
Energy Efficient Coding Practices for Sustainable

Software Development

R. Manimegalai1, Srivatsan Sandhanam2, A. Sunitha Nandhini3, Priyam Pandia4

{drrm@psgitech.ac.in1*, srivatsan.santhanam@sap.com2, asn@psgitech.ac.in3,
priyam.pandia@sap.com4}

Professor, PSG Institute of Technology and Applied Research1, *Corresponding Author

VicePresident, SAP Labs India2,

Assistant Professor (Sl.Gr), PSG Institute of Technology and Applied Research3,

Principal Architect, SAP Labs India4

Abstract. Cloud computing has revolutionized the IT landscape, offering unparalleled

scalability and flexibility to both businesses and end-users. But there's growing concern

about how much electricity cloud data centers consume. The increasing need for cloud

services has made it imperative to conduct research on maximizing energy efficiency in

cloud computing. This research study compares two different applications to examine

energy-efficient coding methods in cloud computing and provides an overview of current

green data center architecture aspects. The goal of this effort is to pinpoint procedures that

can drastically lower energy usage in cloud environments. The two main steps in the

suggested methodology are as follows. Initially, the energy usage is evaluated for two

distinct programs that are operating in a cloud environment. First, the energy consumption

is assessed for two different applications running in a cloud environment: Application-A

coded in JavaScript, which utilizes conventional coding practices, and Application-B

coded in Java, which integrates advanced energy-efficient coding techniques. Both

applications are subjected to a series of experiments to measure power consumption and

performance metrics, to quantify the energy savings achieved by Application-B which

employs energy efficient coding practices. Second, coding practices employed in each

application are explored to identify key differences that contribute to their varying energy

efficiency. Through code profiling and analysis, specific lines of code, algorithms, and

design principles that make Application-B more energy-efficient than its counterpart, are

highlighted. It has been observed that green-data-center alone will not contribute to overall

sustainable development and it is important to incorporate energy efficient coding

practices in software development to support sustainable environment. This research paper

contributes to the ongoing green-efforts to reduce the environmental impact of cloud

computing by providing practical insights for energy efficiency enhancement, while

optimizing resource utilization. The findings of this research work hold immense value

for cloud service providers, software developers, and policymakers seeking to make

informed decisions regarding energy-efficient coding practices in the cloud computing

domain.

Keywords: Cloud Computing, Energy-Efficient Coding Standards, Sustainable Software

Development.

ICSETPSD 2023, November 17-18, Coimbatore, India
Copyright © 2024 EAI
DOI 10.4108/eai.17-11-2023.2342635

1. Introduction

In an era where the digital realm is omnipresent, cloud computing stands as a cornerstone of

modern information technology, offering unparalleled flexibility and scalability. The cloud's

ability to deliver services and applications at an unprecedented scale has transformed industries,

streamlined operations, and empowered businesses with newfound capabilities. Yet, beneath the

seemingly boundless horizon of cloud computing lies a growing and urgent concern i.e. its

environmental footprint. The energy consumption of data centres, which power the cloud, has

escalated to unprecedented levels, and this surge in energy usage poses serious challenges to

sustainability and resource conservation. This research paper embarks on understanding the as-

is-state of green-data-centre design within the context of cloud computing and studies the impact

of Cloud computing coding practices with implication for energy savings. As the global drive

towards sustainability and environmental responsibility intensifies, the need for energy-efficient

solutions is more compelling than ever.

In the quest to uncover energy-efficient solutions for cloud computing, the role of software

development practices cannot be overstated. Code, the lifeblood of software applications, is

instrumental in determining the energy consumption of cloud-based services. This work delves

into the intricate world of coding practices, comparing two distinct applications running in a

cloud environment to discern the extent to which energy-efficient coding can reduce energy

consumption. Specific coding techniques, algorithms, and design principles that can

significantly enhance energy efficiency in cloud-based software arerecommended.

