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Abstract. China’s position in the world swimming industry is becoming 

increasingly high, which is also an important achievement in the swimming 

industry. Improving the strength of athletes is urgent. This article used a 

combination of sliding window technology and mixed Gaussian model to model 

the underwater video background of a swimming pool. A video monitoring 

model based on computer vision and deep learning was used to recognize the 

actions of swimmers. This article extracted breaststroke motion data from 

various stages, as well as motion data from freestyle, butterfly stroke, and 

different stages of breaststroke, and conducted classification and recognition 

work. This article evaluated the recognition accuracy of different stages of 

breaststroke and the specific stage actions that were easily misclassified as 

freestyle and butterfly stroke, in order to achieve overall recognition and stage 

recognition of swimming posture and expand the application range of 

recognition models in swimming motion recognition and evaluation. Swimming 

motion recognition found that in butterfly stroke, the maximum pitch angle 

between the head and hips was 110°, and the maximum pitch angle between the 

head and hips was 42°. This article provided a sports guidance system suitable 

for swimming, which helped empower skills for training and enables most 

athletes to grow rapidly. 

Keywords: Computer Vision, Deep Learning, Swimming Action Recognition, 

Action Evaluation, Background Modeling 

1. Introduction 

With the improvement of people’s living standards and the rapid development of 

science and technology, people are paying more and more attention to the body. 
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Swimming, which can enhance the functions of the human respiratory and 

cardiovascular systems, has also developed rapidly and is one of the most popular 

sports and fitness projects in the 21st century. Swimming is a commonly used medical 

rehabilitation method, and its changes in movement coordination and symmetry can 

better reflect the body’s sports injuries, spinal diseases, etc. The swimming posture 

monitoring and recognition based on computer vision and deep learning carried out in 

this article could directly observe and measure the movement status of the human 

body in water, providing strong support for people to better understand the movement 

status of the human body in water. At the same time, detailed monitoring data could 

also help athletes track and analyze the movement status in real-time during the 

exercise process. 

In terms of swimming skills, the competitive level of swimming competitions at all 

levels is gradually improving, and the gap between top athletes is gradually narrowing. 

The number of athletes in the same level is also increasing, which brings great 

pressure to athletes and coaches. In this context, competition among athletes at 

various levels revolves more around the control of technical movements and how to 

cultivate excellent swimming rhythms in daily training. Swimming techniques are 

classified according to specific events, and the details of each event are deeply 

explored to gain a clearer understanding of the sports characteristics of each action. In 

order to solve the core problem of swimming behavior recognition in the digital 

swimming monitoring system, Xiao Ju planed to use a combination of a single 

attitude sensor and a decision tree classifier to achieve autonomous recognition of 

swimming behavior. He first used a single wireless pose sensor to collect real-time 

three-dimensional acceleration and angular velocity during swimming, and combined 

them with real swimming categories to establish a swimming behavior database. On 

this basis, he proposed a decision tree classification algorithm based on genetic 

algorithm and improved it. On the basis of the classification and recognition results, 

he could accurately estimate the moment of the swimming action switching point, 

with an average estimated time error of 0.186s for training data and 0.209s for testing 

data [1]. Based on existing research, Xiang Hongbiao utilized improved algorithms to 

extract obstacle information from complex scenes for trajectory planning, and 

combined arc smooth labeling to achieve real-time updates of the center and corner of 

the swimming robot in complex scenes. He achieved dual closed-loop follow-up 

control of the swimming posture and posture of the magnetic controlled micro robot 

in complex environments, and verified the effectiveness and smoothness of the 

proposed method through experimental verification, as well as the effectiveness and 

accuracy of the identification and tracking methods [2]. Wang Song studied 

swimming data collection and monitoring systems based on attitude sensors, and he 

believed that detailed recording and analysis of swimming movements was of great 

significance. At present, wearable products on the market mainly focus on sports such 

as running, walking, and cycling, while there are very few that have swimming 

monitoring functions [3]. Although they have developed a more advanced 

understanding of competitive swimming, there is still room for improvement in the 

recognition of swimmer movements. 

In water, moving objects would change their position according to changes in time. 

