Mean imputation involves calculating the average of available data from neighboring years to 
estimate missing data. This method is relatively simple but may have lower accuracy. On the 
other hand, interpolation is a more complex method that uses mathematical techniques to 
estimate missing data based on the surrounding data points. It often yields higher accuracy 
compared to mean imputation. However, in cases where data is severely missing, it's advisable 
to delete entire data records with substantial gaps as they might not provide meaningful 
information for analysis. 



After the preliminary organization of data and the selection of relevant indicators, the next step 
is to perform a correlation analysis using the "angle slope correlation coefficient algorithm" 
proposed in this paper. This analysis will help determine the degree of correlation between each 
indicator and the amount of electric power grid renovation investment. 

Finally, by integrating the insights of relevant experts in the field of electric power and 
considering the specific requirements of the predictive model, the ultimate selection of 
indicators most closely associated with electric power grid renovation investment is determined. 

3.1.1 Indicator organization 

The process of organizing indicators begins with understanding their physical meanings, logical 
relationships, and the statistical data among them, with input from relevant professionals. The 
aim is to select practical indicators that offer comprehensive coverage and effectively represent 
the correlation with electric power grid renovation investment. Due to the extensive range of 
power-related data indicators associated with these investments, they cannot all be listed here. 

When dealing with data containing a small number of missing values, it is advisable not to delete 
entire data records. Instead, appropriate data imputation methods should be employed for 
completion. Common imputation methods include mean imputation and 
interpolation/extrapolation. Mean imputation entails averaging surrounding years' data to fill in 
missing data for a given year, offering a simple solution but potentially lacking precision. In 
contrast, interpolation involves fitting missing data based on surrounding years' available data 
using suitable methods. While interpolation methods are more intricate compared to mean 
imputation, they generally offer higher accuracy in simulating missing data. 

After the initial analysis, the data matrix, which compiles data from different systems with 
varying formats, is denoted as "D." The format of the data matrix D is as equation (24). 
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Where, "y" denotes the data sequence for electric power grid renovation investment amounts; 
"x" represents the data sequence group of relevant indicators; "n" stands for the number of years 
with available historical data from the electric power grid company; "m" refers to the count of 
selected indicators following the initial organization. 

3.1.2 Indicator selection based on the correlation model 

In this section, the specific steps for calculating the angular correlation between relevant 
indicators and electric power grid renovation investment are provided. 

Taking the example of calculating the correlation between the line loss rate indicator and electric 
power grid renovation investment, let's denote the historical data of line loss rate for the past 
"n" years as "X" and the electric power grid renovation investment for the past "n" years as "Y." 
We calculate the slope vectors for electric power grid renovation investment and line loss rate 
for each time interval as ∆Y and ∆X, respectively. The weight vector for line loss rate at each 
time moment is calculated as "C." 



Table 1. Electric Power Grid Renovation Investment Forecast Related Indicators. 

Indicator 
names 

Indicator 
Units 

Attributes Significance Correlation 

Electricity 
Sales 

Revenue 
Yuan Benefit 

Revenue Generated from 
Electricity Sales in the Area of the 
Technical Reform Project 

0.8967 

Line Loss 
Rate 

% Cost 
One of the effective measures 
reflecting grid efficiency. 

0.8014 

Equipment 
Utilization 

Hours 
h Benefit 

Operating Hours at Rated Power 
for Equipment Over a Specified 
Period (Usually Calculated 
Annually) 

0.7729 

Unit 
Electricity 

Transmission 
and 

Distribution 
Cost 

Yuan/kwh Cost 

The Total of Prices Provided by 
the Electric Grid Operating 
Company for Access Systems, 
Electricity Transmission, and 
Sales Services, as a Ratio to the 
Volume of Electricity 
Transmitted and Distributed 

0.6743 

Share of 
Clean Energy 

% Benefit 

Proportion of Clean Energy in the 
Regional Power Generation 
Equipment of the Technical 
Reform Project Area 