Complementing the quest for energy-efficient coding practices, this work ventures into the

realm of data-centre design with a focus on environmental sustainability. Data centres are the

powerhouses of cloud computing, and as such, their design and operations play a critical role in

determining the overall energy efficiency of the cloud. The main objective of this work is to

contribute to the growing body of knowledge surrounding energy-efficient practices in cloud

computing, with an emphasis on tangible, real-world solutions. The findings of this work has

the potential to guide and inspire cloud service providers, software developers, and

policymakers in their endeavours to navigate the intersection of technological innovation and

environmental stewardship. In a world where the demand for cloud services continues to surge,

the need for sustainable cloud computing solutions is paramount, and this research paper seeks

to pave the way for a more energy-efficient and environmentally conscious cloud computing

landscape. In nutshell, software development can be made energy efficient and sustainable not

just with Green-data-centres design practices but needs to be coupled with energy efficient

coding practices, user awareness and responsibility.

2. Related Work

Green cloud computing has become a prominent subject of research in today's tech-driven

world, driven by the increasing need for large-scale data storage and computational capabilities.

IT companies are shifting towards cloud computing to expand their infrastructure while

maintaining ecological and cost-effective practices. Cloud computing offers an efficient means

of virtualizing servers and data centers, with a strong focus on energy efficiency. Jerome

Rocheteau et al. have explained how to estimate Java source code energy usage and what

inferences can be made from these measurements [1]. The work done in [1] presents a structured

framework for optimal coding practices, employing a semantics grounded in quantitative

metrics that directly correlate with the savings in time, memory, and energy achieved through

the implementation of these practices. Furthermore, it elucidates the methodology for assessing

such codebases, ensuring consistent and reliable measurements by integrating both physical and

logical sensors. It encourages the enhancement of both the measurement platform and the

measurement protocol. Nayan Agrawal et al. have presented a review on various aspects of

green standards and green approaches, strategies, technologies proposed in the literature [9].

Barriers and benefits of green computing are discussed in [9] and it provides a concise overview

of green cloud computing, addressing its challenges and global benefits.

Daniele D’Agostino et al. have presented the state of the art of powerful, less power-hungry

processors and energy-aware tools and techniques for energy-efficient computing in scientific

programming [12]. Cutting-edge solutions encompassing both hardware and software

innovations, along with methodological approaches aimed at enhancing the energy efficiency

of scientific software are presented in [12] including some intriguing System-on-Chip (SoC)-

based solutions. Giuseppe Procaccianti et al. have highlighted that there is a growing

recognition of the significance of energy efficiency in software development [3]. Despite

numerous empirical studies in this field, there is a lack of empirically validated guidelines for

creating energy-efficient software. The primary objective of work in [3] is to assess the impact

of best practices derived from prior studies on achieving energy-efficient software. Specifically,

the study aims to quantify the energy savings resulting from these practices, identify the

resources they affect, and elucidate potential trade-offs related to energy consumption. An

empirical experiment is conducted in a controlled environment and two distinct green software

practices are applied to two different software applications: query optimization in MySQL

Server and the use of the sleep instruction in the Apache web server [3].

Muhammad Salam et al. have delved into the realm of green and sustainable software

development, a concept that aims to create software solutions that are both eco-friendly and

capable of meeting the present and future needs of users while minimizing their adverse

environmental and societal impacts [6]. This approach is gaining prominence, particularly in the

context of Global Software Engineering (GSE), where multi-sourcing vendor organizations are

actively integrating environmentally responsible practices into their software development

projects.

Candy and Pena Vinces have presented a overview on conventional accounting systems that

currently operate solely from a financial perspective, disregarding essential environmental data

such as environmental costs and corporate expenditures related to environmental impact [16].

The proposed methodology in [16] presents a novel framework called the Green Accounting

System (GAS), which incorporates firms' environmental impact into their accounting processes.

Rajni Sehgal et al. have presented a study on the industry commonly embraces the adoption of

refactoring techniques to rectify code flaws identified as code smells within a given project [15].

