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Abstract. This paper proposes a comprehensive positioning and search system for deep-

sea submersibles to enhance efficiency in complex marine environments. The core position 

prediction model integrates Kalman and extended Kalman filters, accounting for 

submersible dynamics and geographical data. This approach effectively addresses 

nonlinear challenges from forces like buoyancy, gravity, ocean currents, and resistance. 

High-precision positioning on 3D topographic maps is achieved through optimized 

dynamic and observation equations.Equipment selection utilizes the TOPSIS model to 

evaluate eight deep-sea rescue tools, emphasizing functionality, cost-effectiveness, safety, 

and durability. Search efficiency is improved by integrating the position prediction model 

with the ant colony algorithm, reducing search paths and time in simulations. A multi-

target cooperative position prediction model, incorporating multi-target and cooperative 

extended Kalman filters, supports multi-submersible coordination.Environmental 

adaptability is demonstrated in areas like the Caribbean and Ionian Seas, highlighting the 

model’s robustness. While significant progress has been made, challenges remain in 

ensuring accuracy, stability, and feasibility in extreme conditions. Future research will 

focus on data collection, parameter optimization, and developing more efficient algorithms 

to expand the model’s applicability in diverse marine scenarios. 
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1 Introduction 

The development of submersible technology has revolutionized ocean exploration, offering a 

powerful tool for understanding the underwater world. Greek company MCMS has launched an 

advanced submersible for exploring shipwrecks in the Ionian Sea, but challenges such as 

mechanical failures and loss of contact with the mother ship pose serious risks to safety, 

financial stability, and reputation. Addressing these challenges is crucial to ensuring the success 

of such projects. 

This research holds significant theoretical and practical importance, enriching the system of 

submersible positioning, searching, and rescuing in complex marine environments. By 

developing innovative models and algorithms, it enhances understanding of submersible-

environment interactions and improves position prediction, contributing to the broader 

advancement of marine technology. 
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The study aims to create a practical positioning and search system to ensure safety and 

efficiency across diverse marine environments and multi-submersible scenarios. A robust 

position prediction model, considering factors like buoyancy, ocean currents, seawater density, 

and seafloor geography, is essential. Addressing uncertainties improves prediction accuracy and 

informs equipment selection for both mother and rescue ships. A search and rescue model will 

optimize deployment points and search patterns, minimizing response times. Leveraging 

accumulated data, it calculates the probability of finding submersibles over time for targeted 

rescues. The models must adapt to varying sea conditions and multi-submersible operations, 

ensuring reliability in diverse environments. This research aims to enhance operational safety, 

efficiency, and rescue success rates, contributing to the advancement of ocean exploration 

technology. 

2 Related Work 

In the field of research related to submersible positioning and search rescue, several important 

techniques and models have been studied and applied in different contexts. 

Kalman filtering and its extended forms have been widely used in various fields such as 

aerospace and robotics navigation [1]. In these applications, they have demonstrated their 

effectiveness in estimating the state of dynamic systems [2]. However, when applied to the 

submersible domain, significant adjustments are required to account for the unique 

characteristics of the marine environment [3]. The complex and variable nature of the ocean, 

including factors such as currents, salinity, and temperature gradients, demands a more tailored 

approach to ensure accurate position prediction of submersibles [4]. 

The TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) model has 

been a prominent tool in multi-criteria decision analysis [5]. It has been applied in numerous 

scenarios where multiple factors need to be considered for evaluating alternatives. In the context 

of submersible equipment selection, it provides a framework for comparing different equipment 

options . However, it is crucial to adapt this model to the specific requirements of the 

submersible search and rescue scenario [6]. This involves carefully determining the relevant 

evaluation criteria and their respective weights based on the actual conditions and needs of the 

operation. For example, factors such as equipment functionality, cost, reliability, and durability 

need to be considered in a balanced manner to make an informed decision [7]. 

Weighted networks and ant colony algorithms have been extensively studied for path search 

and optimization problems[8]. These algorithms have shown promising results in finding 

optimal paths in various complex environments [9]. When applied to the search and rescue 

operations in the marine environment for submersibles, they face several challenges due to the 

complexity of the oceanic setting. The vastness of the ocean, the presence of multiple obstacles, 

and the dynamic nature of the environment require sophisticated modifications to these 

algorithms to ensure their effectiveness. The algorithms need to be able to handle the 

uncertainties associated with the submersible's position, the changing ocean currents, and the 

varying visibility conditions [10]. 

Current submersible positioning and rescue research for the Ionian Sea and MCMS project 

faces limitations. Key challenges include neglecting factors like seafloor topography and 

submersible interactions, inadequate equipment evaluation methods, and unoptimized rescue 

models, leading to safety risks and slower response times in complex marine environments. 



 

 

3 Research Methods 

3.1 Position Prediction Model Construction 

To predict the position of the submersible, we utilize Kalman filtering and its extended form to 

integrate sensor information. Firstly, a dynamic physical model is established, taking into 

consideration the forces acting on the submersible and geographical environmental factors. The 

forces include buoyancy, gravity, current force, and resistance. Based on these factors, dynamic 

and observational equations are constructed. To address the nonlinear problems, improvement 

measures are introduced, and the model is extended to the extended Kalman filtering form. This 

allows for a more accurate prediction of the submersible's position in the complex marine 

environment. 

3.2 TOPSIS Model Application 

The entropy weight method is employed to determine the weights for a comprehensive 

evaluation of four aspects of deep-sea rescue equipment Figure 1 provides a visual 

representation of the comprehensive evaluation process of the TOPSIS model [5]. 

