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Abstract. This paper discusses the design of an S&P 500-linked Snowball Auto-callable, which
aims to enrich the derivatives market. It is essential to ensure effective risk management in light
of the increased complexity of the market during the COVID-19 crisis. Considering that options
serve as a key financial instrument for hedging, we evaluate our product using two pricing meth-
ods - PDEs and Monte Carlo simulations. Additionally, we analyze internal and external risks,
offering both investors and issuers hedge strategies and recommendations.
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1 Introduction

In recent years, snowball autocallables have garnered significant attention within the finan-
cial industry, not only because they are a novel derivative combining features of options, but also
due to their mutually beneficial payoff structure for both brokers and investors. Essentially, snowball
autocallables are bizarre options with obstacle terms, allowing investors to collect option premiums.
The product’s performance is linked to underlying assets such as indices, individual stocks, or com-
modities, with the triggering of knock-in and knock-out events determined by pre-set barrier levels.

The introduction of snowball autocallables has proven valuable in revitalizing the volatile stock
markets, particularly in the wake of the pandemic, providing enhanced benefits for both investors and
brokers while increasing market liquidity. This is one of the primary motivations for this study on
snowball autocallables. Through a comprehensive literature review, it was found that snowball pric-
ing is generally approached via two methods: the derivation through Partial Differential Equations
(PDE) and simulation-based pricing using Monte Carlo methods.
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This paper will first explain the mathematical derivation of both methods and explore their fea-
sibility in programming implementation, ultimately obtaining the pricing results. By comparing the
convergence and differences in the final pricing outcomes, this research aims to verify the accuracy
of each method and evaluate the potential areas for improvement. After developing the snowball
autocallable product, this research will also conduct thorough risk management assessments. This
includes evaluating factors such as knock-in and knock-out levels, market trends, liquidity risk, and
the impact of credit risk on the product’s performance. And this paper roughly introduces the appli-
cation of Delta hedging strategy in snowball autocallable risk hedging. By conducting these tests,
this research aims to ensure that the application scenarios of the snowball autocallable are more
aligned with the dynamics of real-world financial markets. Through this approach, the product can
be better positioned to meet the practical demands and risks present in contemporary market en-
vironments. Additionally, through the literature review, this research has observed that snowball
autocallables are more prevalent in the Chinese market, often linked to large-cap indices. Thus, this
research will also explore whether these methods are equally applicable to major indices in the U.S.
market.

While many brokers have already developed sophisticated pricing systems for snowball auto-
callables, often fine-tuning parameters manually for greater pricing precision, this paper seeks to
provide a deeper understanding of snowball products for both investors and brokers alike.On the
basis of designing the structured financial product to meet the investors and issuers of the product,
this paper adopts quantitative and qualitative research methods to price and risk-analyze the product,
confirm the feasibility of the product, enrich the product varieties in the current financial market,
and provide more choices for investors and issuers.

2 Literature Review

There is no analytical solution for option pricing, so numerical methods such as binomial trees,
finite differences, and Monte Carlo simulations are a practical alternative.

Cox, Ross, and Rubinstein introduced the binomial tree method in 1979 for simplifying the
pricing process by converting continuous-time problems into discrete-time problems [1]. The algo-
rithm is useful for both European and American options, but when multiple variables are involved,
it becomes inefficient, resulting in a slow convergence. Finite difference methods reduce the com-
plexity of differential equations by turning them into discrete algebraic equations that enable faster
and more efficient pricing. Schwartz began using the finite difference method to approximate the
exact solution of partial differential equations in 1997 [2]. Since then, the application of the finite
difference method in finance has been expanded.

Monte Carlo method is a method of stochastic simulation, which is based on probability and
statistical theory. This method consists of simulating many different paths and averaging the final
value of the option. In 1997, Boyle introduced Monte Carlo simulations as a probabilistic method
for estimating the value of European options [3]. Even though it is versatile, large simulations may
require a significant amount of computational power.

In summary, the three key numerical methods in option pricing are binomial trees, finite differ-
ences, and Monte Carlo. The use of binary trees is simple, but they require a significant amount of



computational power. Finite differences are more efficient for complex options and Monte Carlo can
be used when handling stochastic scenarios, but they require a considerable amount of computational
power.

