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Abstract. Accurately predicting patient waiting times and detecting workflow overload in emer-
gency departments are critical challenges that significantly impact patient care and resource man-
agement. Despite advancements in patient waiting time prediction, current methodologies often
struggle with universal applicability in practical settings and fail to accurately capture extreme
values. This study proposes a robust and generalized predictive model tailored to the specific
challenges of ED workflows to address these gaps. A dataset containing multiple variables that
record the workflow within an emergency department is utilized, and a systematic exploration
and comparison of specific machine learning and deep learning models are conducted. Different
machine learning models are compared, and a model is developed to enhance the accuracy of
prediction. The effectiveness of the model in detecting ED overload is evaluated, and its general-
ization capability is improved through feature selection and feature classification. The proposed
model demonstrates superior accuracy in predicting patient waiting times and exhibits high sen-
sitivity in detecting workflow bottlenecks. The model’s ability to operate effectively with fewer
variables enhances its generalization ability across different ED facilities. It is found that machine
learning models can effectively capture patient waiting peaks, which are critical indicators of
ED overload. By detecting these overload conditions, hospitals can optimize resource allocation
proactively and address overload issues promptly. In summary, this study provides a generalized
model with strong predictive accuracy for patient waiting times and the ability to detect system
overloads in healthcare settings, contributing to improved overall ED system performance.

Keywords: Patient Waiting Time, Emergency Department, Regression Model, Machine Learn-
ing, Deep Learning, Overload Detection

CONF-CIAP 2025, January 17-23, Eskisehir, Turkey
Copyright © 2025 EAI
DOI 10.4108/eai.17-1-2025.2355323



1 Introduction

In recent years, the extraction of real-time information for the allocation of medical resources
and the optimization of emergency department workflows has emerged as a prominent trend. Health-
care systems must minimize waiting times and prevent workflow overload to enhance patient satis-
faction and overall quality of care. These all can be improved through the accurate patient waiting
time prediction and the identification of bottlenecks in patient flow. Past research has shown that
longer waiting times lead to more consumption and inefficiency [1]. The study aims to develop an
accurate waiting time prediction model and to enhance resource allocation by detecting bottlenecks
and dealing with them.

In this paper, an examination of both machine learning (ML) and deep learning (DL) techniques
is conducted, with the intention of utilizing them for predicting patient waiting times and identifying
workflow overloads. Compared to traditional basic methods, which have been extensively discussed
in previous papers, deep learning models are said to offer the advantages of reducing errors and
achieving higher accuracy. Therefore, the goal is to enhance the accuracy of predictions through an
analysis of these advanced methods. [1, 2].

After the discussion on the paper’s purpose, it is noted that there are more aspects that need to be
addressed. The study is confronted with several evident challenges, including managing diverse data
sources, selecting suitable machine learning models, integrating specific domain knowledge of the
healthcare system, and ensuring the scalability and robustness of the proposed solutions. It is hoped
that the implementation of the proposed model will enhance patient experience in the emergency
department, identify workflow bottlenecks, and contribute to the comprehensive optimization of
emergency room management.

2 Literature Review

In the current society, as the healthcare industry digitizing and developing really fast, the com-
plexity and quantity of healthcare data have significantly increased. Electronic medical records
(EMRs) provide healthcare organizations with extensive operational data, including processing times,
scheduling records, examination types, and various resource characteristics [3]. These data are rou-
tinely recorded by hospital information systems (HIS) in a uniform format that complies with major
healthcare standards such as Health Level 7 (HL7) [4], Fast Healthcare Interoperability Resources
(FHIR) [5], and Digital Imaging and Communications in Medicine (DICOM) [6]. Effectively de-
scribing complex healthcare operations requires synthesizing all these data. However, due to the vast
amount of data and the difficulty for humans to manually analyze its characteristics, these data are
often under-utilized in operational analytics.

Modern healthcare data can be divided into several major domains based on content and appli-
cation area, such as hospital information, medical imaging, and other sources. These data originate
from various hospital departments, including imaging departments [7], biochemistry labs, and sur-
gical suites. Most hospitals already have these data streams in place, generating and collecting new
data on a standardized basis while ensuring the data are securely stored in compliance with legal
requirements. Consequently, modern hospitals have amassed a wealth of data documenting their



operations and outputs, which can be used to build operational state models.
Predicting waiting times in emergency rooms (ERs) is crucial for patient satisfaction and opera-

tional efficiency. Traditional queuing theory has been enhanced by machine learning (ML) and deep
learning (DL) approaches, offering more accurate and adaptable solutions. High-dimensional Gradi-
ent Boosting Machines significantly outperformed traditional models, emphasizing the necessity of
sophisticated ML models for optimal hospital operations [8]. Pianykh highlighted ML’s scalability
in handling complex patterns in ER operations [9].Pattnayak showed DL’s superior accuracy over
traditional methods, reducing human error and enhancing ER efficiency [10]. Kyritsis used a neural
network whose adaptability was demonstrated across different industries [11].

While traditional machine learning (ML) methods have shown promise in healthcare applica-
tions, they often struggle with achieving high accuracy and generalization across diverse datasets.
This gap in performance necessitates further refinement of prediction models. Studies have ad-
dressed this by enhancing accuracy through techniques such as outlier exclusion and the integration
of system knowledge [12]. Advanced methods, including Ordinary Least Squares (OLS), ridge
and LASSO regressions, Random Forest, and Quantile regression, have been shown to significantly
improve predictive accuracy [13]. Additionally, in complex scenarios like multi-stage queues, trans-
forming transactional datasets into ML-ready formats and employing grid search techniques have
further optimized these models [14]. The thesis of this research is to explore and develop ML
models that not only improve accuracy but also enhance generalization performance across various
healthcare applications, particularly in predicting workload and optimizing resource allocation in
emergency departments and beyond. This leads to the research question: How can ML models be
further refined to enhance both accuracy and generalization in healthcare settings?

