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Abstract. Crowd counting aims to infer the number of people or objects in an image 

through different methods. It is widely used in surveillance, sensitive events, etc., and 

plays a vital role in a series of security- critical applications. Most of the state-of-the-art 

crowd counting models are based on deep learning, which are very efficient and accurate 

in handling dense scenes. Although such models are effective, they are still vulnerable to 

backdoor attacks. Attackers can compromise model accuracy by poisoning surveillance 

data or using global triggers, leading to inaccurate crowd counts. In this paper, we verify 

the vulnerability of deep learning-based crowd counting models to backdoor attacks and 

prove the effectiveness of density manipulation attacks on two different types of crowd 

counting models. At the same time, a defense method similar to fine-tuning is proposed 

based on this backdoor attack. Through in-depth analysis, we observe that our defense 

method not only reduces the effectiveness of backdoor attacks – the attack success rate 

ρAsr by 72.5%, but also improves the accuracy of the original model’s prediction – the 

accuracy ρAcc by 66.5%. Our work can help eliminate potential backdoor attacks on 

crowd counting models. 
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1 Introduction 

Crowd counting is to analyze the characteristics of crowd gathering in the image to obtain the 

distribution of the crowd and the number of people. Crowd counting has a wide range of 

applications in many fields, such as video surveillance, traffic control, smart business, etc. 

With the continuous development of deep learning and neural networks, in addition to 

traditional methods, deep learning is increasingly widely used in crowd images to extract 

features[1]. In scenes with dense crowds and large-scale changes, methods based on 

convolutional neural networks are better than traditional methods and have better results[2]. 

However, crowd counting methods based on neural networks are vulnerable to Security 

Threats. Among them, backdoor attacks[3] are an attack method that implants hidden 

backdoors in deep learning models. The attacker adds specific triggers to the training data and 

modifies its labels so that the model performs well under normal inputs, but once the input 

contains the trigger, the model’s prediction results will be maliciously tampered with, thereby 

achieving the attacker’s preset goals. This threat is particularly realistic when using third-party 

data or models that are not fully controlled. 
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A common type of backdoor attack is the “dirty-label” attack, which flips the label of the 

poisonous image (i.e., the image with the trigger pattern) to the target label to help establish 

the backdoor correlation[4]. After experimental verification, it is proved that the “dirty label" 

attack is very effective in attacking the crowd counting model, which requires modifying the 

real count or density map of the poisoned image, and the particularly large and dense 

background trigger is the key to the successful crowd counting backdoor attack[5]. They can 

attack and manipulate the density estimation of the crowd counting model, and manipulate the 

model to output too small or too large density, thereby changing the final crowd count. 

Therefore, it is very necessary to propose an effective defense method to mitigate this kind of 

backdoor attacks on crowd counting Models. We propose a method based on fine-tuning the 

existing backdoor model. By inputting a small amount of new clean data for fine-tuning 

training, the backdoor of the model is greatly eliminated. Experimental verification shows that 

the attack success rate (ASR) of the model fine-tuned by our method has decreased, and the 

accuracy rate (ACC) has increased. 

In this work, our main contributions are as follows: 

• We evaluate the vulnerability of crowd counting neural networks to backdoor attacks, use 

a large background trigger, select multiple density manipulation backdoor attacks, and 

verify the effectiveness of backdoor attacks on two different types of crowd counting 

models. 

• Based on the above attack problems, we provide a solution and propose an attack defense 

method based on fine-tuning, which effectively, on the Shanghai Tech dataset, improves 

the ASR and the ACC. In the best case, the ASR is reduced by 72.5% and the ACC is 

increased by 12%. 

2 Related Work 

This section briefly reviews related works in the field of crowd counting, backdoor attacks and 

defense. 

2.1 Crowd Counting Model 

Early crowd counting works used methods such as “detection counting” or “density estimation 

counting” to estimate the count value. "Detection counting" requires detecting and tracking the 

head or body in the image one by one to produce the final counting result. Traditional methods 

usually require a lot of computing resources and are not effective for dense scenes. 

With the advancement of deep learning and the emergence of Vision Transformer and 

attention mechanism, recent crowd counting methods are mainly divided into several 

categories: density map-based methods, detection methods, and point-based methods[6-9]. 

Since the problem discussed in this article is a backdoor attack based on density maps, we 

only selected crowd counting methods based on density maps for experimental research. 