This practice is widely recognized as a pivotal means of enhancing software quality. Refactoring

is a technique frequently employed by developers as software evolves during maintenance

phases. This study seeks to delve into the substantial role that refactoring plays in reducing

power consumption. Haitao Steve Zhu et al. have introduced Eco, an innovative programming

model tailored for the development of Java-like applications with sustainability-focus [2]. Eco

features novel abstractions that enable the shaping of supply and demand, thereby engaging

programmers in the realm of sustainability management. It fosters energy-aware and

temperature-aware programming encouraging developers to consider energy efficiency and

temperature optimization in their application designs [2].

Abdulaziz Alarifi et al. have presented the escalating demand for cloud computing services,

driven by the accelerating digital transformation and the inherent adaptability of cloud

technology [11]. The pressing need to enhance the electrical energy efficiency of cloud data

centers is highlighted in [11] and it introduces an Energy-Efficient Hybrid (EEH) framework

aimed at optimizing the utilization of electrical energy in data centers, and its performance is

meticulously assessed. Luca Ardito et al. have discussed the models, and tools for the creation

and advancement of environmentally-friendly software in [3]. Energy efficiency within the

realm of information technology has gained considerable prominence in recent years. It

necessitates not only a shift in mindset among software developers and designers but also the

creation of models and tools capable of quantifying and mitigating the impact of software on

the energy consumption of the underlying hardware [3]. A conceptual framework that offers a

comprehensive perspective on the existing strategies, models, and tools, is presented in [3] for

the development of more environmentally friendly software.

Giuseppe Procaccianti et al. have evaluated the energy-saving impact of best practices derived

from prior research with the aim of identifying the resources influenced by these practices and

potential trade-offs concerning energy consumption. An empirical experiment is conducted in

a controlled environment, implementing two distinct Green Software practices within two

software applications: query optimization in MySQL Server and the use of the sleep instruction

in the Apache web server. R. Pereira et al . have conducted an extensive examination of the

energy usage patterns within various Java Collection Framework (JFC) implementations in [5].

The proposed JFC framework systematically analyzes the energy consumption associated with

each method across implementations while considering different data sizes. It introduces an

energy optimization strategy for Java programs, by identifying the most energy-efficient

methods within each implementation. M. Kumar et al have investigated the energy efficiency

of Java, a widely used language in ICT systems [7]. The research delves into the energy

consumption characteristics of Java, examining data types, operators, control statements,

exceptions, and objects at a granular level. The study leverages Intel Running Average Power

Limit (RAPL) technology to measure the relative power consumption of small code segments.

Several significant insights and observations are uncovered through this investigation, which

may serve as a foundation for standardizing Java's energy consumption attributes.

Biswajit Saha has discussed the current trends in efficient energy consumption, e-waste

recycling and management, IT products eco-labeling and longevity, data centers optimization,

virtualization, etc. in [8]. The concept of Green Computing is more critical as we move towards

smart cities. Shokhista et al. have identified and assessed a total of 169 metrics in terms of their

suitability for analyzing energy consumption within the context of invasive software

development processes in [10]. This comprehensive study highlights the significance of the

questions raised in this field while also revealing its current state of development. There is a

notable absence of evolutionary research and the absence of a method for assessing energy

consumption at various stages of software product development. These findings underscore the

importance of technical work in this domain and emphasize the necessity for its further

advancement. Z. Ournani et al have conducted a comprehensive study with two primary

objectives in [13]. First, it seeks to evaluate the energy consumption associated with various

well-known I/O library methods, examining whether different read/write methods exhibit

varying energy consumption patterns. Specifically, using micro-benchmarks, the study assesses

the energy consumption of 27 I/O methods across various file sizes to discern the most and least

energy-efficient methods. Artem Kruglov et al. have reviewed the responsibility of minimizing

energy consumption within a system has predominantly fallen on the shoulders of hardware

developers in [14]. This emphasis stems from the prevailing belief that hardware constitutes the

primary energy consumer.

