
 

Selection in Heavy Ion Collisions Through Event Shape 

Engineering 

Zhiyan Yu 

School of Art and Sciences, University of Rochester, Rochester, 14627, USA 

zyu25@u.rochester.edu 

Abstract. This study uses Glauber Monte Carlo simulations to investigate the connection 
between initial collision geometry and potential jet quenching effects. A dataset of 75,000 
simulated collision events was examined, with a focus on the associations between 
geometrical parameters such as participant numbers, eccentricity, triangularity, and their 
respective orientation angles, and the impact parameters. By calculating path length 
differences for each event, optimal ranges of such variables were identified, which could 
possibly enhance observable jet quenching. Our findings show that mid-central collisions 
with 100 to 200 participants, higher eccentricity, and impact parameters of 8 fm provide 

the optimal conditions for studying path length-dependent phenomena. 
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1 Introduction 

The Glauber Monte Carlo model is a computational technique to simulate the initial geometry 

of heavy ion collisions. The colliding nuclei are modeled through random distribution of 

nucleons with probabilities determined by measured nuclear density profiles [1]. These are 

then ”collided” by overlapping them at a uniformly distributed random impact parameter 

whereby nucleon-nucleon collisions were determined based on the geometrical cross-section 

[2]. 

This simulation calculates several important quantities, including the number of 

participating nucleons Npart [3], the impact parameter b, the eccentricity and triangularity of the 

overlap region ϵ2 and ϵ3 [4], and the angle between the shortest axis of the elliptical shape and 

orientation of the triangular shape in the initial collision geometry ψ2 and ψ3. By running 

multiple simulated collisions, the model generates distributions of these quantities that can be 
compared to experimental results. 

The Glauber Monte Carlo model is important for interpreting data from heavy ion collisions 

and understanding how initial geometry influences the evolution of the quark-gluon plasma 

formed in such events. This model links experimentally observed particle multiplicities to the 

initial collision geometry, making it a vital tool for heavy ion collision data analysis. 

Event-by-event fluctuations in these collisions are essential for understanding the complex 

dynamics of such systems [5]. These fluctuations involve variations in initial geometry, energy 

density, and other properties from one collision to another. They originate from the quantum 

mechanical nature of colliding nuclei and the probabilistic nature of nucleon-nucleon 

interactions [6]. 
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The significance of these fluctuations is multifaceted. They heavily influence the initial state 
geometry, leading to differences in the shape and size of the interaction region [7]. This affects 

the initial spatial eccentricity, which is a key factor driving collective flow in the quark-gluon 

plasma as it expands [8]. Flow patterns observed, especially higher-order harmonics, are 

particularly sensitive to these initial state fluctuations. As discussed in Ref [9], the ratio of 

triangular flow to elliptic flow increases for more central collisions and higher transverse 

momentum particles, a trend that aligns with observations in experimental data. By studying 

these flow patterns, we can gain insights into the initial state geometry and the subsequent 

hydrodynamic evolution of the system. 

Knowing the importance of event-by-event fluctuations, one can study the correlations 

among variables through event shape engineering [10]. This technique allows us to exploit the 

natural event-by-event fluctuations in heavy ion collisions by selecting events with specific 
initial geometry configurations. It provides a unique opportunity to isolate and study the effects 

of initial state geometry on the evolution and properties of the quark-gluon plasma. 

2 Data and Analysis 

To study event-by-event fluctuations, a large enough data set is required for representative 

behaviors. Therefore, a data set consisting of 75000 independent events generated through 

Glauber MC is applied in the experiment. To keep the data points in a reasonable region, impact 

parameter b is set to be within 0-12 and the number of participants is set to be above 50. 
It would be reasonable to ask how the main variables relate. If some innate correlations were 

found, reducing them into expressions of other variables to simplify the model is beneficial. 

This can be primarily done through 2D histograms. 

 
(a) Correlation between ϵ2 and (b) Correlation between ϵ3 and 

Npart                                                    Npart 

 
(c) Correlation between ϵ2 and ϵ3 (d) Correlation between ψ2 and ψ3 

Fig. 1. 2D histograms of dependence among variables 



 

Shown in Figure 1, the correlations among important variables are intuitive to observe. 
There’s a weak dependence both between ϵ2 and Npart and between ϵ3 and Npart. This is mainly 

due to the nature of these variables, where lower values of ϵ2 and ϵ3 usually show that head-on 

collisions are more likely to happen. This situation will naturally result in a larger Npart, which 

aligns with the findings in (a) and (b). In (c), the correlation between ϵ2 and ϵ3 is relatively weak 

since they are highly concentrated in lower values and diffuse in all directions. In (d), 

distribution is primarily uniform, and no correlations between ψ2 and ψ3 were found. This 

method can be applied to any other variable combination, though these correlations are the most 

likely to occur. 