0.6086 

Cost of Unit 
Substation 
Capacity 

Yuan/kVA Cost 
The Ratio of the Total Cost of 
Transformers to Transformer 
Substation Capacity 

0.5893 

Electric Grid 
Maximum 

Load) 

Ten 
thousandꞏkW 

Benefit 
The Maximum Annual Load of 
the Entire Society within the 
Supply Administrative Area 

0.5187 

Workforce 
Size 

People Cost 

Workforce Scale and Costs 
Invested by the Electric Power 
Grid Company in the Process of 
Grid Engineering Construction 
for the Technical Reform Project 

0.4978 

Following initial indicator organization, angular correlation between various indicators and 
electric power grid renovation investment is computed. Eight specific indicators (in Table 1) 
are selected for correlation analysis, considering both positive and negative correlations with 
electric power grid renovation investment. Angular correlation is initially calculated using 
historical data from 2016 to 2020, and subsequently from 2017 to 2021. 

Once the correlation sequence is established through angular correlation calculations, an in-
depth evaluation is conducted by experts in collaboration with professionals from the electric 
power grid industry. These experts provide further insights into the indicators, although this 
paper does not delve into the specifics. 



Following the angular correlation calculations and the expert evaluations, eight indicators that 
are closely related to electric power grid renovation investment are ultimately chosen. The 
specific information about these indicators is presented in Table 1. 

3.2 Appli electric power grid renovation investment forecast based on improved grey 
models cability analysis of existing cost calculation methods 

Following the method steps outlined in Section 2.2.2, we sequentially selected 1 to 8 relevant 
indicators from Table 2 and established corresponding multidimensional grey models. We 
calculated the relative errors between the real values and simulated values for each model, and 
the average relative residuals for each model are presented in Table 2. 

Table 2. Average Relative Residuals for Each Model. 

Number of Indicators Grey Model Average Residual 

1 GM(1,2) 30.57% 
2 GM(1,3) 25.31% 
3 GM(1,4) 15.68% 
4 GM(1,5) 10.75% 
5 GM(1,6) 14.83% 
6 GM(1,7) 32.19% 
7 GM(1,8) 89.56% 
8 GM(1,9) 121.26% 

Comparing various grey models, we find that the Grey GM(1, N) model exhibits larger average 
relative residuals with fewer indicators. As the number of indicators increases, these residuals 
gradually decrease. This underscores that forecasting electric power grid renovation investment 
is influenced by multiple indicators. Utilizing multiple indicators provides a more accurate 
reflection of investment patterns. However, an excessive number of indicators significantly 
raises the model's average relative residuals. Excessive indicators result in a large condition 
number for the internal matrix due to the model's unique construction. In ill-posed equations, 
minor changes in observed values lead to substantial errors in model predictions. 

Using the above method, the selection of Electricity Sales Revenue, Line Loss Rate, Equipment 
Utilization Hours, and Unit Electricity Transmission and Distribution Cost was made to 
establish a Grey GM(1,5) model for predicting electric power grid renovation investment. 
Specific calculation results are presented in Table 3. 

Table 3. Model Simulation Results. 

Year Real Value Simulated Value Relative Error 

2016 5.57 5.57 0 
2017 9 8.76 -2.67% 
2018 12.21 13.04 6.80% 
2019 15.57 17.47 12.20% 
2020 6.56 6.88 4.88% 
2021 8.92 9.98 11.88% 
2022 8.61 9.27 7.67% 



Following the method described in section 2.2.3, further adjustments were made to the 
parameter-optimized grey model. As indicated in Table 4, the minimum relative error is -2.67%, 
and the maximum relative error is 11.88%. Considering that there are 6 historical data points, 
they are divided into three equally weighted states, as shown in Table 4. 

Table 4. State Division. 