3. Proposed Framework for Collecting Energy Footprint and Metrics

This work has proposed two architectures, namely, the design time architecture and run time

architecture, which can be used for collecting energy efficiency metrics that shed light on coding

practices, code patterns and key data points for areas of optimization with energy efficiency in

focus. The architecture defined is in two different dimensions and for consumers of the same to

become aware of the energy consumption done during the application development and while

the application is getting executed in the data center during its usage by the customers.

Classification of these two scenarios has been done as design time, i.e. during application

development and run time, i.e. when the application is used. This section presents details of the

proposed design time and run time architecture that can be employed for green coding practices.

3.1. Design Time Architecture for Green Coding

It is imperative that the developers have a local way to derive the energy footprint that their code

is going to produce during the Application-Build and run. Hence, the proposed architecture

offers an IDE plugin, which can be installed in the development machine by the developers and

used for measuring the energy emissions. This plugin can suitably work with all types of

applications be it front or backend applications and can be used in IDEs such as Jet Brains

https://link.springer.com/chapter/10.1007/978-3-031-11658-2_3#auth-Artem-Kruglov

IntelliJ, Virtual Studio Code, Atom, etc. This would give an insight to the application developers

to see how and where energy emission is happening the most and how it can be reduced. The

dashboard to visualize the same can be hosted locally. The dashboard fetches the data from the

plugin and show the overall energy emission from the application and the details of the code

which has been modified by the developers. Fig. 1. Illustrates the design architecture along with

Energy Metric Measuring Plugin and Metrics Dashboard with Energy Statistics.

Fig. 1. The Proposed Design Time Architecture for Green Coding

3.2. Run Time Architecture for Green Coding

In the proposed architecture for run time scenario, the applications are containerized

and are deployed on AWS Hyperscaler. For integration between front-end and back-end

application, AWS API gateway is used. The database used is AWS native DB and it’s a choice

for SQL or No SQL database, that can be made. A lightweight agent is implemented and

deployed along with the applications for monitoring the energy consumption and emission. The

data from the agent is also logged in the elastic logging service and aggregated. The logs from

AWS native applications are read from the hyper-scalar logging service such as AWS cloud

watch etc. Data from both the logging sources are read and different dashboards are derived

from it. Sustainability report is a meaningful dashboard for senior leaders and customers who

consider the net carbon emissions from the company and the services consumed. Business

metrics along with energy emissions data are portrayed in the dashboard for product managers.

Technical and infrastructure metrics, to observe the operating system, performance,

network latency, and additionally the energy emissions while the applications are running is

particularly useful for technical leads and developers. Fig. 2. Illustrates the run-time architecture

with sustainable report with Dashboard. The runtime architecture of cloud-based services that

incorporate energy metrics measurement using elastic logging involves several key aspects to

efficiently monitor, collect, and analyze energy-related data. Some of the important components

and considerations in run-time architecture are presented in Table 1. A strong framework that

permits real-time monitoring, historical analysis, and anomaly detection of energy consumption

trends is provided by the runtime architecture suggested for cloud-based applications that

incorporate Elastic logging for energy metric measurement. IT organizations can optimize

resource usage, reduce operational costs, and minimize their environmental impact in the cloud

environment, by effectively collecting, storing, and analyzing energy metrics.

Fig. 2. The Proposed Run Time Architecture for Green Coding

Table 1. Essential Components in Runtime Architecture

Type of Component Description

Service Components It is important to design cloud-based service components such as

Virtual Machines (VMs), containers, micro-services, and

networking elements to collect data related to CPU usage, memory

utilization, disk I/O, and network activity, in order to measure

energy metrics effectively

Data Collection

Agents

These agents are collect energy-related metrics from various service

components.

Elastic Logging Stack Elasticearch is used to store the energy metrics data efficiently and

Logstash is employed to collect, transform, and enrich data from

various sources, including data collection agents. Kibana is

considered for its user-friendly interface to visualize and analyze

the collected metrics.

Energy Metrics

Indexing

Energy metrics data should be appropriately indexed within the

Elastic Stack for effective storage and retrieval and faster query

execution.