Furthermore, sensitive overload detection and effective load management is critical for en-
hancing healthcare efficiency, particularly in Emergency Department (ED) operations. Research
highlights that key areas such as bottleneck detection and workload prediction can significantly
improve ED efficiency. For instance, it is identified that long waiting times due to treatment de-
lays, especially during treatment in progress and emergency room holding (ERH) procedures, using
simulation models [15]. Machine learning further enhances this process by accurately predicting
workload in a research with over 200,000 patient visits analyzed to predict work relative value units
(wRVUs) [16]. These predictive algorithms facilitate real-time load balancing and resource opti-
mization. Additionally, combining machine learning with optimization techniques can improve hos-
pital scheduling systems, including operating room efficiency and appointment scheduling [17, 18].
These advancements highlight the importance of integrating machine learning and optimization to
enhance resource allocation and scheduling in healthcare settings, ultimately reducing congestion
and improving patient outcomes [19, 20].

With the ongoing digitization of healthcare data and the development of sophisticated analytical
tools, the integration of advanced machine learning and deep learning models with operational data
from EMRs and HIS presents significant opportunities for enhancing healthcare system scheduling.
From predicting ED waiting times to optimizing exam schedules, these technologies offer improved
accuracy and efficiency.



3 Dataset

3.1 Source and Description

Specially, the dataset used in this article is provided by the Medical Analytics Group [21],
placed in the core of Massachusetts General Hospital, which is ranked as the best hospital in the
country by U.S. News & World Report. The data has been posted on their Nature Machine In-
telligence article [9] and their official website, inviting those interested in machine learning and
operations research to explore their operations dataset as a challenge [22]. The study utilizes real-
world data collected by the Medical Analytics Group, with the aim of extracting more information
and constructing a more precise model. This model is designed to predict patient waiting times with
greater accuracy and to identify bottlenecks in the overload states of medical facilities.

Clinical workflow outcomes are influenced by a variety of factors, and no single factor can fully
explain delays or patient waiting times. Current delays in healthcare organizations can be related
to staffing, patient arrival patterns, time of day, complexity of tests, bottlenecks in the operating
environment, holidays, weather, and many other factors [23]. Pianykh’s dataset contains data on
both no-appointment (F4) and appointment (F1, F2, and F3) patients, covering approximately 600
to 1,000 days of complete patient flow records [9].

3.2 Details and Features

The dataset comprises time-dependent features such as patient arrival times, examination ap-
pointment times, and examination start times. These time-stamped data are crucial for understand-
ing patient flow and hospital operations. Additionally, dynamic features, like the number of patients
matching the scheduled time after the current time, aid hospitals in managing and optimizing patient
flow and waiting times.

To get a comprehensive view of daily operations, the dataset also tracks the cumulative number
of exam delays, the number of exam delays in the previous hour, and the number of patients sched-
uled before the current patient. These metrics help hospitals adjust operational strategies in real-time
to reduce delays and enhance efficiency.

Reflecting demand and resource allocation for various exam types, the dataset includes the
number of patients waiting for different types of exams (e.g. chest, pediatric, neurological, abdom-
inal, vascular, cardiac, and musculoskeletal). It also contains facility-level characteristics, such as
the total performed hours for ongoing examinations to help optimize equipment use.

To assess short-term operational workload, the dataset records average waiting times for the last
few customers. This information can be used to evaluate operational load and resource requirements
in the short term.

In addition, the dataset is from only one hospital, so there are limitations in our model when
making predictions in different hospitals.



3.3 Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA) techniques are applied to understand the data distribution,
detect outliers, and identify significant patterns that could influence model development.

3.3.1 Data Cleaning

In the process of Exploratory Data Analysis (EDA), ensuring comprehensive and accurate data
cleaning is crucial for the success of the research. The statistical dataset of the health care sys-
tem that is being analyzed includes four worksheets, each recording statistics for different medical
imaging technologies: X-ray (XR), Computed Tomography (CT), Magnetic Resonance (MR), and
Ultrasound (US). Initially, these worksheets contain 89 variables, with data counts of 42,767 entries
for Worksheet 1, 15,653 for Worksheet 2, 23,584 for Worksheet 3, and 48,431 for Worksheet 4.

In the face of the dataset’s complexity, a series of specific data cleaning steps have been under-
taken: missing values have been identified and handled, data formats have been standardized, and
outliers have been identified and dealt with. Utilizing R, 3 missing values were identified in Work-
sheet 1, while no missing data were found in the other three worksheets. To avoid the adverse impact
that directly deleting rows with missing values might have on subsequent research, a more nuanced
approach was adopted: the missing values were replaced with the mean value of the respective row.

In terms of handling outliers, a detailed analysis was conducted using boxplots generated in
R. All feature values were normalized to ensure a mean of zero and a variance of one. Apart from
binary logical variables representing yes/no states (1 for ’yes’ and 0 for ’no’), a certain number
of outliers were observed in all other features within the boxplots. Considering the complexity of
the healthcare system and the precision and facticity required for model predictions, these outliers
were deemed to be normal occurrences within the healthcare statistical data, reflecting the actual
conditions of the healthcare system. Therefore, the decision was made to retain these outliers to
maintain the authenticity and integrity of the dataset.

