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Abstract. This paper investigates the stability of the Leslie-Gower predator-prey model 
under the influence of the SEIR infectious disease model. By incorporating the SEIR 
infectious disease model, the predator population is divided into four states: susceptible, 

exposed, infected, and removed. A predator-prey dynamic model is then established. 
Through dimensionless processing and discretization methods, the equilibrium points of 
the model and their stability are analyzed. The eigenvalues of the Jacobian matrix are 
computed to determine the stability of the equilibrium points, and numerical simulations 
are used to demonstrate the dynamic behavior of the system under different parameter 
conditions. The results indicate that the predation rate and disease transmission rate have 
significant effects on the stability of the system. Reducing these two parameters 
appropriately can stabilize the system. 
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1 Introduction 

The predator-prey model is one of the classical models in ecology used to describe population 

interactions. In traditional Lotka-Volterra and Leslie-Gower models, the interaction between 

predators and prey is simplified to the growth of prey and the predation behavior of predators 

[1-3]. However, in real ecological systems, predator populations may be affected by infectious 

diseases, which significantly alter the dynamic characteristics of the population. To more 

accurately describe this complex ecological phenomenon, researchers have proposed various 

extended models to better reflect the interactions between predator and prey populations and the 

spread of infectious diseases in actual ecosystems [4,5]. 
In recent years, the SEIR model, as a classic infectious disease model, has been widely used 

to describe the spread of diseases in populations [6,7]. The SEIR model, by introducing the 

exposed (E) state, can more accurately describe the transmission process of infectious diseases 

with an incubation period [8]. This paper builds upon the traditional Leslie-Gower predator-

prey model by incorporating the SEIR infectious disease model, dividing the predator 

population affected by the disease into four states: susceptible (𝑦𝑆), exposed (𝑦𝐸), infected (𝑦𝐼), 
and removed (𝑦𝑅), and develops a new predator-prey model. 
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2 Model Construction 

In the construction of the model, the following assumptions are made: the predation relationship 

between predators and prey follows the classical Leslie-Gower model [9,10]. Infectious diseases 

are transmitted within the predator population through contact, with the infection rate related to 

the frequency of contact between predator individuals. After being infected, the predation ability 

of the predator is significantly weakened. The specific model equations are as follows: 

2.1 Dynamic Equation of the Prey Population 

 
𝑑𝑥

𝑑𝑡
= 𝑥 (

𝑟
1

1+𝑘𝑦
− 𝛽𝑥 −

𝑐
1
(𝑦𝑆+𝑦𝐸+𝑦𝐼)

𝑥+𝑘
1

), (1) 

where 𝑥 is the prey population size, and 𝑦 = 𝑦𝑆 + 𝑦𝐸 + 𝑦𝐼 + 𝑦𝑅 represents the total predator 

population. 𝑟1 is the intrinsic growth rate of the prey, 𝑘 is the impact coefficient of predators 

on the prey, 𝛽 is the competition coefficient of the prey population, 𝑐1 is the predation rate of 

predators on the prey, and 𝑘1 is the protective coefficient of predators on the prey population. 

2.2 SEIR Dynamic Equation of the Predator Population 

Dynamic Equation of Susceptible Predators: 

 
𝑑𝑦𝑆

𝑑𝑡
= 𝑦𝑆 (𝑟2 −

𝑐
2
𝑦𝑆

𝑥+𝑘
1

) − 𝛼𝑦𝑆𝑦𝐼 − 𝑑1𝑦𝑆, (2) 

Dynamic Equation of Exposed Predators: 

 
𝑑𝑦𝐸

𝑑𝑡
= 𝛼𝑦𝑆𝑦𝐼 − 𝜎𝑦𝐸 − 𝑑2𝑦𝐸, (3) 

Dynamic Equation of Infected Predators: 

 
𝑑𝑦𝐼

𝑑𝑡
= 𝜎𝑦𝐸 − 𝑒𝑦𝐼 − 𝑑3𝑦𝐼 , (4) 

Dynamic Equation of Removed Predators: 