3 Introduction of the Snowball Auto-Callable and Our Product

3.1 Product Design and Key Elements

This paper discusses the factors that make up a standard Snowball structured auto-callable, in-
cluding the knock-in and knock-out levels, volatility, as well as risk-free rate. Detailed specifications
for the S&P 500 index-linked Annual Auto-Callable Notes due June 1, 2025, have been developed
based on the product’s profit structure. There is a detailed product overview shown on the left in
Figure 1. Additionally, a clear annual yield graph is generated on the right in Figure 1.

Fig. 1. Product overview(on the left) and Impact of Underlying Asset Price on Annual Yield(on the right)



3.2 payment at maturity

Fig. 2. Payment at maturity of snowball structured derivative

The calculation of the Snowball AutoCallable payment is based on five scenarios listed below in
the graph (Figure 2). This section will go through all the scenarios to provide a better understanding
of the Snowball interest payment.

1. Scenario 1 (Knock-out but no Knock-in): if the underlying asset knocks out and never knocks
in before, then the investors get the coupon payment (that is the coupon interest rate times the
principal investor originally paid.

2. Scenario 2 (Knock-out and Knock-in): if the underlying asset knocks in before knock-out,
then the investors get the coupon payment as well, which is the same as the Scenario 1

3. Scenario 3 (Knock-in but no Knock-out with Bounce back): if the underlying asset hits the
knock-in ground but the asset price at maturity is higher than at the beginning, the investors
get the original principle. In this case, investors gain no interest and no loss.

4. Scenario 4 (Knock-in but no Knock-out without Bounce-back): if the underlying asset knocks
in and does not knock out until the maturity date, then the investor gets the loss of principal.
For example, if the price of the underlying asset drops by 20%, the investor’s loss at maturity
of the Snowball product will be 20% of the principal.



5. Scenario 5 (No Knock-in and No Knock-out): if the underlying asset does not breach either
the knock-out or knock-in conditions, the investor will receive the full principal along with
the coupon interest. (Our product does not include dividend coupons, although most products
in the market do have such provisions.)

4 Data

4.1 Assumption

The efficient market hypothesis states that The history is fully reflected in the present price,
which does not hold any further information; Markets respond immediately to any new information
about an asset price [4].

The two assumptions above suggest asset prices change according to a Markov process, which
means that the price of an asset will be determined by its current price alone, not by previous prices.
This model assumes that underlying asset prices are determined by a stochastic process driven by
Brownian motion. A stochastic differential equation (SDE) can be used to model the price dynamics
of the underlying asset as follows:

dSt = µStdt +σStdZt

Here, St represents the price of the underlying asset at time t, µ is the expected rate of return, σ

is the volatility, and dZt is the increment of a standard Brownian motion, representing the random
fluctuations in the asset price.
This paper prices the annual snowball auto-callable due June 1, 2025, linked to the S&P 500 Index.
According to Black-Scholes, the path-dependent snowball auto-callable assumes the underlying as-
set follows an SDE [5]:

dSt = µStdt +σStdBt

Where St is the stock price at time t, r is the risk-free interest rate, σ is the volatility of the underlying
asset, and dBt = ε

√
dt,ε ∼ N(0,1) represents the standard normal distribution.

4.2 Volatility

Volatility describes the degree of volatility of a financial asset and is a measure of the uncer-
tainty of an asset’s returns. In general, the higher the volatility, the more volatile the financial assets
and the greater the uncertainty of asset returns. As an important factor in the Black-Scholes model
option pricing,we choose Garch volatility instead of directly using volatility in the previous year.
This indicates the aggregation and tailing of the volatility. We calculate and use volatility of 18%.

4.3 Risk-free Rate

A key characteristic of the Black–Scholes–Merton differential equation is that it is independent
of any variables influenced by the risk preferences of investors (Hull, 2012). The only variables
present in the equation are the current stock price, time, stock price volatility, and the risk-free rate



of interest. The pricing process assumes a risk-neutral framework, in which derivative prices are
unaffected by investors’ subjective risk preferences. In this setting, the return on all assets is equal
to the risk-free rate. As a result, under risk-neutral conditions, all cash flows can be discounted using
the risk-free rate.

For this analysis, the risk-free rate is derived from the average 10-year Treasury yield, measured
over the period from June 1, 2023, to June 1, 2024, resulting in a risk-free rate of 4.25%.