Real-time Monitoring DevOps teams and administrators can use Kibana dashboards to

visualize energy metrics as they are collected, enabling immediate

insights into resource-intensive operations or unexpected spikes in

energy consumption.

Historical Analysis Historical data can be valuable for capacity planning, performance

optimization, and identifying long-term patterns

Integration with

Cloud Management

Services

Runtime architecture should integrate cloud management services

such as AWS CloudWatch, Azure Monitor, or Google Cloud

Monitoring to ensure effective control and management of energy

consumption to provide optimal cost and resource allocation.

Security and

Compliance

Access controls, encryption, and authentication mechanisms should

be implemented to protect sensitive energy metrics data.

Additionally, compliance requirements, such as GDPR or HIPAA,

must be adhered to when handling energy-related data

Anomaly Detection

and Machine Learning

Machine learning models can be integrated into the Elastic Stack to

detect anomalies in energy consumption. Algorithms can identify

deviations from expected energy usage patterns and trigger alerts or

automated actions to address these issues promptly.

3.3. Sample Code Snippet in Java for Energy Efficient Coding

This Section discusses general principles for writing energy-efficient code in Java, along with

simple examples. Table 2. presents the general principles and guidelines used to write energy-

efficient code in Java.

Table 2. Principles for Writing Energy Efficient Coding in Java

Coding Principle Examples

Minimize CPU Usage Use of efficient algorithms and data structures and avoiding

busy waiting and excessive polling

Optimize Memory Usage Use of data structures that minimize memory consumption

and avoiding unnecessary object creation

Reduce I/O Operations Do batch I/O operations wherever possible and use of

asynchronous I/O for non-blocking operations

Manage Threads Wisely Use thread pools to limit the number of concurrent threads

and consider using lightweight threads instead of

heavyweight threads

Observation Case 1: Use of Threads to Manage Concurrency

Import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

import java.util.concurrent.TimeUnit;

  public class EnergyEfficientExample {
 public static void main(String[] args) {

 // Use a thread pool to manage concurrent tasks

efficiently.

 int numThreads =

Runtime.getRuntime().availableProcessors();

 ExecutorServiceexecutorService =

 Executors.newFixedThreadPool(numThreads);

 
 // Perform a CPU-intensive task using multiple

threads.

 int tasksToRun = 10;

 for (inti = 0; i<tasksToRun; i++) {

 executorService.submit(() -> {

 long result = fibonacci(40);

 // Calculate Fibonacci(40) as an example.

 System.out.println("Result: " + result);

 });

 }  
 // Shut down the executor service gracefully.

 executorService.shutdown();

 try {

 executorService.awaitTermination(1,

TimeUnit.MINUTES);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

  private static long CalcFunc(int n) {
 if (n <= 1) {

 return n;

 }

 ReturnCalcFunc(n - 1) + CalcFunc(n - 2);

 }

}

Observation Case 2: Loop Optimizations Leading to Better Resource Usage

Energy Inefficient Way: In this code, a simple for loop is used to iterate through the array to

sum its elements. While this code works correctly, it may not be the most energy-efficient

approach because it involves multiple iterations, especially for larger arrays.

public class EnergyInefficientSum {

 public static void main(String[] args) {

 int[] numbers = {1, 2, 3, 4, 5};

 int sum = 0;

 
 for (int i = 0; i<numbers.length; i++) {

 sum += numbers[i];

 }

  System.out.println("Sum of elements: " + sum);
 }

}

Energy Efficient Way: In this energy-efficient code, enhanced for loop i.e. for-each loop is

used to iterate through the array. This approach is generally more energy-efficient because it

can potentially optimize the loop execution at a lower level when compared to the traditional

for loop. Energy-efficient coding often involves minimizing unnecessary operations and

leveraging language features and optimizations to reduce resource consumption. In this

example, using the enhanced for loop is a more efficient and cleaner way to calculate the sum

of array elements.