 
𝑑𝑦𝑅

𝑑𝑡
= 𝑒𝑦𝐼 − 𝑑4𝑦𝑅, (5) 

where 𝑦𝑆, 𝑦𝐸, 𝑦𝐼, and 𝑦𝑅 represent the number of susceptible, exposed, infected, and removed 

predators, respectively. 𝑟2 is the growth rate of susceptible predators, 𝑐2 is the predation rate 

of predators on prey, 𝛼  is the infection rate for susceptible predators to become exposed 

predators, 𝜎  is the rate at which exposed predators become infected predators, 𝑒  is the 

recovery or removal rate of infected predators, and 𝑑1 , 𝑑2, 𝑑3, 𝑑4 are the natural death rates of 
susceptible, exposed, infected, and removed predators, respectively. The system of differential 

equations is obtained by solving equations (1), (2), (3), (4), and (5): 



 

 

 

{
 
 
 
 

 
 
 
 𝑑𝑥

𝑑𝑡
= 𝑥 (

𝑟
1

1+𝑘𝑦
− 𝛽𝑥 −

𝑐
1
(𝑦𝑆+𝑦𝐸+𝑦𝐼)

𝑥+𝑘
1

) ,

𝑑𝑦𝑆

𝑑𝑡
= 𝑦𝑆 (𝑟2 −

𝑐
2
𝑦𝑆

𝑥+𝑘
1

)− 𝛼𝑦𝑆𝑦𝐼 − 𝑑1𝑦𝑆 ,

𝑑𝑦𝐸

𝑑𝑡
= 𝛼𝑦𝑆𝑦𝐼 − 𝜎𝑦𝐸 − 𝑑2𝑦𝐸,

𝑑𝑦𝐼

𝑑𝑡
= 𝜎𝑦𝐸 − 𝑒𝑦𝐼 − 𝑑3𝑦𝐼 ,

𝑑𝑦𝑅

𝑑𝑡
= 𝑒𝑦𝐼 − 𝑑4𝑦𝑅,

 (6) 

Let the initial values of each subpopulation at the start of the model, i.e., at 𝑡 = 0, be given 

as S(0) , E(0) , I(0) , R(0)  for susceptible, exposed, infected, and removed predators, 

respectively, and X(0)  for the prey population size. These values will serve as the initial 

conditions for the system of differential equations. 

3 Model Processing 

3.1 Variable Substitution and Dimensionless Transformation   

In order to simplify the analysis of the model, the original predator-prey model undergoes a 

dimensionless transformation. The following variable substitutions are considered: 

𝑇 = 𝑟1𝑡, 𝑢 =
𝛽

𝑟1
𝑥, 𝑣𝑆 =

𝑐1𝛽

𝑟1
2 𝑦𝑆, 𝑣𝐸 =

𝑐1𝛽

𝑟1
2 𝑦𝐸 , 𝑣𝐼 =

𝑐1𝛽

𝑟1
2 𝑦𝐼 , 𝑣𝑅 =

𝑐1𝛽

𝑟1
2 𝑦𝑅 . 

At the same time, new dimensionless parameters are introduced:   

𝑠 =
𝛽𝑘1
𝑟1
, 𝛾 =

𝑟2
𝑟1
, 𝑓 =

𝑐2
𝑐1
, 𝑑 =

𝑘𝑟1
2

𝑐1𝛽
, 𝛼′ =

𝛼𝑐1
𝑟1
, 𝜎′ =

𝜎

𝑟1
, 𝑒′ =

𝑒

𝑟1
, 𝑝𝑖 =

𝑑𝑖
𝑟1
, 

Based on the above variable substitutions, the original predator-prey model can be rewritten 

in dimensionless form as:   

 

{
 
 
 
 

 
 
 
 
𝑑𝑢

𝑑𝑇
= 𝑢 (

1

1+𝑑(𝑣𝑆+𝑣𝐸+𝑣𝐼+𝑣𝑅)
− 𝑢 −

𝑣𝑆+𝑣𝐸+𝑣𝐼

𝑢+𝑠
) ,

𝑑𝑣𝑆

𝑑𝑇
= 𝑣𝑆 (𝛾 −

𝑓𝑣𝑆

𝑢+𝑠
) − 𝛼′𝑣𝑆𝑣𝐼 − 𝑝1𝑣𝑆 ,

𝑑𝑣𝐸

𝑑𝑇
= 𝛼′𝑣𝑆𝑣𝐼 − 𝜎

′𝑣𝐸 − 𝑝2𝑣𝐸 ,

𝑑𝑣𝐼

𝑑𝑇
= 𝜎′𝑣𝐸 − 𝑒

′𝑣𝐼 − 𝑝3𝑣𝐼 ,

𝑑𝑣𝑅

𝑑𝑇
= 𝑒′𝑣𝐼 − 𝑝4𝑣𝑅 .