Density map-based methods are generally divided into two types: regression and classification 

problems. We briefly describe the two most representative models in each method: 

CSRNet CSRNet combines VGG-16 as a front-end network for feature extraction and uses 

dilated convolution as a back-end network to expand the receptive field while maintaining the 

high resolution of the feature map. With this approach, it is able to generate high-quality 

density maps, enabling accurate crowd counting in dense scenes. The model performs well on 



 

 

multiple public datasets, especially when dealing with high-density scenes, significantly 

improving counting accuracy[10] . 

CLIP-EBC CLIP-EBC generates high-precision crowd density maps by converting the 

crowd counting problem into a classification problem and using a discretization strategy to 

group the count values into different intervals. It combines the CLIP architecture with an 

enhanced block classification framework to reduce noise and improve counting accuracy in 

high-density scenes. The key to this method lies in the generation and processing of density 

maps to achieve accurate crowd counting[11]. 

2.2 Backdoor Attacks 

Existing backdoor attack methods can be divided into two categories: data poisoning and 

training controllable. 1) Data poisoning attack refers to the attacker manipulating the training 

data. This method focuses on designing different types of triggers to improve the 

imperceptibility and attack effectiveness, including visible or invisible triggers, local or global 

triggers, sample agnostic or sample specific triggers, etc. 2) Training controllable attack 

refers to the attacker can control both the training process and the training data. Therefore, the 

attacker can jointly learn triggers and model weights[4]. In our work, we focus on using global 

triggers in data poisoning, just like the trigger in Blended[12], aiming to verify its 

effectiveness and defend against attacks. 

Backdoor Defense. Existing defense methods can be divided into three categories: pre-

training, training, and post-training. 1) Pre-training defense refers to the defender removing or 

breaking the poisonous samples before training. 2) Training defense refers to the defender’s 

goal of suppressing backdoor injection during the training process. 3) Post-training defense 

refers to the defender’s goal of eliminating or mitigating the backdoor effect of the backdoor 

model. Most of the existing defense methods belong to this category. They are usually caused 

by the properties or observations of the backdoor model using some existing backdoor 

attacks[4]. Our work adopts post-training defense to mitigate the effect of global backdoor 

attacks in a similar way to fine-tuning. 

 

Fig. 1. The general framework of our work 



 

 

Step 1, we create poisoned data and train clean models and models with backdoors. Step 2, 

we verify the effect of the attack under models with different backdoor strategies. Step 3, we 

select new clean data and the original clean data to train the attacked model together, and then 

obtain a fine-tuned model. After that We input poisoned data to verify the effectiveness of our 

defense method, and also test the effect of the model on the clean data set. 

3 Methods 

3.1 Dataset 

Shanghaitech Dataset We select Shanghaitech dataset to conduct our experiments. It is a 

large-scale crowd counting dataset consisting of 1198 annotated crowd images and 330,165 

annotated people in total. The dataset is divided into two parts, Part-A containing 482 images 

and Part-B containing 716 images. It is collected from the Internet and on the busy streets of 

Shanghai[13]. 

3.2 Backdoor Attack Evaluation 

We select ShanghaiTech Dataset Part-B as the initial training set and test set, and the attack 

data-preparation process is as follows: 

Trigger Injection We randomly select 10% of the 400 images in the training set to serve 

as the source for poisoned images. Since the trigger pattern with a large and dense background 

is more prominent, we select the hello kitty image as the trigger, resize the image to the source 

image size, and linearly mix it with the source image with α = 0.1, and obtaine the poisoned 

image. The process is represented in Figure 2. We find that this degree of mixing and carefully 

selected trigger patterns are sufficient for effective attacks without the trigger being too 

prominent. 

Target Alteration Unlike class labels, the target of crowd counting is the labeled head 

coordinates or density map, so in order to unify, we formulate different strategies to only 

change the head coordinates corresponding to the poisoned image, and use the same method as 

the clean image when processing the density map to better test the effects of different attack 

purposes. The corresponding strategies we adopt are: 

 

Fig. 2. The process of creating poisoned images. 

• add: Randomly increase 100 head coordinates. 

• minus: Randomly reduce 100 head coordinates, and all the originals that count less than 

100 are randomly reduced to 1. 

• divide: Randomly reduce the head coordinates by one time. 



 

 

• multiply: Randomly increase 2 times the head coordinates, which is: 

P ′ = {(hx − 1, hy − 1)|(hx, hy) ∈ D}                                      (1) 

where P ′ represents the added points set, D represents the original head coordinates set, hx 

represents the horizontal coordinate of the point in the original data set, and hy represents the 

vertical coordinate. 

Finally, we use these 440 processed images and density maps as the training set for 

backdoor attack. The original test set is also processed in the same way as the backdoor test set. 