Public class EnergyEfficientSum {

 Public static void main(String[] args) {

 int[] numbers = {1, 2, 3, 4, 5};

 int sum = 0;

 
 for (int number : numbers) {

 sum += number;

 }

 
 System.out.println("Sum of elements: " + sum);

 }

}

Energy efficiency at Data Centre level is calculated using Equation (1).

pwrIdx = execTime * (cpuUsgPerCore + memUsg) * DCSustainabilityIndex …

(1)

4. Experimental Results

 In our quest for more sustainable and energy-efficient cloud applications, we conducted a

comparative analysis between two prominent cloud applications developed in Java and

JavaScript. Our goal was to evaluate their energy consumption patterns to identify potential

optimizations and make informed decisions about the choice of technology stack for future

cloud-based projects.

The first application A, developed in Java, exhibited a distinct energy consumption profile.

Java applications are known for their robustness and performance. Our analysis revealed that

this Java-based application consistently required optimal computational resources.The Java

Virtual Machine (JVM), offering benefits such as memory management, reduced the overhead

that increased the overall efficiency of the application. Consequently, the Java application

consumed less energy during peak usage and idle periods, making it more energy-efficient. On

the other hand, the cloud applicationdeveloped in JavaScript (Application-B) demonstrated a

different energy consumption pattern. JavaScript, commonly used for web applications, is

executed directly by web browsers, which can lead to higher resource requirements compared

to Java. As a result, the JavaScript application exhibited a more energy-consuming profile.

During peak usage, it consumed slightly more computational resources as compared to Java

Application-But this being an interpreted language, based application required more memory

over time which resulted in higher energy consumption. Additionally, JavaScript's

asynchronous nature allowed the application to better adapt to varying workloads.

However, it's important to note that the choice between Java and JavaScript should not be

based solely on energy consumption. Other factors, such as application requirements,

development speed, and developer expertise, must also be considered. While JavaScript may

offer concurrency and less verbosity advantages in some scenarios, Java remains a strong choice

for applications requiring high performance and scalability and is energy efficient as

well. Metrics are measured on the proposed architecture using the monitoring tools such as

New Relic and Kibana. Infrastructure Metrics are derived using tools such as Sysdig. Using this

metrics, power consumption is derived for two major factors such as CPU utilization and

memory consumption. This monitoring is performed across all the components in the

architecture and metrics are collected and compared over a period of 10-days to validate the

results. The components in the architecture are subjected to the same load from the UI to API

gateway to back-end services to monitor how each service manages load and what is the pattern

of power consumption under the same stress.

Fig. 3. CPU Consumption for Applications using the Proposed Run-time Architecture with Constant

Load

Fig. 4. Memory Utilization for Applications using the Proposed Run-time Architecture with constant

Load

Further analyzing and comparing the power consumption patterns for back-end

applications revealed that Java Applications are more efficient and less carbon emitting when

compared to the Java Script application for the same load. There is always 2 to 4 KW difference

in the power consumption of the Java Script application and the Java application considering

that the both the services are being deployed on the similar configuration of the containers. This

energy profile was further optimized with energy efficient code patterns listed earlier leading to

further power savings up to 17% without any noticeable impact to user performance during peak

loads.

Fig. 5. Comparison of Power Consumption Pattern for Application-A and Application-B

Fig. 6. Comparison of Power Consumption Pattern for Application-A and Application-B

Resource Utilization: The Java application exhibited similar CPU utilization when compared

to the JavaScript application under similar workloads. JavaScript applications tended to

consume less memory when compared to their Java counterparts.

Energy Consumption: The JavaScript application consistently consumed more energy than the

Java application in all tested scenarios. The energy consumption of the JavaScript application

was on average 15% higher than that of the Java application.

Scalability: Both applications scaled horizontally to accommodate increased user loads, but

the JavaScript application showed more predictable and linear scaling in terms of energy

consumption.

Energy Efficient Code Optimization Patterns: Adapting energy efficient coding practices can

further reduce power consumption by at least ~17% without any noticeable impact on response

times.