 (7) 

3.2 Discretization of the Model   

To discretize the dimensionless model, the forward Euler method is applied, converting the 

continuous-time model into a discrete-time model. Let the time step be 𝛥𝑇, with the time point 

𝑇𝑛 = 𝑛𝛥𝑇. The discretized model equations are as follows:   



 

 

 

{
 
 
 

 
 
 𝑢𝑛+1 = 𝑢𝑛 + 𝛥𝑇 ⋅ 𝑢𝑛 (

1

1+𝑑(𝑣𝑆,𝑛+𝑣𝐸,𝑛+𝑣𝐼,𝑛+𝑣𝑅,𝑛)
− 𝑢𝑛 −

𝑣𝑆,𝑛+𝑣𝐸,𝑛+𝑣𝐼,𝑛

𝑢𝑛+𝑠
) ,

𝑣𝑆,𝑛+1 = 𝑣𝑆,𝑛 + 𝛥𝑇 ⋅ (𝑣𝑆,𝑛 (𝛾 −
𝑓𝑣𝑆,𝑛

𝑢𝑛+𝑠
) − 𝛼′𝑣𝑆,𝑛𝑣𝐼,𝑛 − 𝑝1𝑣𝑆,𝑛) ,

𝑣𝐸,𝑛+1 = 𝑣𝐸,𝑛 + 𝛥𝑇 ⋅ (𝛼
′𝑣𝑆,𝑛𝑣𝐼,𝑛 − 𝜎

′𝑣𝐸,𝑛 − 𝑝2𝑣𝐸,𝑛),

𝑣𝐼,𝑛+1 = 𝑣𝐼,𝑛 + 𝛥𝑇 ⋅ (𝜎
′𝑣𝐸,𝑛 − 𝑒

′𝑣𝐼,𝑛 − 𝑝3𝑣𝐼,𝑛),

𝑣𝑅,𝑛+1 = 𝑣𝑅,𝑛 + 𝛥𝑇 ⋅ (𝑒
′𝑣𝐼,𝑛 − 𝑝4𝑣𝑅,𝑛).

 (8) 

4 Existence of Equilibrium Points   

To determine all equilibrium points of the model, the following system of equations needs to be 

solved:   

 

{
 
 
 
 

 
 
 
 𝑢 = 𝑢exp(𝛥𝑇 ⋅ (

1

1+𝑑(𝑣𝑆+𝑣𝐸+𝑣𝐼+𝑣𝑅)
− 𝑢 −

𝑣𝑆+𝑣𝐸+𝑣𝐼

𝑢+𝑠
)) ,

𝑣𝑆 = 𝑣𝑆exp(𝛥𝑇 ⋅ (𝛾 −
𝑓𝑣𝑆

𝑢+𝑠
− 𝛼′𝑣𝐼 − 𝑝1)) ,

𝑣𝐸 = 𝑣𝐸exp(𝛥𝑇 ⋅ (𝛼′𝑣𝑆𝑣𝐼 − 𝜎
′ − 𝑝2)) ,

𝑣𝐼 = 𝑣𝐼exp(𝛥𝑇 ⋅ (𝜎′𝑣𝐸 − 𝑒
′ − 𝑝3)) ,

𝑣𝑅 = 𝑣𝑅exp(𝛥𝑇 ⋅ (𝑒′𝑣𝐼 − 𝑝4)) .

 (9) 

The constants of this model yield the equilibrium points: 𝐸0(0,0,0,0,0), 𝐸1(𝑢1,0,0,0,0), and 

𝐸2(𝑢2, 𝑣𝑆,1 , 𝑣𝐸,1, 𝑣𝐼,1, 𝑣𝑅,1), where:   

𝑣𝑆,1 =
(𝛾 − 𝑝1)(𝑢2 + 𝑠)

𝑓
, 𝑣𝐸,1 =

𝛼′𝑣𝑆,1𝑣𝐼,1
𝜎′+ 𝑝2

, 𝑣𝐼,1 =
𝜎′𝑣𝐸,1
𝑒′+ 𝑝3

, 𝑣𝑅,1 =
𝑒′𝑣𝐼,1
𝑝4

, 

And 𝑢2 is the positive real root of the following quadratic equation:   