 
(a) Diagram of a single event. (b) Geometry of a single nucleon. 

Fig. 2. (a) a random collision event that shows the distribution inside the participating nuclei. The blue and 

red units are the participating nucleons from nuclei 1 and 2, whereas cyan and pink units are the spectators 

from nuclei 1 and 2 respectively. (b) shows the position of each nucleon relative to the center of the 

collision. 

To actively select conditions that maximize the jet quenching effect, the path lengths and 

path length differences for each collision event must be calculated. This is achieved by counting 

the number of participants in contact with the major and minor axes of the ellipse formed by the 

participants. This can be done by drawing the two axes and counting the number of nucleons 

they travel through, or by geometry and trigonometry. 

As shown in Figure 2, geometry is applied in this case. Since we can calculate the position 

of the center of collision, the relative position of each nucleon to the center can be calculated 

using diagram (b). 𝜙 = arctan(
𝑦𝑑𝑖𝑓𝑓

𝑥𝑑𝑖𝑓𝑓
), so 𝜃 = 𝜙 − 𝜓2. 

Therefore, we have: 

 𝑎 = √𝑦𝑑𝑖𝑓𝑓
2 + 𝑥𝑑𝑖𝑓𝑓

2 ⋅ sin(𝜃) (1) 

 𝑏 = √𝑦𝑑𝑖𝑓𝑓
2 + 𝑥𝑑𝑖𝑓𝑓

2 ⋅ cos(𝜃) (2) 

Hence, the nucleon is said to intersect with the axes if a or b is equal to or less than the radius 

of the nucleon. If a is less than the radius, Nparallel increases by 1, and vice versa. Finally, ∆N = 

Nperpenducular−Nparallel. Radius is calculated using σNN = 42mb and 𝐷 = √
𝜎𝑁𝑁

𝜋
 [1]. 

After applying this to every event, the relationships between ∆N and other variables can be 

studied. Instead of plotting 2D histograms like how it was done previously, each variable is 



 

divided into 10 bins, and the average of ∆N is taken in each bin. Therefore, line charts of < ∆N > 
against each variable can be plotted. 

According to Figure 3, each variable has a different impact on ∆N. General predictions can 

be made based on the line charts. The average peaks when 

 
(a) < ∆N > against Npart (b) < ∆N > against ϵ2 

 
(c) < ∆N > against ϵ3 (d) < ∆N > against ψ2 

 
(e) < ∆N > against ψ3 (f) < ∆N > against b 

Fig. 3. Line charts of dependence between < ∆N > and other variables. The uncertainties are calculated 

by: , where rms is the root mean square value of each bin and n is the number of events enclosed in 

the corresponding bin. 

Npart is between 100 and 200, with relatively small error bars, indicating that selections with 

Npart in this range are preferred. Higher values of ϵ2 results in high averages. Though the error 

rises, an increasing trend can still be seen. The same method can be applied to four other plots. 
One can discover that the average peaks when ϵ3 is around 0.2, ψ2 is < 0.5 or > 2.7, and b is 

around 8. The only exception is ψ3, where most error bars overlap with others and the differences 

between two points are very small. Therefore, one can conclude that the dependence of < ∆N > 

on ψ3 is weak. 



 

With the predictions, the dependence of the average on all variables can be studied. The 
same approach can be taken except for bin sizes. Each parameter is divided into four bins to 

avoid having only one or two events in each bin. Results can be sorted by < ∆N >, and the 40 

events with the highest average values are shown in Table 1. 

Table 1. 40 events with highest < ∆N >. 