5 Methodology

5.1 Garch model

Due to the heteroscedasticity and volatility clustering effects of financial product yield se-
quences, Engle proposed the Autoregressive Conditional Heteroscedasticity (ARCH) model(ENGLE
R,1982). [6] The Garch model is an extension of the ARCH model to describe the variance structure
in time-series data more accurately by introducing higher-order terms of past variance. This paper
uses the Garch(1,1) model to forecast the volatility of S&P 500 in the duration of this product. The
formula is as below,

σ
2
n = γVL +αr2

n−1 +βσ
2
n−1

in which
γ +α +β = 1

We choose the closing price of S&P 500 in the last 10 years and first create a yield chart as
follows.

Fig. 3. Yield chart



Figure 3 shows that there is an obvious aggregation effect. By processing data and calculating
LB, it can be known that the sequence is not white noise and can be modeled.Finally, we calculate
the future volatility-18%.

5.2 PDE Method

5.2.1 Finite Difference Method

Under the Black-Scholes model, the stochastic differential equation (SDE) for the underlying
asset (e.g., stock price) is as follows:

dS(t)
S(t)

= rdt +σdB(t)

The Black-Scholes partial differential equation can be derived from Ito’s Lemma based on the as-
sumption that there is no arbitrage in the financial market, as shown below [7]:

∂ f
∂ t

+
1
2

σ
2S2 ∂ 2 f

∂S2 + rS
∂ f
∂S

− r f (S, t) = 0

The term f (S(t), t) can be interpreted as any portfolio of investments that is determined only by S
and t. Although the equation to solve remains the same, boundary conditions vary based on the
derivative product’s structure. These are the three boundary conditions mentioned here [8]:

f (S, t) as t → T

f (S, t) as S → 0

f (S, t) as S → ∞

Rather than using the numerical method to calculate pricing, the grid search method is needed to
calculate the price from back to front. The time and price steps must be selected before the grid can
be constructed.
The expiration time is set at T = 1 year, which corresponds to 252 trading days, and the time interval
is divided into N = 252 steps, with each step corresponding to ∆t = T

N = 1
252 .

The price is divided into M = 800 price steps. The maximum asset price Smax is Smax = 4∗K, where
K is the knock out level. The price step is ∆S = Smax

M = 26.39, which is approximately 0.5% of the
initial price. This ensures that the price grid is fine enough to identify the dynamics of the option.
The following (800×252) grid (figure 4) maintains a balance between precision and performance,
ensuring that the price of an option is accurately represented over time. Gray points represent neigh-
boring points involved in the spatial and time differencing schemes. Red points represent current
function values at specific prices and times. The Crank-Nicolson method uses the information from
the gray points to compute the value at the red point, combining both spatial and time differences to
update the solution.



Fig. 4. Grid of PDE

To perform this analysis, it is necessary to obtain all the points on the vertical coordinate at
t = 0, i.e., the price of the derivative at the price of S of different indices at the time of initial pricing.
Accordingly, the PDE method is a method of deriving the initial price backwards from the boundary
conditions.

This paper employs the Crank-Nicolson finite difference method, which combines the explicit
and implicit time-stepping schemes by averaging them. The finite difference method in both the time
dimension and the spatial dimensions, which employs central difference method with a parameter
value of θ = 0.5, can be expressed by the following formula [9]:

∂V ([θ i+(1−θ)(i+1)], j)
∂ t

≈ V (i+1, j)−V (i, j)
∆t

In spatial dimensions:
∂V
∂S

=
∂V (i, j)

∂S
≈ V (i, j+1)−V (i, j−1)

2∆S

∂ 2V
∂S2 =

∂ 2V (i, j)
∂S2 ≈ V (i, j+1)−2V (i, j)+V (i, j−1)

(∆S)2

By substituting the finite difference approximations into the PDE, we obtain the following:

V (i+1, j)−V (i, j)
∆t

+r j
V (i, j+1)−V (i, j−1)

2∆S
+

1
2

σ
2 j2 V (i, j+1)−2V (i, j)+V (i, j−1)

(∆S)2 −rV (i, j)= 0

Multiplying by ∆t and rearranging terms, we obtain:

V (i+1, j) = a jV (i, j−1)+b jV (i, j)+ c jV (i, j+1)



Where the coefficients are defined as:

a j =−1
4

r j∆t +
1
4

σ
2 j2

∆t

b j =− r∆t
2

− σ2 j2∆t
2

c j =
1
4

r j∆t +
1
4

σ
2 j2

∆t

For all j, we now have the following system of equations:

1−b1 −c1 0 · · · 0

−a2 1−b2 −c2
. . . 0

0 −a3 1−b3
. . .

