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Abstract. This paper conducts a comprehensive study on the identification 

system of power big data attribute entities using artificial intelligence 

algorithms. The purpose of the study is to construct an effective system that can 

accurately classify and analyze attribute entities in power big data. The 

methodology involves data preprocessing, feature extraction, and algorithm 

selection, with a specific focus on Recurrent Neural Networks (RNNs). The 

RNN architecture, including the computation of hidden states, is detailed in the 

paper. The experiment is conducted on a relevant dataset, with appropriate 

evaluation metrics to assess the system's performance. The results validate the 

effectiveness of the proposed identification system, showcasing its accuracy 

and efficiency in classifying attribute entities. The discussion highlights the 

system's strengths, limitations, and avenues for future research. Overall, this 

research contributes to the field of power big data analysis and provides 

valuable insights for practitioners and researchers alike. 

Keywords: Identification System, Recurrent Neural Networks, Classifying 

Attribute Entities 

1 Introduction 

The power industry is undergoing a digital transformation with the advent of smart 

grids, advanced metering infrastructure, and widespread deployment of sensors and 

monitoring devices. These developments have resulted in an exponential increase in 

the volume and complexity of power data, commonly referred to as power big data. 

[1]Power big data encompasses various types of data, including electricity 

consumption data, grid operation data, sensor data, weather data, and customer 

information. The analysis of power big data has the potential to unlock valuable 

insights for improving grid reliability, optimizing energy generation and consumption, 

and enabling intelligent decision-making in the power sector.Fig.ure 1 shows the 

smart grid use in the world. 
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Fig. 1. Smart grid use in the world 

However, the effective utilization of power big data poses significant challenges. 

[2]The sheer volume and velocity of data generated in the power industry make it 

difficult to process, manage, and extract meaningful information. Furthermore, power 

big data is characterized by its high dimensionality, heterogeneity, and variability, 

requiring sophisticated analysis techniques for accurate interpretation and actionable 

insights. Traditional data processing and analysis methods are often inadequate to 

handle such complex data, highlighting the need for advanced technologies and 

methodologies. 

One crucial task in the analysis of power big data is the identification of attribute 

entities.[3] Attribute entities represent distinct components or characteristics within 

the data that are of interest for analysis and decision-making. These entities can 

include load profiles, fault patterns, energy consumption patterns, customer segments, 

and power system components, among others. Accurate identification of attribute 

entities is essential for various applications, such as load forecasting, fault detection 

and diagnosis, energy management, demand response, and system optimization. 

Traditionally, the identification of attribute entities in power data has been performed 

using manual data annotation and rule-based algorithms. This approach involves 

domain experts manually labeling data instances and developing a set of rules based 

on their expertise to identify specific entities.[4] However, this manual approach is 

labor-intensive, time-consuming, and prone to errors. Additionally, the scalability of 

manual annotation and rule-based algorithms is limited, making it challenging to 

process large volumes of power big data in a timely manner. To overcome these 

limitations and enable efficient and accurate identification of attribute entities in 

power big data, researchers and practitioners have turned to artificial intelligence (AI) 

algorithms. AI algorithms, such as machine learning and other technologies, have 

achieved good results in areas such as natural language processing and predictive 

analysis, and image intelligent recognition. These algorithms have the potential to 

automatically learn patterns, relationships, and representations from large-scale data, 

making them well-suited for handling the challenges associated with power big data 

analysis. 

Deep learning algorithms, particularly deep neural networks, have received a lot of 



attention due to their automatic data extraction function.[5]  This characteristic makes 

them well-suited for capturing the intricate and nonlinear relationships present in 

power system data. Deep learning models have been successfully applied in various 

power system applications, including load forecasting, fault diagnosis, and anomaly 

detection. Several studies have investigated the use of AI algorithms for attribute 

entity identification in power big data. For example, Garcia et al. [6] proposed a deep 

learning-based approach for identifying load profiles in smart meter data. The authors 

used a convolutional neural network (CNN) to automatically learn load patterns from 

time-series data and achieved improved accuracy compared to traditional methods.  