5. Conclusions

The choice of programming language can have a measurable impact on the energy consumption

of cloud applications. In this work, it is observed that, the Java-based cloud application

demonstrated better energy efficiency than the JavaScript-based application. This is further

optimized with energy efficient code patterns. However, it is important to note that energy

efficiency is just one of the many factors to consider when selecting a programming language

for cloud development, and other factors such as development speed, scalability, and

maintainability should also be taken into account. The specific energy efficiency gains observed

in this comparison vary depending on the nature of the application, the hardware used, and the

optimization efforts applied during development. Nevertheless, developers and organizations

should be mindful of the energy implications of their technology choices, especially as

sustainability and environmental concerns become increasingly important.

References

[1] Jerome Rocheteau, Virginie Gaillard and Lamya Belhaj.: How Green Are Java Best Coding Practices?

3rdInternationalConferenceonSmartGridsandGreenIT Systems, pp.235-246,2014.

[2] Haitao Steve Zhu Chaoren Lin Yu David Liu: A Programming Model for Sustainable Software,

IEEE/ACM 37th IEEE International Conference on Software Engineering, 2015.

[3] Luca Ardito; Giuseppe Procaccianti; Marco Torchiano; Antonio Vetrò: Understanding Green

Software Development: A Conceptual Framework, IEEE, Volume: 17,Issue: 1,pp. 44-50,2015.

[4] Giuseppe Procaccianti, Hector Fernandez, Patricia Lago.: Empirical Evaluation of Two Best Practices

for Energy-Efficient Software Development. Journal of Systems and Software,2016

[5] R. Pereira, M. Couto, J. Cunha, J. P. Fernandes and J. Saraiva,:The Influence of the Java Collection

Framework on Overall Energy Consumption, IEEE/ACM 5th International Workshop on Green and

Sustainable Software, pp. 15-21,2016.

[6] M. Salam and S. U. Khan.: Developing green and sustainable software: Success factors for

vendors.7th IEEE International Conference on Software Engineering and Service Science (ICSESS),

Beijing, China, pp. 1059-1062,2016.

[7] M. Kumar, Y. Li and W. Shi.:Energy consumption in Java: An early experience. Eighth International

Green and Sustainable Computing Conference, pp. 1-8, 2017.

[8] Biswajit Saha.: Green Computing: Current Research Trends. International Journal of Computer

Sciences and Engineering,pp.467-469,2018.

[9] Nayan Agrawal, Ms. Jasneet Kaur Saini, Prof. Pallavi Wankhede.: Review on Green Cloud

Computing: A Step Towards Saving Global Environment. International Journal of Engineering

Research & Technology, Volume 8, Issue 05, 2020.

[10] Shokhista Ergasheva, Dragos Strugar, Artem Kruglov, Giancarlo Succi.: Energy Efficient Software

Development Process Evaluation for MacOS Devices. IFIP International Conference on Open Source

Systems, 2020.

[11] AbdulazizAlarifi, Kalka Dubey, Mohammed Amoon1, TorkiAltameem ,Fathi E. Abd El-Samie,

Ayman Altameem, S. C. Sharma, Aida A. Nasr: Energy-Efficient Hybrid Framework for Green Cloud

Computing, IEEE Access, ISSN: 2169-3536,pp: 115356 – 115369,2020.