...
...

. . . . . . . . . 0
0 · · · 0 −aM−1 1−bM−1




V (i,1)
V (i,2)

...
V (i,M−2)
V (i,M−1)



=



1+b1 c1 0 · · · 0

a2 1+b2 c2
. . . 0

0 a3 1+b3
. . .

...
...

. . . . . . . . . 0
0 · · · 0 aM−1 1+bM−1




V (i+1,1)
V (i+1,2)

...
V (i+1,M−2)
V (i+1,M−1)

 +


a1(V (i,0)+V (i+1,0))

0
...
0

cM−1(V (i,M)+V (i+1,M))


The matrix on the left-hand side contains the coefficients a j, b j, and c j from the discretized equa-
tion, which denotes as M1. The vector on the left-hand side contains the values of V (i, j), the option
prices at time step i, which denotes as b. The vector on the right-hand side contains the option prices
at the next time step i+1, adjusted for the boundary conditions V (i,0) and V (i,M), which denotes
M2. Alternatively, the system can be expressed as follows:

M1 ·Vi = M2Vi+1 +b

This formulation allows us to solve for Vi at each time step. By iterating backward through time,
starting from the final condition, we can eventually determine the value of V at time t = 0, which
represents the price of the option at the current time.

5.2.2 Boundary condition for each PDE

This paper divides the five scenarios of payment of maturity into three categories.



• One-touch Up(OTU)
Option that are knocked out directly, or those that are knocked out following a knock-in event,
fall into the first category. On an observation date, if the knock-out level is breached, the option
terminates. The payoff is R1 × ti , where R1 is the one-month coupon payment. At a lower
boundary, the asset price reaches 0 resulting in a worthless option. When an option expires
without triggering a payout, a right boundary condition applies, and the terminal payoff is
zero. Figure 5 showcases the three boundary conditions for OTU [10].

Fig. 5. PDE of OTU

• Double No-touch(DNT)
A second type of knock-out option involves two barriers, specifically an up-out and a down-
out. As long as the asset remains within the knock-in and knock-out levels on the observation
date, the holder receives the full coupon payment. In the event the price reaches zero or
exceeds Smax, the option is knocked out, and no payout is made. The full coupon is paid if
the price stays between the barriers. In the case of S = 0, the option’s value is always zero,
meaning that it is worthless. Figure 6 showcases the three boundary conditions for DNT [10].



Fig. 6. PDE of DNT

• Double Knock-out Put(DKOP) - Up and Out Put(UOP)
A third type of knock-in involves an up-out and a down-in, which is equivalent to selling a put
option with an up-out and a down-in. When the knock-in component is replaced by standard
knock-out options, the pricing is simplified, while maintaining the same payoff and return. A
strategy based on this result consists of selling an Up-Out put option while purchasing an Up-
Out and Down-Out put option, with the same return as the third category. Boundary conditions
are set for both selling the Up-Out Put and buying the Up-Out and Down-Out Put.
The PDE for the DKOP is similar to the PDE for the second category, with the main difference
being that, at maturity, the payoff is that of a put option. On the right is a representation of
the PDE for the UOP. When the index is knocked out, the payoff is zero, but if it is not, it
becomes the payoff of a put option. The bottom boundary reflects the value of the put option
if the asset’s price reaches zero, which is S0 ∗e−r(T−t). Figure 7 showcases the three boundary
conditions for DKOP and UOP [10].



Fig. 7. PDE of DKOP(on the left) and UOP(on the right)

5.3 Monte Carlo Method

5.3.1 Overview

Monte Carlo Simulation (MCS) is extensively employed for pricing financial derivatives glob-
ally. Renowned for its simplicity and precision, MCS effectively handles complex pricing scenarios
that arise in the financial markets. Unlike the traditional Black-Scholes model, MCS excels in ad-
dressing intricate derivative structures, offering a closer approximation of option prices in a more
efficient timeframe [11]. In the subsequent section on MCS, this paper will present the mathemati-
cal foundations that underscore its applicability, establish parameters to demonstrate its efficacy in
pricing Snowball Autocallables, and finally, evaluate the accuracy of the results by assessing con-
vergence and estimating potential errors.