3.3.2 Descriptive Statistics

In the dataset, the primary aim is to predict the ‘waiting time’. Thus, the descriptive statistic
of waiting time was done first. The dataset comprises 130,431 data points. And the mean of it is
7.295, with a standard deviation of 25.898. Upon examining its range, the minimum and maximum
values are -497.000 and 360.000, respectively, while the lower quartile, median, and upper quartile
are 1.000, 6.000, and 15.000, respectively. Furthermore, given the additional consideration of the
relationship between ‘waiting time’ and the ‘time series’, visualization of these two variables was
performed to provide an initial understanding.

From Figure A-1a, it can be found that at some time points, there are only very few waiting
time that is possible, while at others, there are a lot of feasible waiting time amounts. Hence, it
can be inferred that the specific time of day is likely to have a significant impact on ‘waiting time’
predictions.

Besides the targeted waiting time data in the collected dataset, there are 66 features that are
related to the waiting time. The types of certain features of each facility differ slightly from each



other due to their various functions. To describe the features, they can be divided into three kinds of
variables: discrete variables, continuous variables and 0-1 two-valued variable. Examples of these
features are illustrated in Figure A-1c.

3.3.3 Correlation Analysis

In pursuit of the best possible model fit, a meticulous analysis was conducted on the correlation
between each independent variable and the dependent variable ’Wait’, with the most influential
features being carefully selected. During this process, three variables that were not quantifiable in
terms of time points were eliminated to ensure the precision of the analysis.

A correlation matrix is served as a powerful means to illustrate the relationships among vari-
ables. After a correlation matrix was generated from the refined dataset, a choice was made to
visualize these relationships with a heat map in R. Additionally, by applying hierarchical clustering
to sort the matrix, the interpretation of the heat map was made more accessible, particularly given
the extensive volume of data that was being handled. In the heat map, the darker the color of the
convergence area between variables, the stronger the correlation. This approach not only enhances
the visual representation of the data but also facilitates the understanding of the complex interplay
between variables.

From Figure A-1a,It was found that the variable ’delayedinline’ had the strongest positive
correlation with waiting time in Worksheet 1, with a Spearman’s rank correlation coefficient of
0.28122, while the variable ’noneinline’ showed the strongest negative correlation with waiting time,
with a Spearman’s rank correlation coefficient of -0.15024.

4 Methodology

4.1 Previous Machine Learning Techniques

The objective of this study is to develop predictive models for patient waiting times, lever-
aging existing datasets to train these models for accurate forecasting. The paper commences with
an examination of the comparative efficacy and efficiency of various elementary machine learning
algorithms in the context of predictive modeling.

4.1.1 Dataset Split

The methodology section delineates the training strategy employed. Data from four distinct
medical facilities were subjected to independent training regimens, thereby cultivating facility-
specific predictive models. The dataset was partitioned into a training subset, comprising 70-80%
of the data selected at random, and a test subset, encompassing the residual 20-30%. Each model
underwent a series of six training iterations, with the optimal iteration, determined by performance
metrics, being retained as the definitive model.



4.1.2 Experiment on Different ML models

In pursuit of a comprehensive assessment of the predictive capabilities of diverse machine
learning techniques, the study encompasses a spectrum of algorithms, including linear regression,
Naive Bayes classifiers, Support Vector Machines (SVMs) with Gaussian kernels, single decision
trees, and ensembles of decision trees, namely random forests. Some of these methods are also
models that are discussed in precious articles [9] in this field. But not every model is discussed with
a concrete result.

The linear regression analysis was conducted at multiple levels of complexity: a full multi-
variate regression incorporating all variables, a reduced multivariate regression focusing on a subset
of significant predictors, and univariate regressions for individual influential predictors. The linear
regression model can be mathematically described as:

y = β0 +β1x1 +β2x2 + · · ·+βnxn + ε

where y represents the patient waiting time, β0 is the intercept, β1,β2, . . . ,βn are the coefficients for
each predictor x1,x2, . . . ,xn, and ε is the error term.

The SVM approach was standardized with a Gaussian kernel to facilitate model convergence.
The SVM model with a Gaussian kernel can be expressed as:

K(xi,x j) = exp
(
−
∥xi − x j∥2

2σ2

)
where K(xi,x j) is the kernel function, xi and x j are data points, and σ is the bandwidth parameter.

The random forest models were parameterized with varying numbers of trees and tree depths to
explore the impact of model complexity on predictive accuracy. The prediction for a random forest
model is the aggregation of predictions from individual decision trees.

4.1.3 Parameter Settings

Optimal parameters for ML models are determined through cross-validation and grid search
techniques to ensure the highest possible predictive performance.

The internal model parameters are dynamically optimized through the training process, con-
tingent upon the characteristics of the training data set. Consequently, during experimentation, it is
imperative to meticulously adjust the model’s external tunable parameters in response to the predic-
tive outcomes, thereby incrementally refining the model’s performance. The subsequent discourse
will elucidate the parameter design process for select models.

For example, within the ensemble of machine learning models, the Random Forest model ne-
cessitates a systematic refinement of both the quantity and the depth of constituent decision trees.
Through iterative experimentation, it was determined that, to effectively accommodate the extensive
parameter space of the medical system dataset utilized in this research, a robust ensemble of decision
trees and increased tree depth are essential for achieving superior predictive accuracy. The optimal
configuration identified in this study for the Random Forest model comprises 300 trees with a depth
of 20 splits.



By incorporating these mathematical formulations, it can enhance the precision and clarity of
the new predictive modeling approach while preserving the original narrative structure.

4.2 Neural Networks for Prediction

In addition to the foundational machine learning methodologies, the dataset for the prediction
of patient waiting times is distinguished by the subtle influence of each feature on the overall waiting
duration, with no single characteristic exerting a pronounced effect on the outcome. In light of this,
the present study incorporates an exploration of deep learning models based on neural networks to
address the prediction task, with a focus on evaluating the performance of such models in scenarios
characterized by a multitude of features, each with a relatively minor impact.