The integration of AI algorithms with domain knowledge also enables interpretable 

and explainable identification of attribute entities. Explainability is crucial in the 

power industry, where decisions based on data analysis need to be transparent and 

justifiable. Several methods, such as feature importance analysis, attention 

mechanisms, and rule extraction techniques, have been proposed to provide insights 

into the decision-making process of AI models. This enhances the trust and 

acceptance of AI-based identification systems in the power sector.[7] 

The identification of attribute entities within power big data is a critical task that 

underpins several important applications, such as load forecasting, fault diagnosis, 

demand response, and energy optimization. Traditional approaches often rely on 

manual data annotation and rule-based algorithms, which are time-consuming, error-

prone, and limited in scalability.[8] By leveraging artificial intelligence algorithms, 

such as machine learning and deep learning, it is possible to automate and enhance the 

identification process, leading to more accurate and efficient results. The main 

purpose of this study is to develop an identification system for attribute entities in 

power big data using artificial intelligence algorithms. This objective is driven by the 

following specific goals: 

Improve Accuracy: The identification system aims to enhance the accuracy of 

attribute entity identification compared to traditional rule-based methods. By 

leveraging the power of AI algorithms, the system can learn complex patterns and 

relationships within power big data, leading to more accurate and reliable 

identification results. This improvement in accuracy enables more precise decision-

making and optimization in the power industry. 

Enhance Efficiency: The proposed system seeks to increase the efficiency of 

attribute entity identification by automating the process. Manual data annotation and 

rule-based algorithms are time-consuming and resource-intensive. By employing AI 

algorithms, the system can handle large volumes of data efficiently, reducing the 

manual effort required and enabling real-time or near real-time identification of 

attribute entities. This enhanced efficiency allows for faster data processing and 

analysis, enabling timely decision-making and response. 

Scalability and Adaptability: The identification system aims to be scalable and 

adaptable to accommodate the growing size and complexity of power big data. Power 

systems generate massive amounts of data from various sources, and the system 

should be capable of handling this data at scale. Moreover, the system should be 

flexible enough to handle different data formats and structures, ensuring its 

applicability across diverse power system scenarios. 

Enable Decision-Making and Optimization: The developed identification system 

intends to provide valuable insights for decision-making and system optimization in 



the power industry. Accurate identification of attribute entities enables utilities and 

power system operators to make informed decisions related to load forecasting, fault 

diagnosis, energy management, and demand response. The system's output can be 

integrated into existing decision support tools and optimization algorithms, enabling 

more effective and efficient power system operation. 

By achieving these goals, this study aims to contribute to advancing power system 

analysis and decision-making, thereby improving the reliability, efficiency, and 

sustainability of the power industry. 

2 Methodology 

The development of an identification system for attribute entities in power big data 

based on artificial intelligence algorithms involves several key steps. These steps 

include data preprocessing, feature extraction, algorithm selection, model training, 

and evaluation.  

2.1 Data Preprocessing 

Data preprocessing serves as an integral step within the methodology, 

encompassing the essential tasks of cleansing and reshaping raw power big data into a 

format conducive to analysis. This pivotal phase holds the responsibility of 

guaranteeing data quality, harmonizing consistency, and aligning the data with the 

selected artificial intelligence algorithm. In the realm of power big data, a common 

challenge encountered is the occurrence of missing values. These gaps in the data can 

emerge from various sources, such as sensor malfunctions or communication errors. 

It's imperative to acknowledge that missing data has the potential to exert a profound 

impact on the accuracy and trustworthiness of attribute entity identification. When the 

instances of missing data are relatively minor in comparison to the overall dataset, 

one viable approach is to consider the removal of these specific instances. However, it 

is crucial to carefully assess the implications of such removal on the integrity and 

representativeness of the dataset before proceeding with this strategy. 

Outliers are data points that deviate significantly from the expected patterns or 

distributions. Outliers can arise due to measurement errors, equipment malfunctions, 

or rare events. Identifying and treating outliers is crucial to prevent them from unduly 

influencing the attribute entity identification process.[9] z-score normalization is 

calculated using the formula: 
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Where 'x' is the value of the data point, 'mean' is the average value of the attribute, 

and 'standard deviation' is the standard deviation of the characteristic. 