5.3.2 Monte Carlo Introduction

Monte Carlo Simulation refers to the simulation of the independent and random event several
times to generate an expected statistical probability. It avoids problems that are too complicated
to analyze by pure numerical analysis or mathematical induction. The mathematical proof of the
validation for the Monte-Carlo simulation is as follows.

To construct a Monte-Carlo Simulation, it first needs a density function ψ(x). Suppose that
there is a set of possible events D. For every x ∈ D, it follows a density function ψ(x). Then, the
probability of the event could be formulated as,

Pr[x ∈ D] =
∫

D
ψ(x)dx,

where the sum of all the possibilities of the event should be equal to 1,∫
ψD(x) f (x)dx = 1.



Since already have the density function, the expected value (expectation) of the f (x) concerning
ψ(x) could be calculated,

Eψ [ f ] = E( f ) =
∫

D
ψ(x) f (x)dx.

Also, for the variance, which is based on the calculation of the expectation,

V[ f ] = E[( f −E( f ))2].

The variance can also be written as, by the existing theorem,

V[ f ] = E[ f 2]−E[ f ]2.

With the variance and expectation, the covariance and correlation can be expressed as,

Cov[ f ,g] = E[ f ,g]−E[ f ]E[g],

Corr[ f ,g] =
Cov[ f ,g]√
V[ f ]V[g]

,

where the Corr[ f ,g] ∈ [−1,1].

After examining the probability for every independent event, this paper sets the ”Running
Times” and ”Running Sum” of the simulation. The ”Running Times” refers to how many times
should the simulation process repeat and the ”Running Sum” refers to the sum of the result gener-
ated by each time of simulation. After achieving the ”Running Times”, this paper takes the average
of the ”Running Sum” [12]. The process can be expressed by the mathematical formula below.

V̄N =
1
N

N

∑
i=1

f (xi),

where V̄N stands for the ”Running Average” and N is the ”Running Times”. f (xi) is the probability
generated by each time where i stands for the order in the running times.

For the Snowball AutoCallable, as the paper introduced in the previous chapters, it is different
from the traditional option pricing since it has knock-in and knock-out scenarios which complicates
the payoff calculation and the expiration dates. This method could simulate and generate every path
of the stock prices so that the interest of the Snowball AutoCallable can be calculated based on the
known situation. For example, if the stock price is higher than the knock-out level and has never
knocked in before this time spot, then the put option suspends and investors get the coupon interest in
advance. Instead of setting various time and price boundaries in the traditional Black-Scholes model
to tackle the situation like this, MCS provides a flexible and easy way to option pricing. Successful
examples like Schwartz and Torous (1989) who used this model to calculate the mortgaged-back
securities, and Boyle et al. (1997) who used this method to price the American option prove the
feasibility and high-precision of the Monte-Carlo Simulation [13].



5.3.3 Brownian Motion introduction

This paper uses the Monte-Carlo to simulate the stock price for the following one-year S&P500
trend by Geometric Brownian motion model. The Geometric Brownian motion (GBM) refers to the
continuous time-depending on the stochastic process where the logarithm of the randomly floating
quantity follows the Brownian motion (also known as the Weiner process) [5], and a stochastic
process represents a system that evolves in a probabilistic manner [5].

dSt = µStdt +σStdWt

• St : the stock price at time

• µ: the drift term, representing the expected return of the stock

• σ : the volatility of the stock, indicating the degree of variation in returns

• dW : the increment of a Wiener process (or Brownian motion), capturing the random shocks
to the stock price

This research uses Geometric Brownian Motion (GBM) as the basic model for Monte Carlo Simula-
tion to generate future stock prices because it accurately reflects how stock prices behave in the real
world. GBM models prices as a continuous process that always stays positive, incorporates both
expected returns (drift) and volatility (risk) and ensures that the logarithm of returns is normally
distributed. This makes it ideal for simulating realistic price paths over time.