4.2.1 Our Neural Network Model

The research commenced with the development of a rudimentary neural network framework
to gauge its efficacy in predicting patient waiting times. The architecture was composed of either
a solitary hidden layer or a dual-layer configuration, with each layer populated by either 10 or 20
neurons, which has already been used in this field to solve such patient waiting time problems
[9]. Contrary to complexity, these elementary networks demonstrated an aptitude for handling the
multifaceted nature of the problem, achieving a level of predictive accuracy that rivals or exceeds
that of more established machine learning algorithms.

Nevertheless, while the rudimentary neural network configurations have modestly enhanced the
precision of waiting time predictions, this study introduces an advanced neural network architecture
specifically crafted to augment the model’s predictive fidelity. This novel architecture expands the
neuron count in each of the two hidden layers. Prior to each hidden layer, a Batch Normalization
layer is integrated to facilitate the model’s capacity to conform to the data’s nonlinear dynamics.
ReLU activation functions are utilized throughout to introduce nonlinearity at each layer.

The optimal configuration attained by some experiments for the neural network model entails
two hidden layers, each populated with 256 neurons, preceded by a Batch Normalization layer to
facilitate the fitting of data with nonlinear relationships, and activated by the ReLU function.

4.2.2 Loss Measurement

In this research, the neural network model’s training was tuned with external parameters,
guided by ongoing assessments of the model’s predictions. The Mean Absolute Error (MAE) and
Mean Squared Error (MSE) served as key performance indicators for the model’s predictive ac-
curacy. Given the volatile nature of our emergency room dataset, which includes many extreme
outliers, MSE was utilized for training due to its properties that aid in gradient descent and quick
convergence. Despite MSE’s advantages, its susceptibility to outliers can lead to exaggerated error
magnification. MAE was used for final evaluation, as it averages the absolute differences between
predictions and actuals. The formulas for MSE and MAE are:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2, MAE =

1
n

n

∑
i=1

|yi − ŷi|.



For a more nuanced evaluation of the model’s performance, U05 and U10 metrics are also consid-
ered. These metrics measure the accuracy of the model by calculating the proportion of predictions
with absolute errors less than 5 or 10, respectively. The formulas are:

U05 =
1
n

n

∑
i=1

I(|yi − ŷi|< 5), U10 =
1
n

n

∑
i=1

I(|yi − ŷi|< 10)

where I denotes the indicator function, and n is the total number of observations. This approach
ensures a comprehensive assessment of the model’s predictive capabilities, especially in the presence
of variability and outliers.

4.2.3 Training

In addition, a flexible learning rate schedule has been put in place, which reduces the learning
rate by a factor of ten whenever the model’s performance plateaus, or in other words, when it stops
improving in terms of loss reduction. This mechanism is designed to guide the model towards a
more optimal solution. Moreover, a strategy for learning rate decay has been incorporated, with the
training process planned to last for 50,000 epochs. The starting learning rate (η0) is set at 0.01, and
there’s a mechanism in place to reduce the learning rate to one-tenth of its initial value if the model’s
loss does not decrease significantly over a period of 10 consecutive epochs.

The mathematical expression for the learning rate decay is as follows:

ηt =

{
η0 if t < t0,

η0 ·0.1
⌊

t−t0
T

⌋
if t ≥ t0.

Here, ηt denotes the learning rate at a specific epoch t, t0 refers to the epoch at which the first plateau
in performance is identified, and T signifies the 10-epoch interval.

The goal of the training process is to minimize the loss function L(θ), where θ symbolizes
the parameters of the neural network. This optimization is carried out using the gradient descent
method, and the parameters are updated according to the following rule:

θt+1 = θt −ηt∇L(θt)

This entire process is facilitated by the Adam optimizer in PyTorch.

4.3 Peak Capture & Overload Detection

4.3.1 Peak & Overload Definition

Predicting peaks and detecting overloads in emergency department (ED) data are crucial for
optimizing resource allocation and reducing extreme waiting. In this section, the aim is to identify
peaks and overload conditions using machine learning models. Various models are validated seper-
ately to find the most sensitive overload detector, containing linear regression, decision tree or forest
as well as the neural network that have been constructed.



peak is defined as a binary variable P, where

P =

{
1, if the waiting time > 10 minutes,
0, otherwise.

Similarly, overload is defined as a binary variable O, where

O =

{
1, if the number of individuals waiting > 5,
0, otherwise.

The model takes a set of variables as input, denoted as X = {x1,x2, . . . ,xn}, where each xi represents
a different feature relevant to the prediction of waiting times and overload conditions. The model
outputs the predicted waiting time T̂ , which is then used to derive the predicted peak P̂ and the
predicted overload Ô. The aim here is to find the most suitable model offering the patients their
waiting time, and another model for the hospital manager to detect overload and schedule medical
resources.

4.3.2 Peak Capturing Sensitivity Measurement

For the peak detection task, which is treated as a classification problem, a confusion matrix of
predicted-peak and actual-peak is generated, thus calculating several classification metrics:

• Accuracy = T P+T N
T P+T N+FP+FN

• Precision = T P
T P+FP

• Recall = T P
T P+FN

where T P, T N, FP, and FN represent the true positives, true negatives, false positives, and false
negatives, respectively.

A comprehensive comparison of various machine learning models, including our neural net-
work and other baseline models, was conducted to determine the most suitable model for peak
capture. The models were evaluated based on their performance in predicting both waiting times
and peaks, with a particular focus on their ability to accurately detect peak conditions (i.e., when
waiting time exceeds 10 minutes).