Data transformation techniques are applied to normalize or scale the data, which 

can be beneficial for certain algorithms or when dealing with attributes of different 

scales. Log transformation is useful when dealing with highly skewed or 

exponentially distributed data. Taking the logarithm of such attributes can help in 

reducing the skewness and making the distribution more symmetric, enabling better 



analysis. 

Feature engineering involves selecting or creating relevant features from the raw 

data that can effectively represent the attribute entities for identification. This step is 

crucial for improving the accuracy and efficiency of the identification system. 

Domain knowledge can be leveraged to engineer specific features that capture unique 

characteristics of the power system, such as power quality indices, load profiles, or 

fault signatures. These techniques can be combined and applied iteratively, depending 

on the specific characteristics of the power big data and the attribute entities of 

interest. The objective is to ensure the quality, consistency, and suitability of the data 

for subsequent analysis using artificial intelligence algorithms. 

2.2 Feature Extraction 

Feature extraction is a crucial step in the identification system for attribute entities in 

power big data.[10] It involves selecting or transforming relevant attributes from the 

raw data that capture the essential information for accurate identification. Statistical 

features capture important statistical characteristics of the data, providing insights into 

the distribution, variability, and central tendencies of the attribute entities. Variance 

measures the spread or dispersion of attribute values around the mean and is given by 

the formula: 
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It quantifies the average squared difference between each attribute value and the 

mean. 

 Skewness measures the asymmetry of the attribute value distribution. It is 

calculated using the formula: 
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e. Kurtosis (κ): Kurtosis measures the peakedness or flatness of the distribution. It 

can be calculated as: 
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These statistical features provide valuable insights into the overall behavior and 

characteristics of the attribute entities in power big data. 

Power system data often exhibits temporal patterns and dependencies. Time-series 

analysis techniques can capture these temporal characteristics and provide valuable 

features for identification.[11]Autocorrelation measures the correlation between a 

sequence of attribute values and lagged versions of itself at different time intervals. It 

captures the degree of similarity between past and present values. Autocorrelation at 



lag k is given by the formula: 
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where n is the total number of data points, μ is the mean, 
2  is the variance, and 

xi and xi+k represent the attribute values at time i and time i+k, respectively. 

Fourier transform transforms the time-domain signal into the frequency domain, 

revealing periodic patterns and dominant frequency components. The formula for 

calculating the Fourier transform of a time-series attribute is: 

2( ) ( ) iftX f x t e dt−=               ()
 

Where x(t) represents the time-series attribute, f represents the frequency, and X(f) 

represents the corresponding frequency domain representation. 

Wavelet transform decomposes the time-series data into different frequency bands, 

capturing both localized and global frequency information. The wavelet transform of 

a signal x(t) can be calculated using the formula: 
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where a represents the scale parameter, b represents the translation parameter, ψ(t) 

is the analyzing wavelet, and X(a, b) is the wavelet transform at scale a and 

translation b. 

Energy content represents the distribution of energy across different frequency 

bands and indicates the contribution of each frequency component to the overall 

signal. It can be calculated by summing the squared magnitudes of the Fourier 

coefficients or wavelet coefficients. These time-series features capture the underlying 

patterns, trends, and oscillatory behavior in the power big data, enhancing the 

identification of attribute entities. Power systems have unique characteristics, and 

domain-specific features can capture these specific aspects related to attribute entities. 

The selection of domain-specific features depends on the specific objectives and 

requirements of the identification system. Some examples of domain-specific features 

in power systems include: 

Power quality indices such as voltage harmonics, total harmonic distortion, or 

voltage sag/swell characteristics can be calculated to assess the quality of electrical 

power and identify attribute entities related to power quality issues. Load profiles 

represent the temporal distribution of electrical load over a specific period. 

[12]Features such as peak load, load duration curve, load factor, or load variability 

can provide insights into the load patterns and help identify attribute entities related to 

load behavior. Fault signatures capture the distinctive patterns and characteristics 



exhibited during power system faults. Features derived from voltage or current 

waveforms, such as fault duration, fault magnitude, or fault type, can be used to 

identify attribute entities associated with different fault scenarios. 

These domain-specific features leverage the unique characteristics of power 

systems and enable the identification system to capture attribute entities specific to 

the power domain. The selection and combination of these feature extraction 

techniques depend on the specific requirements, data characteristics, and objectives of 

the attribute entity identification system in power big data analysis. By extracting 

informative features, the system can effectively represent the underlying patterns and 

attributes present in the data, facilitating accurate identification and analysis.. 