In addition, due to the different postures, postures, and clothing of different athletes, it 

is difficult to provide a unified feature description for athletes, which increases the 



difficulty of detecting athlete movement targets. Compared to general detection 

environments, there are certain differences between underwater environments. This 

article analyzed the principles of different background modeling algorithms, and then 

conducted corresponding experimental simulations. Based on the experimental results, 

the modeling accuracy and real-time performance were analyzed. This article 

explored the background simulation method based on sliding model and makes 

corresponding improvements to it. The video monitoring model used in this article 

included video data collection end, management monitoring end, and mobile 

monitoring end. 

2. Exploring Methods for Identifying and Evaluating Swimming 

Movements 

2.1 Modeling of Underwater Video Background in Swimming Pools Based on 

Moving Mean Model 

This article presents a method based on the combination of sliding window 

technology and mixed Gaussian model, which achieves adaptive ability to real-time 

changes in underwater scenes and irregular interference distribution. 

On the T-period, a moving average model is established using a mixed Gaussian 

distribution for continuous swimming action video sequences in time [4-5]. This 

method utilizes the latest observation data to continuously update and replace 

parameters in the pattern, in order to reduce errors caused by long-term observations. 

The probability density function of each pixel in a swimming action video is as 

follows [6]: 

𝑃𝑀 = ∑𝑤 ∗ 𝛽(𝑋, 𝜇𝑚, ∑ 𝜃)       (1) 

𝜇𝑚 represents the mean of the 𝑚-th Gaussian function of the pixel. 

In a swimming action image, an adjacent image in the image is taken and 

compared with the K Gaussian distributions of the image in the background model 

[7-8]. In the background model, if the deviation between the current pixel value and 

the average coefficient does not exceed 2.5 times, it indicates that the current pixel 

value satisfies the Gaussian distribution feature. If the current pixel value matches the 

background model, the parameters of the model must be updated: 

𝑤𝑖,𝑘 = (1 − 𝜃) ∗ 𝑤 ∗ 𝛽(𝑋, 𝑌) + 𝛽𝑃𝐿       (2) 

𝑃𝐿  is the efficiency of background update. 

After setting the parameters, a background screen would be generated. The 

accuracy of initializing the background model is closely related to the number of 

frames involved. When the system is initialized, due to external disturbances or 

objects entering, it would have a significant impact on the accuracy of background 

modeling. In order to obtain an accurate initial background model, it is necessary to 

manually set an appropriate initial time. 

2.2 Video Surveillance Based on Computer Vision 



Intelligent video surveillance is achieved through computer vision technology. It has 

transformed from a single function of recording videos to two functions of recording 

and extracting information, enabling real-time analysis and interpretation. With the 

continuous development of video surveillance technology, its application scope is also 

becoming wider and wider. 

The digitization and networking of computer vision monitoring mode enables the 

conversion of collected images from analog to digital transmission. On this basis, a 

matching DHDV (Digital Highway Data Vehicle) is also equipped, and wireless 

transmission is adopted, greatly improving the performance of the system. In addition, 

digital matching of intelligent video surveillance models based on computer vision 

has a driving effect on the overall intelligent video surveillance industry. 

The so-called “networking” refers to connecting various modules through wireless 

networks, thereby improving the reliability of the entire system and creating more 

flexible product forms. The intelligent video surveillance system has left great room 

for improvement in subsequent device access and system upgrades. 

This article presents a design method for a multi-level access model based on 

computer vision. According to different task requirements, different modules are 

combined together. In terms of intelligent video surveillance technology, it has been 

able to mimic the human brain for corresponding analysis and recognition. Video 

surveillance technology based on computer vision would play a leading role in the 

future video surveillance field. The front-end of the system integrates cameras and 

image algorithms, and transmits the digital signals collected by the monitoring device 

over the network to the terminal in a long-distance manner. During this process, the 

transmission quality of images is improved, while also reducing the overall operating 

cost of the system. 

With the continuous development and popularization of drowning rescue 

technology, underwater intelligent monitoring technology based on digital image 

processing technology has become a current research hotspot. In practical applications, 

the complexity of underwater environments and the differences between different 

types of objects have brought great difficulties to image processing [9]. Therefore, the 

research on detection methods for moving objects is particularly important. 

This article presents a method for underwater acoustic signal processing based on 

underwater acoustic signal processing, and studies the methods of underwater 

acoustic signal processing [10-11]. 