𝜙2𝑢
2 + 𝜙1𝑢 + 𝜙0 = 0, 

where:   

𝜙2 = 𝑑𝑓(𝛾 − 𝑝),

𝜙1 = 𝑓(𝛾 − 𝑝) + 𝑑(𝛾 − 𝑝)(𝑣𝑆,1)
2
+ 𝑓2,

𝜙0 = 𝑑𝑠(𝛾 − 𝑝)(𝑣𝑆,1)
2
+ 𝑓(𝛾 − 𝑝)𝑠 − 𝑓2

 

For the zero equilibrium point 𝐸0(0,0,0,0,0) and the axial equilibrium point 𝐸1(𝑢1,0,0,0,0), 
their existence is self-evident. The following theorem demonstrates the existence of the 

equilibrium point 𝐸2(𝑢2, 𝑣𝑆,1, 𝑣𝐸,1, 𝑣𝐼,1, 𝑣𝑅,1). 

Theorem   

If 𝑣𝑆,1 > 0, and   

𝑑𝑠(𝛾 − 𝑝)(𝑣𝑆,1)
2
+ 𝑓(𝛾 − 𝑝)𝑠 < 𝑓2, 

then the model has a unique positive equilibrium point 𝐸2(𝑢2, 𝑣𝑆,1, 𝑣𝐸,1, 𝑣𝐼,1, 𝑣𝑅,1), satisfying:   



 

 

𝜙2 > 0 𝜙2 > 0 𝜙2 > 0, 𝜙1 > 0, 𝜙0 < 0 𝜙1 > 0 𝜙1 > 0 𝜙0 < 0 𝜙0 < 0 

Proof   

The roots of the quadratic equation satisfy the root-coefficient relationship:   

𝑚+ 𝑛 = −
𝜙1

𝜙2

, 𝑚𝑛 =
𝜙0

𝜙2

. 

Since 𝑟2 > 𝐸, it follows that 𝛾 > 𝑝, thus:   

𝜙1 = 𝑑𝑠𝑓(𝛾 − 𝑝) + 𝑑(𝛾 − 𝑝)(𝑣𝑆,1)
2
+ 𝑓2 > 0, 𝜙2 = 𝑑𝑓(𝛾 − 𝑝) > 0. 

If 𝜙0 > 0, then 𝑚+ 𝑛 < 0, and 𝑚𝑛 < 0. The equation will have two negative real roots 

only when 𝛥 = 𝜙1
2 − 4𝜙2𝜙0 > 0; if 𝛥 < 0, the equation has no real roots. In this case, model 

(9) has no positive equilibrium points. 

If 𝜙0 < 0, then 𝑚 > 0, and 𝑛 > 0. The equation has one positive real root and one negative 

real root only when 𝛥 = 𝜙1
2 − 4𝜙2𝜙0 > 0 . In this case, model (9) has a unique positive 

equilibrium point 𝐸2(𝑢2, 𝑣𝑆,1, 𝑣𝐸,1, 𝑣𝐼,1, 𝑣𝑅,1). 

5 Stability of the Equilibrium Points 

5.1 Calculation of the Jacobian Matrix 

To analyze the stability of the equilibrium points, the Jacobian matrix at the corresponding 

points is calculated, and its eigenvalues are solved to analyze stability [11-13]. 

This section focuses on the stability analysis of the equilibrium point 

𝐸2(𝑢2, 𝑣𝑆,1 , 𝑣𝐸,1, 𝑣𝐼,1, 𝑣𝑅,1), which represents the coexistence of all predator and prey populations. 

The corresponding Jacobian matrix 𝐽 is the linear approximation of the model near this point. 

The elements of the matrix are the partial derivatives of each equation in the model with respect 

to all variables: 