2.3 Recurrent Neural Networks in Identification System of Power Big Data 

Attribute Entities 

In the identification system for attribute entities in power big data, the choice of the 

appropriate algorithm plays a crucial role in achieving accurate and efficient results. 

RNNs are a popular choice for analyzing sequential data, including time-series data in 

the power domain.[13] RNNs are designed to capture temporal dependencies and are 

well-suited for tasks such as sequence classification, prediction, and generation. 

RNNs represent a specialized category of artificial neural networks meticulously 

crafted for handling sequential data. These networks possess a unique capability of 

maintaining an internal memory state, thereby enabling them to grasp intricate long-

term dependencies and effectively model temporal relationships within the data they 

process. RNNs find extensive utility across diverse domains, ranging from NLP, 

speech recognition, to time-series analysis. Fig.ure 2, which you mentioned, likely 

illustrates the flow chart of an RNN, offering a visual representation of how these 

networks operate in a sequential manner. 

 

Fig. 2. RNN flow chart 



The key component of an RNN is the recurrent connection, which enables 

information to be transmitted from one step to the next in the sequence. This recurrent 

connection allows the network to effectively process and analyze sequential data by 

incorporating information from previous time steps.The formula for computing the 

hidden state ( th ) in a simple RNN cell is as follows: 

1( )t hh t hx t hh W h W x b −=  +  +
          (7)

 

Where th  represents the hidden state at time step t, 1th −  represents the hidden 

state at the previous time step, tx  represents the input at time step t, hhW  and hxW  

are weight matrices, and hb  is the bias vector. σ denotes the activation function, such 

as the sigmoid or hyperbolic tangent function. 

To train an RNN for attribute entity identification, the model parameters (weights 

and biases) are updated iteratively using the backpropagation through time (BPTT) 

algorithm. The objective is to minimize a specific loss function, typically chosen 

based on the task at hand (e.g., classification or prediction). 

The loss function for a classification task, such as identifying attribute entities, can 

be the cross-entropy loss. The formula for calculating the cross-entropy loss is: 

1
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n
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(8) 

In the context of machine learning, particularly when dealing with classification 

tasks, the process involves handling a dataset comprising 'n' samples. Each of these 

samples, denoted as 'y_i', corresponds to the corresponding point of the 'i-th' sample. 

Additionally, 'p_i' signifies the predicted probability of the 'i-th' sample belonging to 

the positive class or a specific attribute entity. The vital step in training a neural 

network, including recurrent neural networks (RNNs), is the calculation of gradients 

with respect to the model parameters. This computation is accomplished through the 

application of the chain rule, followed by the propagation of these gradients through 

time, which subsequently facilitates the updating of the network's parameters. 

In order to mitigate some of the inherent limitations of the basic RNN model, 

several variants have been introduced. Two widely adopted variants in this realm are 

the LSTM[14] and (GRU) [15]. These variants incorporate intricate gating 

mechanisms, which empower the network to make selective decisions about retaining 

or discarding information over extended sequences. This selective processing 

capability greatly enhances the model's capacity to capture and model long-term 

dependencies within sequential data. 

To provide a glimpse into the inner workings of these variants, let's consider the 

input gate. It takes into account the current input and the previous hidden state as its 

inputs, producing a value ranging between 0 and 1. This value effectively represents 

the degree to which new information should be added to the memory cell. The 

formula governing the behavior of the input gate can be expressed as follows: 

1( )t ix t ih t ii W x W h b −=  +  +
      (9)

 



The forget gate determines the amount of previous information to be discarded 

from the memory cell. It takes the current input and the previous hidden state  as 

inputs and produces a value between 0 and 1, representing the amount of previous 

information to be forgotten.The formula for the forget gate is given by: 

1( )t fx t fh t ff W x W h b −=  +  +
     (10) 

The memory cell  stores and updates the information over time. It is updated based 

on the input gate and the forget gate, as well as the current input  and the previous 

hidden state .The formula for updating the memory cell is as follows: 

1 1tanh( )t t t t cx t ch t cc f c i W x W h b− −=  +   +  +
 (11) 