At the video data collection end, it consists of 8 impermeable cameras, a video 

server, and a virtual private network line. 

The management monitor is a part of terminal control. 

The mobile monitoring terminal mainly consists of a handheld tablet computer. 

Workflow: The underwater swimming posture video captured by the 

high-definition camera is returned to the video server, and then fed back to the main 

control server through a virtual private network dedicated line [12]. On the server side, 

it is combined with specific deep learning algorithms to perform object detection and 

alarm judgment. Finally, the alarm signal is wirelessly transmitted to the handheld 

tablet on site through the network. 

(1) Video data acquisition end 

Data collection is mainly completed by cameras installed in the water. The 

instruments used in this article are all provided by third-party outsourcing companies 



and are equipped with relevant interfaces, which can be used for preliminary analysis 

and storage of data. At the same time, the video data collection end also provides 

interface services: the video secondary development memory package 

(WIN7/WIN1064 bit, and WIN means windows) includes: video selection, video 

playback, video parameter settings, etc.; it provides a web page (browser) for 

obtaining and playing raw videos. 

(2) Management monitoring end 

This end is centered around a single machine, mainly achieving real-time 

monitoring of images and image recognition and alarm. At the same time, these 

management and monitoring terminals can also be easily ported to public clouds and 

other service platforms, providing support for future cloud computing architectures. 

The interface relationship between the management supervision end and other parts: it 

calls the interface service of the video data collection end for video playback and 

acquisition; it provides real-time video monitoring and alarm data services for mobile 

supervision ends. 

(3) Mobile monitoring terminal 

Its main body is a mobile monitoring terminal based on the Win10 tablet computer. 

It is an extension of the management monitoring terminal and can provide users with 

services such as querying alarm information and basic control. The interface 

relationship between the mobile monitoring end and other parts: This mainly obtains 

real-time monitoring and alarm data from the management monitoring end, and can 

be set to stop alarms. 

In order to adapt to the interaction between multiple endpoints and the migration of 

future cloud services, a network structure of an underwater swimming posture 

intelligent detection model was adopted [13-14]. This model constructs a unified 

support service layer that can achieve unified support services for desktop, mobile, 

and future web pages. Firstly, in order to facilitate future multi end expansion, basic 

services and computing would be uniformly placed in the support service layer. 

Secondly, computing and display are separated, with a focus on optimizing and 

improving the interface and display functions on each terminal (mobile phone, 

desktop). Ultimately, all complex calculations are handled by the backend, which 

allows for the full utilization of computing resources on the server and makes it easy 

for the server to expand and migrate. 

This model adopts a unified data hierarchy to manage various types of resources 

uniformly. Firstly, in order to achieve unified management and service of data, a data 

source platform has been constructed. Secondly, the existing “swimming posture 

system” serves as a monitoring and management terminal (tool), and attempts to reuse 

the existing interface to reduce changes to the model [15]. On this basis, this article 

builds a mobile monitoring terminal based on supporting business. Based on a unified 

service interface, lightweight applications have been implemented, greatly reducing 

the workload and investment of construction. At one end of the application, it can be 

easily expanded. In the design, this article uses parallel processing to ensure that the 

work of each channel does not interfere with each other. When the final control 

computer detects that the swimming posture collection conditions are met, it can 

transmit the swimming posture signal to the on-site terminal in a timely manner 

[16-17]. 



3. Swimming Movement Recognition and Evaluation Collection 

Experiment 

To classify and recognize swimming postures, it is necessary to collect a large amount 

of motion data [18]. This article would conduct land simulation experiments on 

swimming postures, thus using data collection models to collect and analyze leg, 

waist, and joint angle data of four common competitive swimming postures, thereby 

providing data support for the construction of subsequent classification and 

recognition models. 

3.1 Collection Experiment 

Based on the following considerations, the scheme of simulating leg movements in 

land swimming posture is adopted. 

(1) On land, people can focus all their attention on their actions without being 

disturbed by external factors such as arm movements and water flow. 

(2) The shore experiment can comprehensively observe the movement of the 

subjects, thereby ensuring the accuracy of the data. 