< ∆N > ∆ < ∆N > Npart ϵ2 ϵ3 ψ2 ψ3 b 

31.000000 31.000000 3.0 3.0 1.0 1.0 3.0 2.0 

28.000000 28.000000 2.0 3.0 2.0 3.0 4.0 3.0 

25.000000 25.000000 4.0 1.0 2.0 3.0 4.0 1.0 

23.000000 23.000000 2.0 3.0 1.0 2.0 1.0 4.0 

23.000000 23.000000 2.0 2.0 3.0 3.0 4.0 3.0 

23.000000 23.000000 3.0 1.0 3.0 3.0 2.0 3.0 

22.000000 22.000000 1.0 3.0 1.0 4.0 1.0 3.0 

21.000000 21.000000 3.0 2.0 1.0 3.0 4.0 3.0 

21.000000 21.000000 4.0 2.0 1.0 1.0 3.0 1.0 

21.000000 21.000000 3.0 2.0 1.0 3.0 3.0 3.0 

20.000000 20.000000 2.0 3.0 3.0 4.0 2.0 3.0 

20.000000 20.000000 1.0 3.0 2.0 4.0 1.0 3.0 

19.000000 19.000000 1.0 4.0 1.0 3.0 3.0 4.0 

18.500000 13.086252 1.0 4.0 2.0 3.0 1.0 4.0 

18.500000 13.124405 1.0 3.0 1.0 4.0 3.0 3.0 

18.000000 18.000000 4.0 2.0 2.0 3.0 4.0 2.0 

18.000000 18.000000 1.0 2.0 1.0 4.0 3.0 3.0 

18.000000 18.000000 4.0 1.0 2.0 4.0 3.0 1.0 

18.000000 18.000000 1.0 3.0 2.0 1.0 1.0 3.0 

17.500000 3.780891 2.0 3.0 2.0 1.0 1.0 3.0 

17.000000 17.000000 3.0 2.0 1.0 2.0 1.0 3.0 

17.000000 12.041595 1.0 3.0 2.0 4.0 4.0 3.0 

17.000000 17.000000 1.0 4.0 2.0 2.0 2.0 4.0 

16.661538 2.208697 2.0 3.0 1.0 4.0 4.0 3.0 

16.500000 11.672618 1.0 3.0 1.0 1.0 3.0 3.0 

16.173913 3.719361 2.0 3.0 2.0 4.0 2.0 3.0 

16.000000 16.000000 3.0 2.0 1.0 3.0 4.0 2.0 

15.789474 3.929433 2.0 3.0 2.0 4.0 4.0 4.0 

15.571429 6.345495 4.0 2.0 1.0 4.0 3.0 2.0 

15.518519 2.245098 2.0 3.0 1.0 4.0 3.0 3.0 

15.315789 3.767848 2.0 3.0 2.0 4.0 1.0 3.0 

15.200000 8.094443 4.0 2.0 1.0 1.0 1.0 2.0 



 

15.000000 15.000000 1.0 4.0 2.0 3.0 2.0 4.0 

15.000000 15.000000 1.0 4.0 1.0 2.0 1.0 4.0 

15.000000 6.155395 1.0 3.0 3.0 2.0 2.0 4.0 

14.947368 3.676684 2.0 3.0 2.0 1.0 4.0 3.0 

14.777778 2.226693 2.0 3.0 1.0 4.0 2.0 3.0 

14.731707 2.411059 2.0 3.0 1.0 4.0 3.0 4.0 

14.621622 2.600079 2.0 3.0 1.0 1.0 4.0 3.0 

14.612245 2.220648 2.0 3.0 1.0 1.0 2.0 3.0 

 

The uncertainties are calculated by: 
𝑟𝑚𝑠

√𝑛
, where rms is the root mean square value of each 

bin and n is the number of events enclosed in the corresponding bin. 

The uncertainties of the first several bins are high since only one event was enclosed. Ruling 

out these statistical fluctuations, it’s pretty clear that Npart falls in bin 2, meaning that it should 

be 25% to 50% of the range, which is consistent with our previous prediction of 100 to 200. 

Meanwhile, ϵ2 are in bin 3, ϵ3 are in bin 1, ψ2 are in bin 4, ψ3 do not have a particular pattern, and 

b are in bin 3, which agree with our previous predictions. 

3 Interpretation 

The analysis of event-by-event fluctuations in heavy ion collisions using the Glauber Monte 

Carlo model reveals several important insights into the initial geometry of these collisions and 

their impact on observable quantities. 

The weak dependence observed between eccentricity ϵ2 and participant number Npart, as well 

as between triangularity ψ3 and Npart, aligns with our understanding of collision geometry. Lower 

eccentricity and triangularity values typically correspond to more central collisions, which 

naturally involve a larger number of participants. This relationship underscores the connection 

between the impact parameter and the shape of the interaction region. 

The calculation of path length differences < ∆N > provides a crucial link between initial 

geometry and potential jet-quenching effects. The observed relationships between < ∆N > and 

various geometric parameters offer valuable insights: 

1. The peak in < ∆N > for Npart between 100 and 200 suggests that midcentral collisions 

may provide the optimal conditions for studying path length effects on jet quenching. 

2. The positive correlation between < ∆N > and ϵ2 indicates that more elliptical collision 

geometries lead to larger path length differences, potentially enhancing observable jet 
quenching effects. 

3. The weak dependence of < ∆N > on ψ3 implies that the orientation of triangularity has 

minimal impact on path length differences, focusing our attention on ellipticity as the primary 

driver of these effects. 

Table 1. (continued). 



 

4 Conclusions 

This study demonstrates the power of event shape engineering techniques in heavy ion collisions 

using Glauber Monte Carlo simulations. By analyzing the correlations between various 

geometric parameters and their impact on path length differences, we have gained valuable 

insights into the initial state geometry of these collisions and their potential effects on observable 

quantities. 

Future work may incorporate these event shape engineering techniques into full 

hydrodynamic simulations to study the evolution of the quark-gluon plasma under specific 
initial geometry conditions [11]. More sophisticated event selection algorithms that can 

efficiently identify and categorize events based on multiple geometric criteria can be developed. 
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