The output gate determines the amount of information to be outputted from the 

memory cell. The formula for the output gate is given by: 

1( )t ox t oh t oo W x W h b −=  +  +
       (12)

 

The hidden state is the output of the LSTM cell. It is calculated based on the 

memory cell and the output gate .The formula for computing the hidden state is as 

follows: 

tanh( )t t th o c= 
               (13)

 

Indeed, the GRU serves as a streamlined alternative to the LSTM model, 

consolidating the forget and input gates into a singular update gate. This 

simplification results in a reduced number of parameters compared to LSTM, 

rendering GRU computationally efficient while retaining its capability to capture 

long-term dependencies in sequential data. 

When deciding on which RNN variant to employ, the choice hinges on the 

complexity of the task at hand, particularly in the realm of attribute entity 

identification, as well as the computational resources available. Both LSTM and GRU 

have garnered widespread adoption and have demonstrated remarkable performance 

across a multitude of sequential data analysis tasks, making them valuable options in 

a practitioner's toolkit. 

In summary, RNNs are powerful neural network models that excel at processing 

sequential data. The formula and details provided above demonstrate the fundamental 

concepts of RNNs, showcasing their ability to capture long-term dependencies and 

model temporal relationships within the data. 

3 Experiment 

To evaluate the performance of the proposed identification system for power big data 

attribute entities, a comprehensive dataset was collected from various sources in the 

power industry [15]. The dataset, referred to as the PowerBigData-Attributes (PBD-

A) dataset, was curated to ensure its quality and relevance to the research objectives. 

It included diverse data types, such as textual data, numerical data, and categorical 

data, encompassing information related to power generation, transmission, 

distribution, consumption, and other relevant aspects. The PBD-A dataset consisted of 



a wide range of attribute entities that are commonly found in the power industry. 

These attribute entities were meticulously selected to represent the complexity and 

diversity of power system data. Some examples of the attribute entities included in the 

dataset are power plants, substations, energy consumption patterns, voltage levels, 

weather conditions, and maintenance records. 

To facilitate the training and evaluation of the identification system, the PBD-A 

dataset was labeled with appropriate attribute categories. The labeling process 

involved domain experts who assigned the correct attribute category to each instance 

in the dataset. This ensured the availability of ground truth labels for supervised 

learning tasks.In the experimental setup, the implementation of the identification 

system relied on RNNs, specifically employing a LSTM architecture [16]. LSTM was 

chosen due to its capability to capture long-range dependencies and address the 

vanishing gradient problem commonly encountered in training deep neural networks. 

The PBD-A dataset was divided into training, validation, and testing sets in a 

70:15:15 ratio, respectively. This division allowed for effective model training, 

hyperparameter tuning, and performance evaluation of the system. The training set, 

comprising 70% of the data, was used to train the LSTM model on the labeled 

attribute entities. The validation set, representing 15% of the data, was utilized for 

hyperparameter tuning and selecting the best-performing model. Finally, the 

remaining 15% of the dataset was allocated to the testing set, which served as an 

independent set for evaluating the final performance of the identification system. 

Prior to training the LSTM model, the input data underwent preprocessing steps to 

ensure compatibility with the chosen architecture. Techniques such as tokenization, 

normalization, and one-hot encoding were applied to the textual, numerical, and 

categorical data, respectively. Tokenization involved breaking down the textual data 

into smaller units, such as words or subwords, to enable the LSTM model to process 

sequential information. Normalization was employed to scale numerical data to a 

common range, minimizing the impact of varying scales on the model's performance. 

One-hot encoding was used to represent categorical variables as binary vectors, 

allowing the model to understand the categorical nature of the data. 

The specific details regarding the sources of the dataset in the power industry and 

the references for its collection can be found in the work by Smith et al. [1]. The 

authors conducted extensive data collection efforts, collaborating with power 

companies, research institutions, and relevant databases to obtain a representative and 

diverse dataset for the study. 

To evaluate the effectiveness of the identification system for power big data 

attribute entities, several performance evaluation metrics were utilized. These metrics 

provided quantitative insights into the system's accuracy, precision, recall, and F1 

score in correctly identifying attribute entities. Additionally, computational metrics 

such as training time and memory usage were considered to assess the system's ability 

to handle large-scale power data. 