4.3.3 Overload Detection Classifier

Description The detection of overload conditions in the healthcare system is also framed as a clas-
sification task. This task involves determining whether the system is in an overload state based on
patient waiting times and the current operational status of the healthcare facility. The classifier’s ef-
fectiveness in this context is again evaluated using a confusion matrix, with metrics such as accuracy,
precision, recall, and F1-Score being calculated.



Measurement In the context of healthcare, the primary concern is to ensure that no overload
condition goes undetected. Therefore, recall, defined as the proportion of actual overload cases
correctly identified by the model, is the most critical metric. Maximizing recall ensures that the
system is adequately prepared for every potential overload, minimizing the risk of missing a critical
situation that could compromise patient care.

Recall =
T P

T P+FN

where T P represents true positives (correctly detected overloads), and FN represents false negatives
(missed overloads). A high recall value indicates that the model is effective in capturing all instances
of overload, thus providing a reliable warning system for healthcare providers.

Correlation Between Overload and Peak In addition to evaluating the individual performance
of the overload and peak detection models, it is essential to assess the correlation between these
two phenomena. A strong correlation between overload and peak detection would suggest that the
model accurately reflects the operational status of the healthcare system, providing a holistic view of
its capacity and performance. In this study, the correlation between the variables overload (O) and
peak (P) is analyzed using binary classification methods. The variable overload (O) and peak (P) is
defined as follows:

• O = 1 (True Positive): when the number of people waiting exceeds 5.

• O = 0 (True Negative): otherwise.

• P = 1 (Predicted Positive): when the waiting time exceeds 10 minutes.

• P = 0 (Predicted Negative): otherwise.

To evaluate the effectiveness of using the peak variable (P) to predict the overload variable (O),
the confusion matrix and several evaluation metrics were computed, including accuracy, precision,
recall, and F1 score.

4.4 Generalization Improvement

4.4.1 Feature Selection and Decline

Given that not all hospitals may track these features, feature selection on the dataset was con-
ducted to enhance the model’s generalization performance. The four worksheets classified by device
in the original dataset were used as the starting independent variable set for feature selection. The
data approximated a normal distribution, which allowed us to employ two methods for feature se-
lection: Principal Component Analysis (PCA) and Step Regression Analysis.

Step Regression Analysis involves iteratively adding or removing predictors based on their
statistical significance:

Y = β0 +
n

∑
i=1

βiXi + ε

where Y is the dependent variable (waiting time), Xi are the independent variables (features), βi are
the coefficients, and ε is the error term. Features are added or removed based on criteria such as the
Akaike Information Criterion (AIC) or p-values of the coefficients.



Step Regression Analysis was utilized to identify features with the most significant impact on
waiting times from the original set of 83 features. For instance, in the analysis, the number of the
key features was narrowed down to 54 from the original 83 in the worksheet.

Subsequently, PCA was applied to rank these selected features based on their impact, from
the greatest to the least. This ranking was determined by the cumulative absolute loading values of
each variable across all selected principal components. Principal Component Analysis transforms
the original variables into a new set of uncorrelated variables called principal components. The
principal components are ordered by the amount of variance they capture from the data.

The loadings, which are the coefficients of the linear combination of the original variables, are
used to rank the features. The cumulative absolute loading value for a variable Xi across k principal
components is given by:

Li =
k

∑
j=1

|wi j|

where wi j is the loading of variable Xi on the j-th principal component.
Step Regression Analysis had already identified 54 features with substantial influence on wait-

ing times so the first 50 original features with the highest cumulative load absolute values were
focused on as revealed by the principal component analysis(in Table A-2).

4.4.2 Distinct Feature Groups with Domain Knowledge

Aiming to enhance the generalization performance of our model by leveraging domain knowl-
edge to construct neural network architectures tailored to distinct feature groups, the strategy here
involved dividing the feature set into meaningful categories, ensuring each subset of features is pro-
cessed by a dedicated sub-network that captures the specific patterns and relationships inherent in
each group.

The approach here starts by categorizing features into five groups: appointment status, queue
status, daily efficiency, immediate efficiency, and check type. Each of these groups contains unique
information that can be utilized more effectively when processed separately.

1. Appointment Status: This group includes features related to the timing and scheduling of appointments,
such as number of patients scheduled in the 30- and 60-minute window before patient arrived.

2. Queue Status: This information helps assess the load and performance of the queue management sys-
tem, allowing healthcare organizations to adjust resource allocation in real-time to reduce patient waiting
times, such as number of patients in line measured when a patient arrives, 15, 30, 45 & 60 minutes before.

3. Daily Efficiency: Metrics that reflect the overall efficiency of the emergency department, such as average
delay/wait for patients for that day.

4. Immediate Efficiency: Metrics providing a snapshot of immediate performance metrics and offering a
real-time view of ongoing processes, such as the sum of the expected times to complete of the exams in
progress.

5. Check Types: This group deals with the characteristics and waiting times for different examination
types, including ‘number of chest examinations’, ‘number of neurological examinations’ and etc.



In the model implementation, each feature group is fed into a dedicated sub-network. Each sub-
network consists of two fully connected layers using ReLU activation functions, designed to capture
the complex non-linear relationships within each feature group. For a given feature group Xi (where
i = 1,2,3,4,5), the sub-network’s output can be represented as:

Hi = ReLU(Wi,2 ·ReLU(Wi,1 ·Xi +bi,1)+bi,2)

where Wi,1 ∈ Rh×di and Wi,2 ∈ Rh×h are the weight matrices, bi,1 ∈ Rh and bi,2 ∈ Rh are the bias
vectors, and ReLU(x) = max(0,x) is the ReLU activation function, with h being the hidden layer
dimension.