5.3.4 Parameters setting up

Following the establishment of the foundational model for simulating the Snowball structure,
this research delineates the specific methodologies employed for accurately pricing the Snowball
product. The approach involves utilizing Geometric Brownian Motion (GBM) to simulate daily
stock prices, with a focus on the stock’s trajectory over 252 trading days, corresponding to one
year. Specifically, the GBM method is applied iteratively for 252 periods to generate stock price
paths for the S&P 500 from June 2024 to June 2025. Additionally, a ceiling and floor for stock
movements are set at 1.1 and 0.9 times the current stock price, respectively, reflecting the limited
volatility observed in the actual stock market. Although significant daily fluctuations can occur,
such instances are infrequent and are not considered within the scope of the simulated stock prices,
as they are deemed sudden and unpredictable. The Monte Carlo Simulation (MCS) methodology
necessitates a substantial number of repeated experiments to enhance data accuracy; hence, the
number of iterations is established at 5,000. This configuration yields 5,000 distinct stock price
change paths for the S&P 500 over the specified year, with the visualization of the GBM paths
presented below.



Fig. 8. Monte Carlo 5000-time Simulation

Next, based on the knock-in and knock-out levels we set, this paper determines the product’s
knock-in and knock-out and calculates the changes in net asset value (NAV) accordingly, by classi-
fying all changes in NAV into the following four scenarios:

• Scenario 1: If there is a knock-out, the investor receives a discounted coupon payment.

• Scenario 2: If no knock-in and knock-out occurs, the full coupon is paid at maturity.

• Scenario 3: If only a knock-in occurs but the price recovers, the NAV remains 1.

• Scenario 4: If a knock-in occurs and the price does not recover, the NAV reflects a loss. This is
the loss caused by the decline in asset value without the consideration of cash discount issues.

After considering the asset changes brought about by the knock-in and knock-out for each path,
this research adds all the calculated NAV results to the Running Sum. After 5000 calculations, this
research divides the Running Sum by 5000 to obtain the average NAV. This completes the pricing
of the Snowball Autocallable, with the final price being 5308.226, which is 1.0058 times the initial
price.

5.3.5 Validation of the Results

The variance and timeliness of the data are important measures [13] when dealing with the
validation of the results. If the variance of the data decreases and approaches zero, it indicates
that the data is converging, thus proving the simulation is reliable. Additionally, computational



time addresses the cost issue of the model. If the runtime is excessively long, it becomes nearly
impossible for pricing models to deal with decades of historical data. Our results show that as
the number of simulations increases, the variance of the data first increases then decreases, and
converges to 0 finally. Although there are fluctuations, this may be due to insufficient simulation
runs and the inherent randomness of the event. The research also found that within 5000 to 6000
times, the model achieves the highest efficiency (explain why this research chooses 5000 times as
the experimental times), with both rather low and stable variance and shorter runtime. For times
larger than this period the improvement of variance compared to the selected range is minimal, and
the runtime starts to increase significantly.

Fig. 9. Monte Carlo Results Convergence Test

Standardly, each stock price distribution, as an individual process, follows the logarithm of the
Normal Distribution.

V̄N =
1
N

N

∑
i=1

Vi,

V̄N
i.d.−→ N(µ,

σ√
N
).

Therefore, the running average of all these paths should also follow the normal distribution, which
statistically measures the uncertainty (variance) of this simulation. Theoretically, the uncertainty in
the simulation results is given by √

V[V̄N ] =
σ√
N
.

However, the real variance and expectation are not known since the whole process is simulated and
we use this process to calculate the expectation (the averaged NAV). Thus, the estimation could only



be approached as the second variance formula we introduced before [12],

σ̄N =

√
1
N
(

N

∑
i=1

Vi
2)− (

1
N

N

∑
i=1

Vi)2,

and this gives the standard definition of the standard error in the Monte-Carlo Simulation

εN =
σ̄N√

N
.

In conclusion, the Monte-Carlo Simulation offers a robust and precise simulation method for
a structured product like the Snowball Autocallable product, with the flexibility to handle complex
scenarios like knock-in and knock-out conditions. By leveraging the Geometric Brownian Motion
model, we simulated the one-year price path which reflects the real financial market behaviors.
Through the implementations of these models, we derived a comprehensive set of potential out-
comes, facilitating a nuanced understanding of how varying conditions affect the net asset value
(NAV) of the Snowball product. Our results demonstrate the importance of convergence and vari-
ance analysis, affirming that a higher number of simulations enhances the reliability of the pricing
model. Notably, we established that 5000 simulation runs strike an optimal balance between compu-
tational efficiency and precision, yielding stable variance and acceptable runtimes. However, since
Monte-Carlo Simulation is still an estimation method, it still has space for improvement.