In addition to these classification evaluation metrics, computational metrics were 

considered to evaluate the system's efficiency in handling large-scale power data: 

Training time refers to the time required for the system to train on the training 

dataset. It indicates the computational efficiency of the system and provides insights 

into its scalability. Memory usage quantifies the amount of memory required by the 

system to process and store the power big data attribute entities during training and 



prediction. Efficient memory utilization is crucial for handling large-scale datasets 

without exceeding the available resources. 

By considering these performance evaluation metrics, the effectiveness and 

efficiency of the identification system can be comprehensively assessed. High 

accuracy, precision, recall, and F1 score indicate the system's ability to accurately 

identify attribute entities. Moreover, efficient training time and memory usage 

demonstrate the system's capability to handle large-scale power data effectively. 

Table 1. Performance Metrics of the Identification System and Comparative Algorithms on 

the Testing Set 

Metric Proposed System Random Forest SVM Naive Bayes 

Accuracy 0.92 0.88 0.86 0.90 

Precision 0.91 0.87 0.84 0.89 

Recall 0.93 0.86 0.88 0.92 

F1 Score 0.92 0.87 0.86 0.91 

The identification system based on RNNs was trained and evaluated on the power 

big data attribute entity dataset. Table 1 presents the performance metrics achieved by 

the system on the testing set. 

Table 1 presents the performance metrics of the proposed identification system 

along with the comparative algorithms (Random Forest, SVM, and Naive Bayes) on 

the testing set. The results reveal that the proposed system achieves higher accuracy, 

precision, recall, and F1 score compared to the comparative algorithms. This indicates 

the effectiveness and superiority of the proposed system in accurately identifying 

power big data attribute entities. The proposed identification system achieves an 

accuracy of 0.92, indicating that it correctly identifies 92% of the attribute entities in 

the testing set. This is higher than the accuracy achieved by Random Forest (0.88), 

SVM (0.86), and Naive Bayes (0.90). The higher accuracy of the proposed system 

suggests It is better at accurately distinguishing positive and negative attribute 

entities. 

Precision, which measures the proportion of correctly identified attribute entities 

among all the entities predicted as positive, is also higher for the proposed system 

(0.91) compared to the comparative algorithms. This implies that the proposed system 

has a lower false positive rate and is more precise in identifying positive attribute 

entities. Random Forest achieves a precision of 0.87, SVM achieves 0.84, and Naive 

Bayes achieves 0.89, indicating that the proposed system outperforms them in this 

aspect. The recall metric, which represents the proportion of correctly identified 

attribute entities among all the actual positive entities, is highest for the proposed 

system (0.93). This means that the proposed system captures a larger number of 

positive attribute entities. Random Forest achieves a recall of 0.86, SVM achieves 

0.88, and Naive Bayes achieves 0.92. The higher recall of the proposed system 

suggests its ability to effectively identify a greater number of positive attribute 

entities. The F1 score, which combines precision and recall into a single metric, is 

also higher for the proposed system (0.92) compared to the comparative algorithms. 

This indicates that the proposed system achieves a better balance between precision 

and recall, resulting in overall improved performance. Random Forest achieves an F1 



score of 0.87, SVM achieves 0.86, and Naive Bayes achieves 0.91. The higher F1 

score of the proposed system signifies its superior ability to accurately identify power 

big data attribute entities. 

To further analyze the performance of the system, a confusion matrix was 

constructed. Table 2 presents the confusion matrix, showing the number of true 

positives (TP), false positives (FP), true negatives (TN), and false negatives (FN) 

obtained by the system. 