𝐽 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
∂𝑢𝑛
∂𝑢𝑛+1

∂𝑢𝑛
∂𝑣𝑆,𝑛+1

∂𝑢𝑛
∂𝑣𝐸,𝑛+1

∂𝑢𝑛
∂𝑣𝐼,𝑛+1

∂𝑢𝑛
∂𝑣𝑅,𝑛+1

∂𝑣𝑆,𝑛
∂𝑢𝑛+1

∂𝑣𝑆,𝑛
∂𝑣𝑆,𝑛+1

∂𝑣𝑆,𝑛
∂𝑣𝐸,𝑛+1

∂𝑣𝑆,𝑛
∂𝑣𝐼,𝑛+1

∂𝑣𝑆,𝑛
∂𝑣𝑅,𝑛+1

∂𝑣𝐸,𝑛
∂𝑢𝑛+1

∂𝑣𝐸,𝑛
∂𝑣𝑆,𝑛+1

∂𝑣𝐸,𝑛
∂𝑣𝐸,𝑛+1

∂𝑣𝐸,𝑛
∂𝑣𝐼,𝑛+1

∂𝑣𝐸,𝑛
∂𝑣𝑅,𝑛+1

∂𝑣𝐼,𝑛
∂𝑢𝑛+1

∂𝑣𝐼,𝑛
∂𝑣𝑆,𝑛+1

∂𝑣𝐼,𝑛
∂𝑣𝐸,𝑛+1

∂𝑣𝐼,𝑛
∂𝑣𝐼,𝑛+1

∂𝑣𝐼,𝑛
∂𝑣𝑅,𝑛+1

∂𝑣𝑅,𝑛
∂𝑢𝑛+1

∂𝑣𝑅,𝑛
∂𝑣𝑆,𝑛+1

∂𝑣𝑅,𝑛
∂𝑣𝐸,𝑛+1

∂𝑣𝑅,𝑛
∂𝑣𝐼,𝑛+1

∂𝑣𝑅,𝑛
∂𝑣𝑅,𝑛+1]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Let 𝑣𝐸 + 𝑣𝐼 + 𝑣𝑅 + 𝑣𝑆 be denoted as 𝑣𝐴;; let 𝑣𝐸 + 𝑣𝐼 + 𝑣𝑆 be denoted as 𝑣𝑃. The values 

of the elements in the first row of the matrix are as follows: 



 

 

𝑗11 =
−𝑢(−𝑣𝑃 + (𝑠 + 𝑢)

2) + (𝑠 + 𝑢)2

(𝑠 + 𝑢)2
exp(

𝑠 − 𝑢(𝑠 + 𝑢)(𝑑𝑣𝐴 + 1) + 𝑢 − (𝑑𝑣𝐴 + 1)𝑣𝑃
(𝑠 + 𝑢)(𝑑𝑣𝐴 + 1)

) 

𝑗12 = −𝑢 (
𝑑

(𝑑𝑣𝐴 + 1)2
+

1

𝑠 + 𝑢
) exp(−𝑢 +

1

𝑑𝑣𝐴 + 1
−

𝑣𝑃
𝑠 + 𝑢

)

𝑗13 = −𝑢 (
𝑑

(𝑑𝑣𝐴 + 1)2
+

1

𝑠 + 𝑢
) exp(−𝑢 +

1

𝑑𝑣𝐴 + 1
−

𝑣𝑃
𝑠 + 𝑢

)

𝑗14 = −𝑢 (
𝑑

(𝑑𝑣𝐴 + 1)2
+

1

𝑠 + 𝑢
) exp(−𝑢 +

1

𝑑𝑣𝐴 + 1
−

𝑣𝑃
𝑠 + 𝑢

)

 

𝑗15 = −𝑑𝑢exp(
𝑠 − 𝑢(𝑠 + 𝑢)(𝑑𝑣𝐴 + 1) + 𝑢 − (𝑑𝑣𝐴 + 1)𝑣𝑃

(𝑠 + 𝑢)(𝑑𝑣𝐴 + 1)
)

1

(𝑑𝑣𝐴 + 1)2
 

The remaining elements can be solved in a similar way and are not listed here. 

5.2 Eigenvalue Calculation and Stability Analysis 

The relevant parameters for the equations are assigned reasonable values. The eigenvalues of 

the above Jacobian matrix are solved using Python software. The five obtained eigenvalues are: 

𝜆1 = 1.0000, 𝜆2 = 0.0899, 𝜆3 = 1.0000, 𝜆4 = 0.9999, 𝜆5 = 0.0000 

𝜆1 = 𝜆3 = 1.0000 indicates that the system is neutrally stable along these directions, but not 

asymptotically stable, which may lead to periodic behavior or sustained oscillations. 

𝜆2 = 0.0899, which is less than 1, shows that this direction is asymptotically stable. 

𝜆4 = 0.9999 suggests that the system is close to neutral stability along this direction, and 

theoretically, periodic behavior or boundary stability may occur. 