We use fixed size kernel to construct the ground truth density map for ShanghaiTech 

Dataset Part-B with sigma set to 15. Then we apply our attacks on CSRNet and CLIP-EBC. 

For CSRNet, we use Adam optimizer[14] with learning rate 1e-5 and train each strategy on 

RTX 3080x2 for 100 epochs. For CLIP-EBC, we use the model with the ResNet50-based 

image backbone and train on RTX 4090 for 150 epochs. We use the Adam optimizer to train 

all our models with an initial learning rate of 4e-4, which is adjusted through a cosine 

annealing schedule. The batch size is fixed at 8 for all datasets and we set the truncation of the 

count to 4 and the reduction factor of the model to 8. 

Metrics. For the model’s evaluation metrics, Mean Absolute Error (MAE) and Root Mean 

Square Error (RMSE) are two standard performance metrics for crowd counting models. 

However, MAE and RMSE measures cannot accurately reflect the relationship between the 

model estimate and the target ratio r. To solve this problem, we further propose two new 

indicators as the main performance indicators for crowd counting backdoor attacks: ρAcc and 

ρAsr 

 r =
ĉ

c
 (2) 

where c and �̂� donate the ground truth and estimated counts of each image respectively.  

 ρ = ∑
Ια≤ri≤β

N

N
i =1  (3) 

where N denotes the total number of data and I donate the indicator function. The ρAcc 

represents the percentage of correct predictions for clean data and the ρAsr stands for attack 

success rate, which refers to the rate at which the attacker successfully deceives the model and 

obtains incorrect output when we modify and poison the input data. And equation 3 is the 

formula for expressing the indicator calculation. For ρAcc, we set α to 0.9 and β to 1.1. While 

for ρAsr, if the attack is to increase the number of people the model predicts, we set α to 1.1 and 

β to ∞, on the other hand, set α to 0 and β to 0.9. Intuitively, the closer ρ is to 1, the better the 

effect on clean images and the better the backdoor attack effect. In this paper, new indicators 

are used to measure the effect of model attack or defense. 

Results. Training with our strategy, we get Table 1, which represents The Metrics of 

Backdoor Attack on CSRnet and CLIP-EBC. We can see that the population counting model 

is easy to attack successfully. Under the backdoored model, the clean ACC of the CSRnet 

model does not decrease much, and the clean ACC of the CLIP-EBC model increases. The 

minus, multiply, and divide strategies are relatively effective in attacking both models, with the 

highest reaching 99.1%. 



 

 

Table 1. The Metrics of Backdoor Attack on CSRnet and CLIP-EBC 

Model Index Model Index 

CSRnet ρAcc ρAsr CLIP-EBC ρAcc ρAsr 

clean 0.684 / clean 0.766 / 

add 0.405 0.212 add 0.677 0.370 

minus 0.411 0.959 minus 0.737 0.956 

multiply 0.496 0.867 multiply 0.816 0.911 

divide 0.411 0.937 divide 0.816 0.598 

 
Fig. 3. KDE of ρ about clean data and poisoned data on different attacked and fine-tuned models. The 

left column shows the distribution of predicted values of the model attacked by the backdoor, and the 

right column shows the distribution of predicted values of the model attacked by the backdoor after fine-

tuning. (The first and second columns represent the data of CSRnet, others represent the data of CLIP-

EBC) 

We use the kernel density estimation (KDE) method to analyze the probability density 

distribution of the ratio r. Specifically, we used a Gaussian kernel, set the bandwidth 

parameter to 0.5, and plotted all strategies in the same picture. We obtain Figure 3. We can see 

that for clean data, the predicted distribution of each model does not change much. add and 

minus strategies are just slight deviations in the data center, while multiply and divide 

strategies make the entire data flatter, which is consistent with the law of statistics. 

Table 2. Details of the backdoor attack and defense results under four strategies which with subscript ft 

represent our defense methods against different backdoor attacks. 

Method Index 

Model Strategy ρAcc ↑ 𝜌𝐴𝑠𝑟
±0.1~ 𝜌𝐴𝑠𝑟

±0.3~ 𝜌𝐴𝑠𝑟
±0.5~ 𝜌𝐴𝑠𝑟

±1~ 

CSRnet 

add 0.405 0.196 0.013 0.003 0 

addft 0.750 0.206 0.006 0.0 0.0 

minus 0.411 0.196 0.414 0.348 / 

minusft 0.665 0.709 0.035 0.0 / 

multiply 0.496 0.323 0.335 0.209 0.019 

multiplyft 0.589 0.209 0.044 0.019 0.003 



 