The outputs of these sub-networks are then combined to form a consolidated representation of
the input data:

H = [H1,H2,H3,H4,H5]

Here, H ∈ R5h is the merged vector. This combined vector is processed through a final linear layer
to generate the model predictions:

ŷ = W f ·H+b f

where W f ∈ R1×5h is the weight matrix of the final linear layer, and b f ∈ R is the bias term.
Across all healthcare scenarios, these five dimensions make it possible to measure operating

characteristics effectively for making predictions. The overall model can be succinctly represented
as:

ŷ = W f ·

(
5

∑
i=1

ReLU(Wi,2 ·ReLU(Wi,1 ·Xi +bi,1)+bi,2)

)
+b f

To summarize, features are categorized into five groups: appointment status, queue status, daily
efficiency, immediate efficiency, and check types. Each category was processed by dedicated sub-
networks with two fully connected ReLU layers, capturing specific patterns within the data. These
outputs were merged and passed through a final linear layer for predictions. This model, combining
rigorous feature selection and domain-informed subset grouping, demonstrated excellent perfor-
mance on our sub-NN. By effectively capturing the nuances of various feature groups, it provides
accurate waiting time predictions with better generalization performance, making it a valuable tool
for emergency departments.

5 Results

5.1 Accurate Waiting Time Prediction

In this study, various prediction models are thoroughly tested, mainly in order to see how
well they performed in predicting patient waiting times. The prediction accuracy of these models
are evaluated by using two important metrics - mean absolute error (MAE) and mean square error
(MSE). The smaller the value, the more accurate the model’s prediction are. The data in several
tables 1a, 1b, 1c, 1d are carefully analyzed, which show the results of some different machine
learning and deep learning models, and the model is compared with these models [9]. In addition,



Fig. 1. Visualization of our Predictive Model

MLmodel MAE MSE U05 U10 trainMAE trainMSE

MostRecentWait 12.837 18.027 0.291 0.525 12.856 18.24
MostRecentWait-Average 12.778 17.969 0.287 0.524 12.809 18.096
LinearRegression 8.797 12.450 0.396 0.683 8.736 12.375
GaussianKernel 12.238 17.353 0.308 0.549 12.297 17.599
ForestSmall 300trees 30splits 12.659 18.132 0.334 0.602 9.012 0.270
NeuralNetwork-[10,10] Layers 9.172 12.815 0.341 0.608 9.812 13.789
NeuralNetwork-[20,20] Layers 9.847 13.629 0.312 0.559 11.033 15.350
Our NeuralNetwork Model 7.617 10.880 0.196 0.377 6.479 9.032

(a) Comparison of Models on f1 (US)

MLmodel MAE MSE U05 U10 trainMAE trainMSE

MostRecentWait 20.675 30.227 0.181 0.352 20.763 30.842
MostRecentWait-Average 20.706 30.887 0.181 0.351 20.621 30.519
LinearRegression 17.819 24.776 0.202 0.392 17.649 24.982
GaussianKernel 20.38 30.407 0.192 0.363 20.315 30.224
ForestSmall 300trees 30splits 25.892 36.882 0.151 0.291 0.011 0.413
NeuralNetwork-[10,10] Layers 18.863 27.833 0.181 0.358 19.802 29.327
NeuralNetwork-[20,20] Layers 19.083 28.541 0.19 0.365 19.166 28.479
Our NeuralNetWork Model 18.594 27.903 0.145 0.284 16.499 22.36

(b) Comparison of Models on f2 (MR)
MLmodel MAE MSE U05 U10 trainMAE trainMSE

MostRecentWait 32.236 48.169 0.121 0.238 32.463 48.207
MostRecentWait-Average 31.98 47.183 0.125 0.241 32.289 48.226
LinearRegression 23.329 30.086 0.139 0.275 23.144 29.864
GaussianKernel 31.568 47.288 0.124 0.244 31.819 47.746
ForestSmall 300trees 30splits 32.937 43.052 0.109 0.211 0.004 0.291
NeuralNetwork-[10,10] Layers 23.255 30.664 0.130 0.255 25.465 33.339
NeuralNetwork-[20,20] Layers 23.472 30.717 0.123 0.246 25.538 33.441
Our NeuralNetWork Model 22.636 29.402 0.097 0.192 21.881 28.171

(c) Comparison of Models on f3 (CT)

MLmodel MAE MSE U05 U10 trainMAE trainMSE

MostRecentWait 4.718 6.579 0.653 0.921 4.71 6.583
MostRecentWait-Average 4.653 6.503 0.662 0.921 4.641 6.464
LinearRegression 3.822 5.453 0.761 0.94 3.805 5.424
GaussianKernel 3.932 5.557 0.748 0.937 3.923 5.57
ForestSmall 300trees 30splits 4.906 7.201 0.669 0.876 0.015 0.344
NeuralNetwork-[10,10] Layers 3.829 5.461 0.721 0.933 3.933 5.533
NeuralNetwork-[20,20] Layers 3.952 5.541 0.644 0.907 4.634 6.186
Our NeuralNetWork Model 3.782 5.407 0.612 0.851 3.683 5.249

(d) Comparison of Models on f4 (XR)

Table 1: Comparison of Models across different datasets

the prediction results of our model is also shown in Figure 1, which lists the predicted and actual
waiting times for 200 patients in one day in chronological order.

It is observed that, under identical modeling conditions, the predictive accuracy for various
facilities exhibits notable divergence, with potential for substantial discrepancies. Despite these
variations, the models demonstrate a commendable level of precision, thereby validating their util-
ity. However, this observation necessitates a deeper inquiry, particularly given the dataset’s inherent
imbalance. The volume of data associated with different facilities is uneven, with those facilities ex-



hibiting suboptimal performance also being underrepresented in the data, suggesting that the scarcity
of training instances may be a contributing factor to their diminished performance.