𝜆5 = 0.0000 means there is no change along this direction, indicating that the system is at 

rest in this direction. 

The above analysis shows that the system has not fully reached asymptotic stability, but is 

instead in a state of boundary stability. Periodic fluctuations or sustained oscillations may occur 

along certain directions. 

6 Image Analysis 

6.1 Time Series Plot of the System 

By plotting the system’s time series, the changes in the predator or prey populations during the 

evolutionary process can be shown, allowing observation of whether periodic behaviors or other 

dynamic features exist. 



 

 

 

Fig. 1. Time Series Plot of the System 

Figure 1 shows the trajectory of the system state 𝑢 as it changes with the increasing number 

of iterations over time. The system state grows rapidly in the early stages and then tends to 

stabilize. This may be related to the rapid reproduction of predators and the swift spread of 

infectious diseases.  

Additionally, there is no apparent periodic oscillation or chaotic phenomenon in the plot, 

indicating that the system’s dynamic behavior is monotonic and tends toward a stable 

equilibrium point. This is consistent with the theoretical analysis results, indicating the system’s 

asymptotic stability. 
For different parameter settings, especially with different combinations of the predation rate 

𝑐1  and disease transmission rate 𝛼, numerical simulations show that the system’s dynamic 

characteristics change significantly. As the predation rate increases, the predator population 

grows more rapidly in the initial stages. However, in the long term, the predator population 

tends to stabilize, while the prey population gradually decreases [14,15]. This is because the 

high predation pressure on the prey leads to a reduction in the prey population. However, when 

the prey population decreases to a certain threshold, the growth of the predator population slows, 

and the system approaches stability. When the disease transmission rate is high, the dynamic 

behavior of the predator population becomes unstable. This is due to the accelerated infection 

of predators, which increases their mortality rate, and the prey population, in turn, shows an 

increasing trend, leading the system to become overall unstable [16,17]. 
These numerical simulation results align with the characteristic value calculations from the 

theoretical analysis, further verifying the system’s dynamic behavior under different parameter 

conditions. The parameters 𝑐1  and 𝛼  are critical control factors for the system’s stability, 

determining the long-term stability of the predator-prey-disease system. 

6.2 Bifurcation Diagram 

To better observe the system’s long-term behavior and potential bifurcation phenomena, this 

study plots a bifurcation diagram, changing a specific parameter and observing the system’s 
dynamics at different parameter values [18]. The following diagram shows the state changes of 

the system when the predation rate is altered. 



 

 

 

Fig. 2. Bifurcation Diagram of the System 

From Figure 2, it can be seen that the system state 𝑢 shows a monotonically increasing trend 

as the predation rate 𝑓 increases, with a smooth curve and no significant bifurcation. This 

suggests that, within this parameter range, the system is relatively stable, without any periodic 

oscillation or chaotic behavior.  

This may also indicate that the range of variation for the parameter 𝑓 is not large enough to 

cause the system to transition from a stable state to other dynamic states. The smooth trend of 

the system state 𝑢  with changes in the predation rate 𝑓  suggests that the impact of this 

parameter on the system’s overall state is gradual and does not immediately trigger unstable 

dynamic behavior. 

7 Conclusion Summary 

This study investigates the dynamic behavior and stability of a predator-prey system under the 

influence of the SEIR model. Through dimensional analysis and numerical simulations, the 
model’s equilibrium points were analyzed, and system stability under different parameter 

conditions was explored using the characteristic values of the Jacobian matrix. 

Numerical simulation results show that the predation rate 𝑐1 and disease transmission rate 

𝛼 are the key parameters influencing the system’s dynamic behavior. At higher predation rates, 

the predator population grows more rapidly, but simultaneously, the prey population decreases 

quickly, leading the system to become unstable. Higher disease transmission rates also 

exacerbate the infection of predators, increasing system instability. Reducing the predation rate 

and disease transmission rate can effectively slow the system’s fluctuations and make the system 

asymptotically stable. 

Moreover, through simulations with different parameter combinations, this study found that 

the predator population’s exposure-to-infection conversion rate 𝜎 and the predator’s recovery 

or removal rate 𝑒 also have significant effects on the system’s dynamic behavior. A higher 

conversion rate accelerates the infection process of predators, causing dramatic population 



 

 

fluctuations, while increasing the recovery rate of predators helps the system approach 
equilibrium. 
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