(3) Some of the experimental subjects had not learned to swim. Therefore, during 

underwater testing, due to external conditions, the test objects cannot be conducted 

underwater, so the test objects are all conducted on land [19-20]. 

According to the needs of swimming posture classification and identification, a 

total of 10 participants (6 males and 4 females) were invited in this article. All 

invitees have signed informed consent forms, and the basic information of the invitees 

is shown in Table 1. The age range of the subjects is between 23 and 25 years old. 

Table 1. Basic information of the inviter 

Serial number Age Body mass index(kg/m²) 

1 24 23 

2 23 21 

3 25 21 

4 25 19 

5 23 21 

6 24 21 

7 24 20 

8 23 23 

9 23 23 

10 23 20 

The experimental equipment used in this article includes: sensitive pants, laptop 

(Window operating system), square stool, yoga mat, and portable collection device. 

The experimental site is located in the laboratory, and within 24 hours of the start of 

the experiment, all participants did not engage in any intense exercise. The 

participants were trained in four different swimming postures in strict accordance 

with the given training plan according to the order of numbering. The sampling 

frequency of the collection model is set to 20 Hz, and the collection time for each 

stroke is 20s for each candidate. After the data collection for each stroke is completed, 

there would be a 4-minute rest, so that after the candidate recovers their physical 



strength, they can continue to collect data for another stroke. 

Freestyle swimming: Candidates lie on their backs on a square stool, with their legs 

extended downwards and suspended in the air. They bend their legs downwards and 

straighten their legs upwards, alternating between the two legs. The range of motion is 

approximately 30-40 cm. 

Backstroke: The candidate sits on a square stool and leans back slightly. The 

student’s two legs are straight together and suspended in the air. The instep is taut and 

the legs alternate up and down. The height of the movement fluctuates above and 

below the horizontal plane, with an amplitude of approximately 30-40 cm. 

Breaststroke: The candidate lies on a square stool, with both hands extended 

forward. The candidate’s legs should be folded towards their abdomen, and their heels 

should be as close to their thighs as possible; when flipping outward, the candidate 

also bends their knees slightly inward and their legs are in a “W” shape from behind; 

when stepping back, the candidate puts their feet together; the candidate lifted their 

waist and made a sliding move. 

Butterfly stroke: Candidates lie prone on a yoga mat, with their elbows supporting 

their upper body (tools can be used to assist in supporting their upper body). The 

candidate’s hip joint leans forward and drives the thigh to press down, allowing the 

knee to come into contact with the yoga mat. At the same time, candidates can also 

lift their feet. When the foot reaches its highest point, the candidate can extend their 

knees, lower legs, and feet to water. At this point, the candidate’s thighs are lifted up 

until the knee joint is straightened. At the same time, the candidate’s waist should be 

lifted up to complete a cycle of movements. 

In each swimming posture, the cross-sectional angles of each athlete’s legs and 

waist were collected using a portable collection device and transmitted to LabVIEW 

(Laboratory Virtual Instrument Engineering Workbench) through flexible circuit 

board wires, achieving synchronous calculation of hip and knee angles. During the 

experiment, the changes in the action parameters of the tested object can be observed 

in real-time on the display interface. LabVIEW writes each received information into 

a CSV (Comma-Separated Values) file and stores the collected information as the 

initial input for offline identification models. 

3.2 Experimental Development 

On the internet, instructional videos of land leg movements for four swimming styles 

have been searched for. Based on the information of the candidates, 5 candidates 

learned the leg movements of swimming posture by watching teaching videos and 

conducted practical training until they fully mastered the essentials of these 

movements. Five participants only watched 2-3 teaching videos. Ten participants 

wore sensing pants in sequence and connected them to a portable collection system to 

perform four different swimming movements according to the experimental plan. 

4. Exploration Results of Swimming Posture 

In the experiment, the legs of the experimental subject were suspended in mid air, and 

the movement space during simulated water kicking was limited. The movement 

amplitude of the legs was too small, and the node angle data of the experimental 

subject’s leg sensors had little change. The sampling point when the left leg hits the 



lowest point is the same as the sampling point when the right leg hits the water close 

to the horizontal. That is to say, when the right leg hits the water upwards, the left leg 

hits the water downwards, which is consistent with the cross hit action of the left and 

right legs in freestyle. The analysis results of joint angle data in freestyle swimming 

are shown in Figure 1. Under small movements, there was no significant change in 

the angles of the left and right hip joints. The range of changes in the left knee joint is 

relatively large. 