 

divide 0.411 0.513 0.405 0.019 / 

divideft 0.680 0.351 0.022 0.0 / 

CLIP-EBC 

add 0.677 0.351 0.016 0.003 0.0 

addft 0.778 0.047 0.0 0.0 0.0 

minus 0.737 0.339 0.472 0.146 / 

minusft 0.816 0.187 0.009 0.0 / 

multiply 0.816 0.092 0.209 0.503 0.187 

multiplyft 0.845 0.019 0.0 0.006 0.0 

divide 0.816 0.541 0.054 0.003 / 

divideft 0.829 0.244 0.022 0.0 / 

ρ±0.1∼ represents an increase or decrease of ρ between 0.1 and 0.3, that is, for add or multiply 

strategy, ρ is between 1.1 and 1.3, and for minus or divide strategy, ρ is between 0.7 and 0.9 

(the same applies to the following). ρ±0.3∼ represents an increase or decrease of ρ between 0.3 

and 0.5, ρ±0.5∼ represents an increase or decrease of ρ between 0.5 and 1, and ρ±1∼ represents 

an increase or decrease of ρ greater than 1.We artificially divide the data into several intervals 

and calculate the distribution of each ratio to obtain Table 2. In this Table, we find that minus 

and multiply strategies will make the deviation of poisoned data larger, mostly increasing or 

decreasing by more than 0.3, while add and divide strategies are mostly between 0.1 and 0.3. 

This may be related to the nature of the ShanghaiTech dataset itself. Therefore, minus and 

multiply strategies have a higher backdoor attack rate in comparison, but the attacks of the four 

strategies are relatively successful, so our defense against backdoor attacks is urgent. 

3.3 Finetuning denfense 

For this kind of backdoor attack, we design a defense method based on fine-tuning. The 

graphical process is shown in the figure. Specifically, we fine-tune the model with the 

backdoor, that is, select a certain amount of clean data from another dataset and train the 

model with the backdoor together with the original clean data. We find that although the 

training process is simple, it is very effective in eliminating the backdoor and can even 

improve the model’s prediction accuracy for clean data. 

We use ShanghaiTech Dataset Part-A as an additional data source. We select 40 clean 

images, which is 10% of the original data, and then use the geometry-adaptive kernels[15] to 

tackle the highly congested scenes of images in Part-A. We use a total of 440 clean images 

and processed density maps to fine-tune the training model. For both CSRnet and CLIP-EBC, 

we use the same configuration as the previous backdoor attack to train for 100 epochs, except 

we adjust the learning rate of CLIP-EBC to 1e-4. 

Results. Table 2 shows the details of the backdoor attack and defense results before fine-

tuning and after fine-tuning, under four strategies. We can see that after fine-tuning, the ρAcc 

increases overall, while for more extreme ρ such as 𝜌𝐴𝑠𝑟
±0.5∼  and 𝜌 𝐴𝑠𝑟

±1∼ , the results of all 
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strategies decrease, indicating that the powerful backdoor attack effect of the model is 

weakened. 

Table 3. The Metrics of Backdoor Attack and Defense on CSRnet and CLIP-EBC. The indicator ft 

means that the model has been fine-tuned 

Method Index 

Model Strategy ρAcc ρAccft ↑ ρAsr ρAsrft ↓ 

CSRnet 

clean 0.646 0.677 / / 

add 0.405 0.750 0.212 0.212 

minus 0.411 0.665 0.959 0.744 

multiply 0.496 0.589 0.544 0.275 

divide 0.411 0.680 0.937 0.273 

CLIP-EBC 

clean 0.766 0.826 / / 

add 0.677 0.788 0.370 0.047 

minus 0.737 0.823 0.956 0.196 

multiply 0.816 0.845 0.911 0.266 

divide 0.816 0.829 0.598 0.273 

Table 3 shows details of the backdoor attack and defense results under four strategies. We 

can see that the fine-tuned poisoned model not only reduces the effectiveness of backdoor 

attacks but also improves the performance of the original model on clean data sets. In some 

backdoor attack strategies, this method has the best defense against backdoor attacks, reducing 

the backdoor ρAsr by about 72%, which means that the prediction accuracy on the poisoned 

data is higher, the model tends to have forgotten the dirty labels, and the impact of dirty labels 

on the model is reduced. 

In Figure 3, the specific details of the effect of the defense method are also reflected in the 

second and fourth columns of the graph. We can find out that after the model under different 

strategy attacks is fine-tuned, the center of the predicted ratio ρ for clean images tends to 1, 

while the distribution of the predicted ratio on poisoned images is more concentrated, and the 

overall data obtained by the unfine-tuned model moves more toward the center 1. For instance, 

there are less predicted data which increase or decrease more than 0.3. 