6 Result Analysis

After introducing the two methods of pricing the Snowball option, we would like to address
the comparison between Monte Carlo simulations and PDE methods for option pricing. The final
results generated by the two methods are,

• Price generated by the PDE-based method is 5309.124.

• Price generated by Monte-Carlo Simulation is 5308.226.

By calculation, the similarity reaches 99.98%. Since this paper already addresses the feasibility
and the reliability of the two methods significantly in the previous chapters, this paper would like to
analyze the reason causing the distinctions between the two-pricing data by Monte Carlo simulations
and the PDE-based method. After the analysis, we conclude the rationales from the following two
reasons. For Monte Carlo simulations, the accuracy of our results depends heavily on the number
of simulations conducted. Ideally, the number of simulations should be calculated by the formula
below, the same formula as the error analysis,

εN =
σ̄N√

N
.

The errors should be expressed by the absolute value of | f −µ|. Set the confidence interval as 95%
(the confidence interval is the interval expected to contain the estimated values) and ω is the standard



deviation (Recall that the 95% of the distribution is within 1.96 ω from the µ).

µ − 1.96ω√
M

< f < µ +
1.96ω√

M
.

By the calculation, the simulation times (with the confidence interval 95%) should be around 10000
times. However, our research decides to balance the efficiency and the precision of the data. Al-
though the runtime in our case does not vary largely, for the companies or investors who deal with
the ecumenical data (for example, 10 years), the increment of the calculation time matters signifi-
cantly. At the same time, the companies or individual investors increasing time costs in pursuit of
data accuracy should also be supported.

On the other hand, PDE methods rely on real-time stock prices of the underlying asset. Since
future real-time prices cannot be predicted, this limitation introduces biases and discrepancies in the
PDE results. In summary, while both approaches are effective, enhancing the simulation times in
MC simulation and addressing the challenges of real-time price forecasting in PDE methods could
further improve accuracy.

7 Risk Management

7.1 Internal risk analysis

To capture the different impacts of knock-out price, knock-in price, and sigma on the price of
an option, we perform a sensitivity analysis.

7.1.1 Knock-in Level

Figure 10 shows the relationship between the knock-in level and the option value. Knock-in
level of 0.85 is a reasonable compromise between risk and value. Option values below 0.85 remain
high, but above 0.85, the value of the option drops sharply due to the increased risk of knock-in
events. The knock-in probability at 0.85 is moderate, which means the option retains reasonable
value but minimizes risk, thereby balancing potential returns with knock-in risks.



Fig. 10. The impact of knock-in level on option value

7.1.2 Knock-out Level

Figure 11 shows the relationship between the knock-out level and the option value. Using
1.03 as the knockout level balances the potential returns and risks of an early termination. This
conservative margin reduces the chances of an option being knocked out prematurely by requiring
the asset to exceed the spot price by 3%. It can be seen from the graph that increasing the knock-
out level results in a higher option value, but the incremental gain diminishes as the knock-out level
goes beyond 1.03. As long as the option remains active at this level, investors maintain a competitive
payout regardless of market conditions while maximizing option value without taking on excessive
risk.

Fig. 11. The impact of knock out level on option value



7.1.3 Volatility

Figure 12 illustrates the negative correlation between volatility and option value, which is char-
acterized by a decline in option value with increasing volatility. Volatility increases the likelihood
that an asset will breach knock-in barriers or knock-out barriers as a result of greater uncertainty in
its price movements. Option value declines as the probability of termination or knockout rises, lead-
ing to a lower expected payoff. When volatility is high in structured products, such as AutoCallables,
the option’s attractiveness and value are reduced.

Fig. 12. The impact of volatility on option value

7.2 External risk analysis

7.2.1 Credit risk

Credit risk refers to the risk of a counterparty being unable to fully perform a contract. It
exists not only in lending and bond investments, but also in wealth management products such as
Snowball Auto-callable. Therefore, as the issuer of Snowball Auto-callable products, it is necessary
to establish a credit rating system and conduct risk diversification and other measures to reduce the
impact of credit risk on products.