 

Fig. 1. TOPSIS Model 

These four aspects typically include functionality and performance, cost-effectiveness, 

safety, and durability. By calculating the weights for each aspect, a more objective and 

comprehensive evaluation of the equipment can be achieved. 

3.3 Search Model Construction and Optimization 

Traditional Search Model: Data related to the submersible is collected, including its last 

communication location, motion vector, current velocity, and direction of the ocean current. 

Based on this data, a vector synthesis model is constructed to determine the initial search 

direction.  

Novel Search Model: This model combines the position prediction model and the ant colony 

algorithm. Relevant parameters are defined to optimize the search path. The ant colony 

algorithm is introduced to consider the pheromone concentration, distance vector, and direction 

vector, etc. These parameters are adjusted according to the predicted position to improve the 

search efficiency. 



 

 

4 Data Collection and Processing 

4.1 Data Collection 

These data are sourced from the global ocean model dataset, such as GEBCO 2023. The dataset 

provides information on various geographical environmental factors, including seawater 

temperature, ocean current strength, and seafloor topography. This data is crucial for 

understanding the environment in which the submersible operates, as shown in Figure 2, which 

presents a detailed view of the geographical environment data, such as the distribution of 

seawater temperature and ocean current strength. 

 

Fig. 2. Marine Environment Map Group 

Data related to the submersible is collected through internal and external sensors. Internal 

sensors may include inertial measurement units (IMU), while external sensors can be sonar 

devices and GPS buoys. These sensors provide information on the submersible's position, 

velocity, and attitude. This data collection process is essential for accurately predicting the 

submersible's position and movement. 

Information about equipment is obtained through literature search. This includes details 

about the functionality, performance, cost, and other characteristics of different types of 

equipment used in deep-sea rescue operations. 

4.2 Data Processing 

Sensor data for the position prediction model undergoes preprocessing (cleaning, normalization, 

transformation) for compatibility with Kalman filtering algorithms. For the TOPSIS model, 

equipment data is normalized, and indicators like entropy weight are calculated for evaluation. 

Predicted values are integrated with the ant colony algorithm to optimize search paths. 



 

 

5 Experimental Results  

5.1 Position Prediction Model 

A position prediction model integrating Kalman and extended Kalman filtering techniques 

accounts for submersible dynamics, including buoyancy, gravity, currents, resistance, seawater 

density, and seafloor topography. Refined dynamic and observational equations ensure accurate 

predictions on 3D topographic maps. Figure 3 shows alignment with actual seabed features, 

while Figure 4 highlights analyzed uncertainties like sensor errors, process noise, and 

unmodeled dynamics, enhancing prediction reliability. 

  

Fig. 3. Location Prediction Model Fig. 4. Uncertainty Analyses 

In various simulated scenarios, the model has demonstrated its adaptability and effectiveness. 

For example, in scenarios with different current velocities and directions, the model was able to 

adjust its predictions accordingly. The data shows that as the current velocity increased, the 

predicted position of the submersible deviated more from its initial position, but the model was 

still able to capture the general trend of the movement. In scenarios with varying seafloor 

topographies, such as slopes and ridges, the model accounted for these changes and provided 

more accurate predictions near the complex terrain areas. 

5.2 TOPSIS Model 

The TOPSIS model was applied to evaluate 8 types of deep-sea rescue equipment. By using the 

entropy weight method, weights were assigned to four key aspects: functionality and 

performance, cost-effectiveness, safety, and durability. This process involved a series of 

calculations, starting from data normalization of each equipment's performance indicators to the 

determination of information entropy and entropy weights.  

The comprehensive evaluation results revealed significant differences among the equipment. 

The weights for functionality and performance, cost-effectiveness, safety, and durability were 

calculated as 0.5021,0.1984,0.1376,0.1619. The final comprehensive scores for each equipment 

were as follows: Automated Underwater Robots (AUVs) scored 0.2791, Remotely Operated 

Vehicles (ROVs) scored 0.1710, and so on. These scores indicate that AUVs and ROVs 

generally outperformed the other equipment in terms of the overall evaluation, considering all 

aspects. 



 

 

5.3 Search Model 

The traditional search model, based on submersible data like last communication location, 

motion vector, and ocean currents, used vector synthesis and a weighted network to determine 

search paths. While effective in simpler environments, it struggled with strong currents or 

complex seabed topographies, leading to longer search times and less optimal paths. 

The novel search model, integrating the position prediction model and the ant colony 

algorithm, demonstrated superior performance. By using predicted position data and optimizing 

search paths with the ant colony algorithm, it adapted effectively to environmental changes. As 

shown in Figure 5, the novel model achieved significantly shorter search paths and reduced 

search times compared to the traditional model. This highlights its enhanced efficiency and 

accuracy, making it more suitable for complex marine environments. 

 

Fig. 5. Evaluation Results 

6 Conclusions 

In conclusion, a comprehensive submersible positioning and search system has been 

successfully constructed, incorporating multiple models and their extensions. While achieving 

certain results in various aspects, the research also has limitations. The models need to improve 

accuracy and stability in complex environments, optimize equipment selection indicators and 

weights, and further study the feasibility and complexity of the search model in extreme 

environments. Future prospects include collecting more data, introducing advanced 

technologies for optimization, researching better equipment evaluation methods, and exploring 

efficient algorithms to expand the application range of the models. 
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