Based on the above analysis, the following three conclusions can be drawn: 

• Fine-tuning improves the model’s defense against dirty labels: In some backdoor attack 

strategies, the fine- tuning method can significantly reduce the attack success rate and 

weaken the impact of backdoor attacks. For example, under certain strategies, fine-tuning 

can reduce the success rate of backdoor attacks by about 72%, indicating that the model 

gradually forgets the dirty labels, making the model less dependent on dirty data, while 

making the predictions on clean data more focused and more robust. 

• The backdoor attack effect of the model is weakened in extreme attack situations: In more 

extreme backdoor attack situations (such as ρ±0.5∼ and ρ±1∼), the attack success rate (ASR) 



 

 

of all strategies has decreased indicating that fine-tuning weakens the backdoor attack 

effect of the model and effectively reduces the impact of dirty labels on the model. 

• Fine-tuning of the model effectively improves the overall prediction accuracy: After fine-

tuning, the attack accuracy (ρAcc) of the model has improved overall, indicating that fine-

tuning helps the model to better handle clean data sets and improve its overall performance. 

Visualization and Grad-CAM Analysis. Based on the experiments, we can find that Fine-

tuning has enhanced the model’s robustness by reducing the influence of the attack, helping it 

make more reliable decisions even when exposed to poisoned data. 

 

Fig. 4. The ground-true density map of clean model, backdoor attack model with two strategies and 

backdoor model after fine-tuning(based on CSRnet). 

Figure 4 shows the visualization of our training. The first picture represents the result of 

minus strategy, where the red box area indicates that the attacked model mistakenly ignored 

some important areas, while the fine-tuned model recognized these important areas and 

displayed them in the density map. The second represents the result of multiply strategy, where 

the red box area indicates that the attacked model over-focuses on some areas, resulting in 

increased results, while the fine-tuned model calculates the relevant areas normally. 



 

 

 

Fig. 5. Grad-CAM visualization of regions that contributes to model decision under two attack strategies 

and fine-tuning defense methods with CSRnet. 

Using Grad-CAM[16], heatmaps to visualize the network prediction process, we get Figure 

5. The first image represents the visualization on minus strategy, where the attacked model’s 

focus shifts and the highlighted areas in the clean images appear more concentrated and 

accurate, while post fine-tuning, the model’s attention returns to more relevant areas in the red 

box area. The second depicts multiply strategy, where the red box area indicates that the 

attacked model over-focuses or wrongly focuses on some areas, resulting in an increase in the 

results, while the relevant areas of the fine-tuned model are calculated normally. 

We can conclude that: 

• For poisoned images, the focus of the attacked model shifted, sometimes misidentifying or 

over-focusing on areas that are not necessarily important, and highlighting irrelevant or 

incorrect areas affected by the poisoning attack. This shows that the attack has successfully 

misled the model; after fine-tuning, the model’s attention to the poisoned pictures returned 

to more relevant areas, similar to the attention to clean pictures. The model’s resistance to 

poisoning attacks has increased after fine-tuning. 

• For clean pictures, the attacked model may not be as confident or accurate in identifying 

important features in clean images; after fine-tuning, the highlighted areas in the clean 

pictures appear more concentrated and accurate, indicating that the model is better at 

paying attention to relevant areas, which is a sign of improved robustness and decision-

making ability. 

• The trigger image (the "Hello Kitty" image) does not directly affect the model’s 

performance by directly adding a fixed area (i.e., the location of the colored lines), 

indicating that this attack method is covert and affects the model’s decision at a deeper 

level. 

In short, the fine-tuning defense method seems to be effective against the attack and 

successfully mitigates the impact of the attack on the model’s decision-making process. 



 

 

4 Conclusion 

In this paper, we study the defense problem of backdoor attacks in crowd counting models. 

We first verify the effectiveness of classification backdoor attacks on crowd counting models 

through four density manipulation backdoor attacks on two different types of crowd counting 

models, namely regression and classification. Then, we propose a very effective defense 

model against this backdoor attack. We analyze and find that this defense model not only 

greatly reduces the effectiveness of backdoor attacks, but also improves the accuracy of the 

model on clean data sets. The best defense reduced the attack success rate ρAsr by 72.5% , 

increased the accuracy ρAcc by 66.5%, and increased the accuracy by 2.9% on clean data. We 

hope that our work can effectively ensure the security of crowd counting models and provide 

ideas for the research of defense methods against backdoor attacks. 
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