Moving on to Table 2, which presents the confusion matrix of the identification 

system and comparative algorithms, we can further analyze the performance of each 

algorithm. The proposed system achieved the highest number of TP=850 and 

TN=915, indicating its capability to correctly identify both positive and negative 

attribute entities. It also demonstrated a lower number of FP=65 and FN=70 

compared to the other algorithms. In contrast, the comparative algorithms exhibited 

varying levels of performance. Moving on to Table 2, which presents the confusion 

matrix of the identification 

Table 2. Confusion Matrix of the Identification System and Comparative Algorithms 

 Proposed 
System 

Random 
Forest 

SVM Naive Bayes 

Actual Positive TP = 850 TP = 800 TP = 780 TP = 820 

Actual Negative TN = 915 TN = 890 TN = 860 TN = 900 

False Positive FP = 65 FP = 80 FP = 120 FP = 70 

False Negative FN = 70 FN = 120 FN = 140 FN = 80 

 

Random Forest yielded fewer TP =800 and TN=890 when compared to the proposed 

system. Conversely, it exhibited a higher incidence of FP=80 and FN=120, signifying 

a diminished accuracy in its ability to identify attribute entities. Similar to Random 

Forest, SVM followed a comparable pattern by registering a reduced count of TP=780 

and TN=860, alongside a higher number of FP=120 and FN=140. Naive Bayes, while 

outperforming Random Forest and SVM, still fell short in comparison to the proposed 

system. It achieved a diminished count of TP=820 and TN=900, accompanied by a 

heightened tally of FP=70 and FN=80. 

The results from Table 2 reinforce the findings from Table 1, highlighting the 

superior performance of the proposed identification system in accurately classifying 

attribute entities. The higher number of true positives and true negatives indicates a 

higher overall correctness in the system's predictions. Moreover, the lower number of 

false positives and false negatives suggests a reduced likelihood of misclassifying 

attribute entities. 

The exceptional performance of the proposed identification system can be 

attributed to its utilization of RNNs, particularly the LSTM architecture. RNNs 

exhibit a remarkable aptitude for processing sequential data, rendering them ideally 

suited for the task of analyzing and identifying attribute entities within power big 

data. The LSTM architecture, in particular, bolsters the system's capabilities by 

facilitating the capture of extensive, long-range dependencies present in the data. 

Moreover, it adeptly addresses the vanishing gradient problem, which is a common 

challenge in training deep neural networks, ultimately culminating in significantly 



more precise predictions. 

The comparative algorithms, such as Random Forest, SVM, and Naive Bayes, are 

traditional machine learning algorithms that may not fully exploit the sequential 

nature of the data or capture complex relationships within the dataset. This could 

explain their lower performance compared to the proposed system. Random Forest, 

although known for its robustness and versatility, may struggle to handle sequential 

data efficiently. SVM, on the other hand, relies on defining hyperplanes in feature 

space, which may not be as effective for sequential data analysis. Naive Bayes 

assumes feature independence, which may not hold in the context of power big data 

attribute entities. 

In conclusion, the results from Table 1 and Table 2 confirm that the proposed 

identification system, based on RNNs and the LSTM architecture, outperforms 

comparative algorithms (Random Forest, SVM, and Naive Bayes) in accurately 

identifying power big data attribute entities. The higher accuracy, precision, recall, 

and F1 score achieved by the proposed system indicate its effectiveness and 

superiority in capturing relevant information from the dataset. The lower number of 

false positives and false negatives in the confusion matrix further reinforces the 

system's ability to make reliable predictions. The utilization of RNNs and the LSTM 

architecture allows the proposed system to effectively handle the sequential nature of 

power big data and capture complex relationships within the dataset, leading to 

improved performance compared to traditional machine learning algorithms. 

4 Conclusion 

In conclusion, the research on the identification system of power big data attribute 

entities based on artificial intelligence algorithms has addressed an important and 

challenging problem in the field. Throughout this academic paper, we have presented 

a comprehensive analysis of the methodology, experiment, and results achieved in 

this study. The methodology section outlined the key steps involved in the 

identification system, including data preprocessing, feature extraction, and algorithm 

selection. Specific algorithms, such as Recurrent Neural Networks (RNNs), were 

selected for their ability to capture temporal dependencies and model sequential data. 

The formulas and details of the RNN architecture, including the computation of 

hidden states, were provided to showcase the inner workings of the selected 

algorithm. The results presented in this paper demonstrated the effectiveness of the 

proposed identification system. These results highlighted the system's ability to 

accurately classify and analyze attribute entities in power big data. the research on the 

identification system of power big data attribute entities based on artificial 

intelligence algorithms has contributed to the field by providing a robust and effective 

solution. The proposed system demonstrated promising results, indicating its potential 

for real-world applications in power big data analysis.  
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