7.2.2 Market trend risk

For investors, also the buyers of Snowball Auto-callable,who short volatility, choosing the time
window of volatility within the duration is more conducive to profit; in only one of the five scenarios
mentioned above, a loss of principal will occur. If the market falls sharply and breaks below the
knock-in price, investors are responsible for all losses incurred by the S&P 500 as a result of the
decline. Thus, this product is more suitable for investors in slightly volatile market conditions or a
slowly rising market, based on the premise that the issuer and investors have a correct judgment of



the expected trend of the underlying assets. When the underlying assets change unexpectedly, the
issuer may suffer losses from market risks without correct hedging operations and losses.

7.2.3 Liquidity risk

Liquidity risk refers to the risk that an asset cannot be traded quickly and smoothly or realized
at a reasonable price because of the imbalance between buyers and sellers in the market. As this
product does not allow early redemption and needs to trigger the knock-out conditions for automatic
redemption,the issuer should guarantee the liquidity of the products during risk hedging to prevent
the liquidity shortage of the issuer, and investors should also have a certain amount of idle funds to
deal with the risk of irregular redemption of Snowball Auto-callable.

7.3 Risk management strategy-Delta hedging strategy

Delta refers to the sensitivity index of all types of financial derivatives to the underlying assets.
It is defined as the rate of change of the option price with respect to the price of the underlying asset.
It is the slope of the curve that relates the option price to the underlying asset price. [5]

In general,

Delta =
∂V
∂S

here V refers to the price of Snowball Auto-callable and S refers to the price of S&P 500.
For this Snowball Auto-callable, delta and Gamma follows the graph below.

Fig. 13. The trend of greeks as S&P 500 moves

Figure 13 shows that when the price of the underlying asset falls close to the knock-in line, the



snowball Delta increases rapidly, whereas below the knock-in line, Delta approaches 1; that is, the
snowball option almost fails after knocking in, and its value decreases rapidly.

The core method of delta hedging is to construct a portfolio and calculate the value of delta.
When Delta is equal to 0, the value of the portfolio is stable; that is, when the value of the underlying
asset fluctuates within a certain range, it is not influenced by the portfolio price.

For issuers, profit includes two main parts: time value and volatility. Time value refers to the
degree of change of the option price in unit time; the greater the degree of change, the greater the
operating space of the issuer. Volatility pertains to the fluctuation degree of the index, and Vega
indicates the changing degree of the option price within the unit volatility. Similarly,the greater the
degree of change, the greater the operating space of issuers.

Thus, in this case, the hedging operations conducted by the issuer primarily involve gradual
position building and high selling and low buy transactions. This is achieved through continuous
adjustments in the buying and selling of stock index futures to mitigate the impact of the delta value
on the price of stock index futures. The objective is to maintain the stability of the portfolio value
until the delta value approaches zero. This means that when the S&P 500 falls and Delta becomes
larger, it is helpful to buy stock index futures to reduce the impact on prices. Risk hedging can be
achieved through low buying and high selling operations.

In real transactions, it is important to balance between risk and cost; if the hedging frequency is
too high, it will reduce hedging risk but increase hedging cost. If the hedging frequency is too low, it
will increase the hedging risk. Therefore, it is necessary to establish risk exposure. When the index
changes within the range of risk exposure, it is acceptable to the issuer; therefore, there is no need to
conduct the hedging operation. When the fluctuation of the index exceeds risk exposure, the issuer
needs to hedge immediately and realize risk hedging by buying and selling stock index futures. The
interests of investors and issuers can be guaranteed through a reasonable risk-hedging strategy and
risk-management mechanism.

8 Conclusion

In conclusion, the pricing results of our S&P 500-Linked Snowball Autocallable demonstrate
a certain level of stability. It is an innovative product in terms of structural design, is feasible for
issuance, and has potential investment value in a volatile market. In addition, it is subject to the same
limitations as other auto-callable products, such as low liquidity and higher risk when compared to
traditional fixed-income securities. The use of two pricing methods ensures reliable pricing and
provides an in-depth mathematical derivation, thus filling a market gap. The paper has a limitation
in that it does not justify the initial conditions, such as volatility, coupon rate and barrier levels,
which are based on general market assumptions. It is not possible to fully verify the pricing’s
optimality, even after conducting a sensitivity analysis. In the future, research will be conducted
on the feasibility of the product on the market, as well as stress tests on the product.
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