Furthermore, a comparative analysis in single facility, taking Table 1a for example, reveals that
the neural network predictive model, as orchestrated in this study, surpasses both traditional machine
learning approaches and rudimentary neural network configurations in terms of predictive efficacy.
This means that the model successfully transcend those basic learning models [9] clearly. This model
adeptly fulfills the objective of patient waiting time prediction, corroborating the initial hypothesis
posited at the outset of the paper. The meticulously calibrated neural network architecture is adept
at tackling scenarios characterized by a multitude of features with attenuated individual impacts.

Additionally, this study incorporates a feature selection endeavor to bolster the models’ versa-
tility and applicability. In this section, the findings post-feature selection are delineated and inter-
preted. It emerges that employing a curated subset of features, as per the methodologies previously
outlined, for model training results in a quantifiable diminution of predictive efficacy in correlation
with the reduced feature count. The fidelity of predictions is intricately linked to the cardinality of
the features engaged in the training regimen. Although a robust feature set can maintain an ele-
vated level of predictive performance even with a modest decline, the predictive outcomes become
increasingly stochastic with a diminished feature set. This unpredictability is heavily dependent on
the particular features selected, thereby not ensuring the precision of predictions in a universally
applicable context.

5.2 Overload Detection

Peak Capture with Linear Regression Experiments are conducted by using a Linear Regression
model across four different modalities. The results of these experiments are summarized in Table 2a.
The table displays the Accuracy, Precision, and Recall for each modality, which reflects the model’s
capability in detecting peaks.

Facility Accuracy Precision Recall

1 0.821 0.774 0.679
2 0.699 0.711 0.748
3 0.714 0.730 0.730
4 0.788 0.660 0.473

(a) Peak Capture Measurement (LR)

ML Model Accuracy Precision Recall

Linear Regression 0.821 0.774 0.679
LR (best features) 0.779 0.696 0.602
Decision Tree 0.711 0.572 0.582
Random Forest 0.721 0.891 0.211
Neural Network 0.785 0.798 0.486

(b) Comparison of Different Models

Table 2: Performance Metrics for Facilities and ML Models

The results indicate that Modality 1 achieved the highest accuracy (0.820) and precision (0.755),
making it the most reliable model for predicting peak conditions in this context. However, Modality
2 shows the highest recall (0.748), suggesting that it is better at identifying all peak occurrences,
albeit with a slightly lower precision. These findings provide valuable insights for selecting the ap-
propriate model based on the specific requirements of peak detection and overload management in
hospital settings.

Meanwhile, other methods such as decision tree, random forest or Neural Network has an



accuracy of 70%-80%, lower than the LR model, taking Facility-1 as an example. The result shows
that although NN can predict patient waiting time quite well, the Linear Regression model is more
suitable for Peak Capturing Task. To summarize, can use the NN can be used to make waiting time
prediction for the patients, while LR model is used as the Overload Detector presented to the hospital
manager.

Time Peak Indicating Overload When the TN, FP, FN, TP are defined in Section 4.3.3. Peak of
the waiting time representing Predicted-Overload, while True-Overload is defined as large amount
of patients delayed in line. The confusion matrices for tables F1 and F3 are as follows:

CMF1 =

(
TN FP
FN TP

)
=

(
29258 13087

88 333

)
, CMF2 =

(
TN FP
FN TP

)
=

(
11326 11359

168 730

)
The corresponding evaluation metrics of F1 and F3 are summarized in Table 3. (There’s no

necessary for F2’s or F4’s overload to be measured because they are running well.)

Metric F1 F3

Accuracy 0.6919 0.5112
Precision 0.0248 0.0604
Recall 0.7910 0.8129

Table 3: Evaluation Metrics for Tables F1 and F3

From the confusion matrices and evaluation metrics, it is evident that the recall rates for both F1
and F3 are relatively high, at 0.7910 and 0.8129, respectively. This indicates that the peak variable
(P) is effective in identifying most of the cases where the overload variable (O) is true. In other
words, when the waiting time exceeds 10 minutes (P=1), it successfully identifies the majority of
situations where the number of people waiting exceeds 5 (O=1). While the peak variable can be
used as a reliable indicator for overload with a high recall rate, the model’s low precision indicates
that additional factors should be considered to reduce the false positive rate and improve overall
prediction accuracy. To summarize, long patient waiting time can be used to detect the department’s
overload, and the high recall rate shows that the detection method is of high sensitivity.

By focusing on the high recall for overload detection and analyzing the correlation between
overload and peak predictions, this approach not only aims to detect critical conditions within the
healthcare system but also strives to provide a model that offers a robust and accurate reflection
of the system’s current state. This ensures that the healthcare system can respond proactively to
potential overloads, ultimately improving patient outcomes and operational efficiency.

5.3 High Generalization Performance

After feature selection, the filtered features are then integrated into our model, beginning with
a subset of 5 features and incrementally increasing the count by 10 with each subsequent test. The
findings indicated that as the number of features expanded, the Mean Absolute Error (MAE) of the



model’s predictions decreased, with minimal changes in the mutation value, the model’s perfor-
mance exhibits a gradual improvement (in Figure 2). Notably, this model can significantly reduce
the required number of features without a marked decline in accuracy. This attribute is particularly
advantageous when dealing with incomplete datasets or different scenarios, as the architecture can
still train an effective patient waiting time prediction model using a subset of the original features.