https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7030137&punumber=6294
https://www.researchgate.net/profile/Shokhista-Ergasheva?_sg%5B0%5D=R5kY2ec9DBA_4cz95tZPFnQiUqByInSZ8eNC7TF54YVyGVL_kQxgHKd70hkW-HGJgL_V4tQ.abltxJDG6bAIs8tFDI_3w1ooSIe2Zro7NMwIJtAkJMpQnlONVus7SbZze7TAlEGx_p8WT563jRAZ8yU0vr8jFQ&_sg%5B1%5D=XobeXuMlrGfLsTZzhRGZgV3_6boDK6BQAfLG7SGEOvVJcRqeyb_MrYeYnCKmijbbZqIQN4g.JNf4svAzYEvBymow5AW8_Ceu871TUV-h1C2QumI5OYvRHzZl9-Ln7UpFcUCkFQwiEU60OeQNg9HmbgRhF1Vq9w&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCIsInBvc2l0aW9uIjoicGFnZUhlYWRlciJ9fQ
https://www.researchgate.net/profile/Artem-Kruglov?_sg%5B0%5D=R5kY2ec9DBA_4cz95tZPFnQiUqByInSZ8eNC7TF54YVyGVL_kQxgHKd70hkW-HGJgL_V4tQ.abltxJDG6bAIs8tFDI_3w1ooSIe2Zro7NMwIJtAkJMpQnlONVus7SbZze7TAlEGx_p8WT563jRAZ8yU0vr8jFQ&_sg%5B1%5D=XobeXuMlrGfLsTZzhRGZgV3_6boDK6BQAfLG7SGEOvVJcRqeyb_MrYeYnCKmijbbZqIQN4g.JNf4svAzYEvBymow5AW8_Ceu871TUV-h1C2QumI5OYvRHzZl9-Ln7UpFcUCkFQwiEU60OeQNg9HmbgRhF1Vq9w&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCIsInBvc2l0aW9uIjoicGFnZUhlYWRlciJ9fQ
https://www.researchgate.net/profile/Giancarlo-Succi?_sg%5B0%5D=R5kY2ec9DBA_4cz95tZPFnQiUqByInSZ8eNC7TF54YVyGVL_kQxgHKd70hkW-HGJgL_V4tQ.abltxJDG6bAIs8tFDI_3w1ooSIe2Zro7NMwIJtAkJMpQnlONVus7SbZze7TAlEGx_p8WT563jRAZ8yU0vr8jFQ&_sg%5B1%5D=XobeXuMlrGfLsTZzhRGZgV3_6boDK6BQAfLG7SGEOvVJcRqeyb_MrYeYnCKmijbbZqIQN4g.JNf4svAzYEvBymow5AW8_Ceu871TUV-h1C2QumI5OYvRHzZl9-Ln7UpFcUCkFQwiEU60OeQNg9HmbgRhF1Vq9w&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCIsInBvc2l0aW9uIjoicGFnZUhlYWRlciJ9fQ

[12] Daniele D’Agostino, Ivan Merelli, Marco Aldinucci, Daniele Cesini.: Hardware and Software

Solutions for Energy-Efficient Computing in Scientific Programming. Scientific Programming, 2021.

[13] Z. Ournani, R. Rouvoy, P. Rust and J. Penhoat.: Evaluating The Energy Consumption of Java I/O

APIs. IEEE International Conference on Software Maintenance and Evolution (ICSME),

Luxembourg, pp. 1-11, 2021.

[14] Artem Kruglov, Giancarlo Succi & Gcinizwe Dlamini.: System Energy Consumption Measurement.

Developing Sustainable and Energy-Efficient Software Systems, pp:27–38, 2022.

[15] Rajni Sehgal , Deepti Mehrotra, Renuka Nagpal, Ramanuj Sharma, “Green Software: Refactoring

Approach”, Journal of King Saud University, Computer and Information Sciences, 34, pp 4635-4643,

2022.

[16] Candy Chamorro Gonzalez, Jesús Peña-Vinces, “A Framework for a Green Accounting System-

Exploratory Study in a Developing Country Context, Colombia”, Environment, Development and

Sustainability, pp:9517–9541, 2023.

[17] Green software: Best practices for a sustainable future, Tata Consultancy Services. Online Technical

Report.

https://dl.acm.org/toc/10.5555/sciph.2021.issue-2021
https://link.springer.com/chapter/10.1007/978-3-031-11658-2_3#auth-Artem-Kruglov
https://link.springer.com/chapter/10.1007/978-3-031-11658-2_3#auth-Giancarlo-Succi
https://link.springer.com/chapter/10.1007/978-3-031-11658-2_3#auth-Gcinizwe-Dlamini
https://link.springer.com/book/10.1007/978-3-031-11658-2