State E1 E2 E3 

State Boundaries [-2.67%,2.18%) [2.18%,7.03%) [7.03%,11.88%) 

Based on the state division table, the simulated predicted values for the years 2016 and 2017 are 
in state E1, for the years 2018 and 2020 are in state E2, and for the years 2019 and 2021 are in 
state E3. Therefore, the one-step state transition probabilities are calculated as equation (25). 
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Calculating the two-step state transition matrix based on the one-step state transition matrix as 
equation (26). 
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Obtaining the three-step state transition matrix by combining the one-step and two-step state 
transition matrices as equation (27). 
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Because the Markov states are divided into three intervals, the prediction of the 2022 grid 
technology renovation investment state, based on historical data from 2019, 2020, and 2021, is 
presented in Table 5. 

Based on the state prediction results, the 2022 grid technology upgrade investment is in state 
E2. The corrected error, denoted as e*, is calculated as (2.18% + 7.03%) / 2, resulting in 4.61%. 
The parameter-optimized grey model predicts the investment for the year 2022 to be 9.27 billion 
RMB, and the corrected forecast value is 8.86 billion RMB, yielding an error of 2.90%. This 
relatively small error further substantiates the effectiveness of the selected indicators proposed 
in this study, demonstrating their capacity to better reflect the impact on grid technology upgrade 



investments. It also underscores the suitability of improving the grey model forecasting method 
for grid technology upgrade investment prediction. 

Table 5. Predicted 2022 Grid Technology Renovation Investment State Results. 

Year Initial State Transition Steps 
State Transition Probability 

E1 E2 E3 

2021 E3 1 0 1 0 
2020 E2 2 0 3/4 1/4 
2019 E3 3 0 3/4 1/4 

Total 0 10/4 1/2 

4 Conclusions 

Based on data from grid technology upgrade project investments spanning 2016-2021, this 
paper employs angle slope correlation to select key indicators. These indicators encompass 
maximum grid load, power supply capacity, line length renovations, electricity sales revenue, 
installed capacity, line loss rate, unit substation capacity cost, and power supply reliability, 
which are analyzed for their influence on technology upgrade projects. An enhanced grey model 
is then developed to predict 2022's grid technology upgrade project investment. Additionally, 
the application of the Markov model for correction and deviation rate calculation further 
validates the effectiveness of the proposed indicator selection method and underscores the 
suitability of the improved grey model for investment prediction in grid technology upgrades. 

However, it's crucial to note that the historical data used in this study still falls short of big data 
requirements, and result precision requires improvement. In response to the shortcomings of the 
proposed method, this paper suggests reinforcing the entire investment cycle management to 
enhance the decision-making capability for technological renovation projects [5]. Furthermore, 
it is recommended to leverage big data information technology to strengthen the collection of 
fundamental data, thus further improving the accuracy and applicability of the predictive model. 

Reference 

[1] Li, J., Chen, W., Chen, Y., Sheng, K., Du, S., Zhang, Y., & Wu, Y. (2021). A survey on investment 
demand assessment models for power grid infrastructure. IEEE Access, 9, 9048-9054. 
[2] Dunnan, L., Erfeng, X., Guangyu, Q., & Ying**g, H. (2019). Research on reasonable grid 
investment scale measurement under the reform of transmission and distribution electricity price. 
Energy Procedia, 156, 412-416. 
[3] Oyewole, A. (2015, September). Extension of the gray correlation to inclination angles. In SPE 
Annual Technical Conference and Exhibition? (p. D023S099R004). SPE. 
[4] Cheng, M., & Shi, G. (2022). Improved methods for parameter estimation of gray model GM (1, 1) 
based on new background value optimization and model application. Communications in Statistics-
Simulation and Computation, 51(2), 647-669. 



[5] Eash-Gates Philip, Klemun Magdalena M.,Kavlak Goksin,McNerney James,Buongiorno Jacopo & 
Trancik Jessika E..(2020).Sources of Cost Overrun in Nuclear Power Plant Construction Call for a New 
Approach to Engineering Design. (11),2348-2373.  