 

Fig.1 Analysis results of joint angle data in freestyle strokes 

The sensor node angle in the backstroke stroke is shown in Figure 2. Due to the 

fact that the subject is in a semi bent state during the swimming process, the waist 

sensor collects a large amount of node angle data during the actual swimming process. 

During the experiment, the subjects’ legs were partially suspended and their range of 

motion was very small. In a motion cycle, during the process of lifting water up, the 

thigh drives the calf up. Therefore, the sensor node angle data of the thigh and calf 

would change downward. After the thigh stops, the calf would continue to move up 

due to inertia. Therefore, the sensor node angle data of the thigh reaches the trough 

earlier than the calf. 

During the process of diving, after the thigh stops pressing down, the calf is still 

pressing down, and the thigh reaches its peak earlier than the calf; The movement of 

the left leg of this subject is slightly greater than that of the right leg. When the peak 

valley values of the same leg change at the same time, and the peak valley values of 
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both legs change at different times, the left and right feet cross kick at the same time. 

 

Fig.2 Sensor node angle in backstroke stroke 

The pitch angle between the head and hips in butterfly stroke is shown in Figure 3, 

with a maximum value of 110° for the head and 42° for the hips. The athlete’s hips are 

in a periodic state of motion, with each peak being the highest and each valley being 

the lowest. From the characteristics of hip data, it can be observed that the high and 

low peaks in the hip of butterfly stroke correspond to different pitch angle peaks 

caused by the two legs. The peak elevation angle of the head occurs during the period 

of the lowest elevation angle of the buttocks. 
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Fig.3 Head and hip pitch angle in butterfly stroke 

This article defines the pitch period of butterfly stroke as the period from the 

lowest point of the first maximum peak to the lowest point of the second maximum 

peak. This article divides the head angle period of butterfly stroke into T1-T4. 

Through statistical analysis, it is found that the time proportions of the four stages are: 

15%, 30%, 15%, and 40%. The head angle cycle of butterfly stroke is shown in Table 

2. The proportion of time required to divide the hip joint pitch angle into K1-K4 and 4 

hip joint pitch angles is 29%, 12%, 39%, and 20%. The pitch angle of the hip joint is 

shown in Table 3. 

Table 2. Ratio of head angle cycles in butterfly stroke  

Butterfly head angle cycle Time proportion(%) 

T1 15 
T2 30 

T3 15 

T4 40 

Table 3. Proportion of hip joint pitch angle 

Hip pitch angle Time proportion(%) 

K1 29 
K2 12 

K3 39 

K4 20 
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The paired sample T-test results of the peak and valley values of the head pitch 

angle in butterfly stroke are shown in Table 4. The peak value of head pitch angle is 

100±5°, the valley value of head pitch angle is 15±6°, and the total amplitude of head 

pitch angle is 90±8°. The peak value of hip pitch angle is 50±7°, the valley value of 

hip pitch angle is 5±4°, and the total amplitude of hip pitch angle is 50±6°. 

Table 4. Paired sample T-test results of peak and valley values of butterfly stroke head pitch 

angle 

Corresponding angle Head Hip 

Pitch angle peak(°) 100±5 50±7 
Pitch valley value(° ) 15±6 5±4 

Total pitch angle amplitude(° ) 90±8 50±6 

5. Conclusions 

The swimming monitoring and recognition used in this article mainly referred to the 

monitoring, data collection, and recognition of swimming posture through sensors. 

This provided convenience for swimming coaches to track and analyze athlete status, 

and helped swimmers monitor their movements. Compared with existing research 

results, the swimming posture monitoring and recognition model used in this article 

could collect various types of data. Based on this, a fabric like sensor network was 

designed and fabricated. This article effectively protected the sensors and the wires 

they were connected to, enabling monitoring and recognition of swimming posture. 

However, there was still room for improvement. The constructed collection board was 

located at the waist of the human body, and its hardware volume was large, which 

could cause discomfort to the human body. In the future, flexible circuit boards can be 

considered to alleviate discomfort to the human body. 
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