Fig. 2. MAE vs the number of features

By selecting five dimensions representing the current state of the healthcare system, the model
maintains a high prediction accuracy. A neural network architecture was constructed comprising
five integrated sub-networks, which achieved an accuracy level with a Mean Absolute Error (MAE)
of 8.778, compared to the most accurate MAE of 7.617 (seen in Tables 1a, tested for Facility-1 as
an example). This performance level remains notably high.

A systematic approach was used to improve the predictive power and understandability of the
model by carefully differentiating the influence of each group of features. Incorporate expertise into
models by grouping features and designing specialized subnetworks. The feature selection method
effectively predicts patient waiting times even with a subset of features, especially when the available
data is less complete than the features in the dataset, and detects systematic trends across different
healthcare settings.

The model is powerful because the designed sub-neural networks demonstrate good ability to
adapt to new situations based on different feature sets and medical knowledge. Through feature
selection and clustering processing, an algorithm that predicts stable latency even when the amount
of data is not large is obtained. The model optimizes emergency department resource allocation
and maintains high accuracy by using key feature sets and separating them. This improves the
understanding of the model and makes it a useful tool for healthcare professionals.



6 Conclusions

In this study, the challenge of predicting patient waiting times was addressed by developing a
neural network. The method significantly improves the prediction accuracy, which is better than pre-
vious models. Based on this, the predictions can be presented to patients in the emergency room to
reduce their waiting anxiety. An overload detection model based on linear regression was developed
and examined its sensitivity. In addition, A feature selection process was conducted to identify key
attributes of different diagnostic devices in the hospital environment. The model remains the similar
accuracy when a subset of most important feathers are reserved. This process not only highlights the
importance of these features, but also validates the predictive ability of our model at different scales,
thus demonstrating its generalisation performance and usefulness in patient waiting time prediction.

This paper, evidently, carries profound practical significance and real-world applicability. The
study presents a predictive model based on neural networks that offers accurate waiting time pre-
dictions. The predictive capabilities of our model can be seamlessly integrated into the emergency
departments of hospitals. Furthermore, the use of the overload detector can help hospital managers
allocate medical resources more efficiently. By learning from the relevant data of these medical
institutions, the model can adeptly fulfill predictive tasks, thereby enhancing the allocation and co-
ordination of medical systems across various hospitals, offering substantial assistance.

The findings contribute to the body of knowledge in the field of health informatics, offering
insights into improving patient flow and resource allocation within healthcare facilities. The ro-
bustness of the model, as evidenced by its performance across different scenarios, underscores its
potential for real-world application. As looking to the future, this work lays the groundwork for fur-
ther exploration into optimizing patient experience and operational efficiency in healthcare settings.

However, it is important to acknowledge that this study has certain limitations. For instance,
this approach primarily focused on refining simple neural network architectures, without incorpo-
rating a wide variety of complex neural network models. Additionally, the dataset that was utilized
may not be extensive, as it was specific to one medical system, which could potentially lead to
inaccuracies in prediction under certain special circumstances.

The insights gleaned from this research open avenues for future work. For instance, there is
potential in experimenting with diverse feature combinations and model architectures to uncover
more accurate and effective predictive methodologies. Moreover, the application of predictive out-
comes presents numerous opportunities for refinement. While the current predictions are confined
to the present moment, facilitating short-term adjustments and management within the hospital’s
medical system, there is scope to incorporate broader temporal references. This could enable more
long-term, strategic forecasting and regulation of the healthcare system.
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Appendix

A-1. EDA Visualization

(a) Distribution of waiting time

(b) Boxplot of the dataset in Worksheet1

(c) Distribution of features



(a) Correlation between each variable in Worksheet1

Fig. A-1. EDA Visualization figures

A-2. PCA Results



Index Variable Name Absolute Load Value Index Variable Name Absolute Load Value
1 NumCustomersInLastwl 6.382846 26 DelayCount 5.285572
2 F1owCount2 6.094908 27 Linecount0strict 5.274416
3 LineCount4 6.055510 28 IsFirst 5.272488
4 NumCompletedInLastwl 5.938251 29 SchF1owCount2 5.271732
5 AvgWaitLastw3 5.932923 30 NoneCompleted 5.255597
6 maxtime 5.873289 31 mintime 5.236939
7 LineCount2 5.856698 32 AvgWaitLastK3customers 5.236619
8 AvgDelayForDay 5.830229 33 AbdominalCount 5.222655
9 SumDelayInProgress 5.815193 34 IsLast 5.191561

10 NumCompletedInLastw3 5.778408 35 MostRecent1 5.157611
11 NumCustomersInLastw2 5.771374 36 SumTimeToCompleteNextW2 5.152805
12 NoneInProgress 5.714588 37 NumCustomersInLastw3 5.150708
13 Vascularcount 5.686995 38 AvgwaitLastk2customers 5.121899
14 LineCount1 5.648676 39 DelayedInLine 5.103083
15 Sumwaits 5.624718 40 Afterslot 5.067978
16 SumDelayWaitingInLine 5.605646 41 Aheadcount 5.061976
17 InProgresssize 5.524258 42 AvgwaitLastw2 5.046041
18 Median5 5.503731 43 FutFlowCount2 5.044763
19 DelayCountLastHour 5.500591 44 StartTime 5.037080
20 NumAddonsToday 5.493103 45 AvgHowEarlyWaiting 5.015407
21 AvgwaitLastwl 5.433343 46 FlowCount4 4.993000
22 sumInProgress 5.406005 47 SumTimeToCompleteNextslot 4.974212
23 Beforeslot 5.377051 48 MostRecent 4.915264
24 NumAddonsLastw2 5.310590 49 NumScheduledNextw2 4.842634
25 NumCompletedInLastw2 5.290821 50 NumScheduledNextslot 4.818803

Table A-2: Principal Component Analysis (PCA) Result of Worksheet1 Table
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