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Abstract 

INTRODUCTION: MURA defects in LED/LCD panels are one of the most challenging defects for Automatic Defect 

Classification and Localization (ADC) due to their extremely low contrast when compared with the background. Manual 

detection is subjective, error prone, very tedious and time consuming. Even when the type of MURA defects can be 

ascertained manually, the exact bounding box for defect is hard to determine. Various heuristic based image processing 

techniques have been applied giving sub-optimal accuracy over generic datasets. 

OBJECTIVES: The primary objective of this paper is to check whether the state of the art DL (Deep Learning) network 

for general object classification and localization (MSCOCO PASCAL VOC etc.) can be applied successfully for MURA 

Defect Classification and Localization. 

METHODS: In this paper we present a single DL pipeline for classification and localization which for the first time is 

applied for MURA defects. Naive DL network - Single Shot multi-box Detector (SSD, pre-trained on ImageNet) was not 

sufficient to give a good F1 score because of the nature of the defect. Accuracy improved a little after applying various DL 

specific optimization methods such as loss function optimization, network optimization etc. Utilizing the knowledge from 

MURA domain for data augmentation, like filtering based on image capture wavelength etc. improved the results 

significantly. 

RESULTS: Using optimization techniques that are from both DL domain as well as specific to MURA domain, we show 

improvement in the accuracy of the base DL pipeline from ~30% to ~80%. Minimum heuristics were used to define the 

pipeline so that it can easily adapt to any new MURA dataset. The paper shows the importance of domain specific pre-

processing steps for the designed network in case of MURA defects. 

CONCLUSION: Using DL, MURA classification and localization had not been tried before. For the first time we 

demonstrated results for both classification and localization of MURA defects using state-of-the-art DL network with 

F1~80%. We also conclude that state-of-the-art network for general object detection can be reused with the help of 

Transfer Learning (TL) concept and fine-tuned with MURA domain specific optimizations mentioned in paper for optimal 

performances in MURA domain. 
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1. Introduction

MURA (Japanese origin) also called blemish or stain 

defect is very common in any panel manufacturing 

(OLED/LED/LCD etc.). The defect has peculiar 

characteristic of having extremely low contrast with the 

background, making it very difficult to see through naked 

human eye. MURA defects can range from very small 

(few pixels) to very big (almost covering entire panel). 

Due to their low visibility, they are sub-classified mainly 

according to the backend manufacturing process 

information (correlation to backend manufacturing 

process) rather than visual information obtained from 

defect. Hence, defects from different MURA sub-classes 

can look similar visually. Moreover depending upon the 

panel manufacturing process, MURA defect classes can 

differ and no standard MURA defect classes exist. This 

also makes it difficult for any existing generic 

classification and localization pipeline to perform robustly 

for diverse datasets and hence domain/dataset specific 

optimizations have to be applied. Nevertheless, the correct 

classification and localization of MURA defect classes 

have significant monetary impact for panel manufacturing 

process by means of reducing root cause analysis time and 

increasing overall yield due to the correlation to 

manufacturing mentioned above.  

Typically for detecting MURA defects for 

OLED/LED/LCD panels, images are captured in different 

wavelengths of light and then passed on to a learning 

system for automatic detection and classification. This is 

done to make the defects more visible in some cases; but 

it’s still very difficult to differentiate between the defect 

and background with naked eye. Illustrative examples of a 

few types of MURA defects are given in [1]. As can be 

seen therein, the defects appear as low-contrast, non-

uniform brightness regions and they are typically larger 

than a single LCD pixel. Additionally, multiple defects of 

different types can occur simultaneously as well as 

multiple times in a single image. So correct classification 

and localization of every defect in the panel is very 

important to know all the root causes responsible for 

defects. In our dataset there are 4 types of MURA defect 

(Note due to confidentiality we cannot show the real 

defect images here but described defect by text below). 

Type 0 and 1 are similar looking defect known as patch 

defect usually small in size and differ only by the location 

where they occur in panel. Type 1 defect only occurs at 

edges, whereas Type 0 can occur anywhere in panel. Type 

2 defect is big defect also referred to as skin peel or skin 

rash defect due to weak visual similarity to skin peel or 

skin rash. Type 3 is very small defect known as spot or 

point defect and they occur with very high probability 

density. 

Recently Deep Learning (DL) based pipelines have 

become state of the art for various recognition and object 

detection tasks. Naturally DL can be thought as a 

promising approach for MURA defect classification and 

localization as well. State of the art DL classification and 

localization pipelines however are trained and tested over 

normal objects of day to day occurrence which have some 

visual constraint over shape and size like bus, train, 

people etc. As discussed above, it is not true for MURA 

defects; their classification is more correlated with the 

manufacturing process compared to their appearance. So 

directly applying standard DL methods tor MURA is 

unlikely to give good results.  

Table 1. Custom F1 Score 

Predicted Class 

Actual Class Type A Other 

IOU >0.5 <0.5 >0.5 <0.5 

Type A  TP
A

FP
A

 , FN
A

FP
other

 , FN
A

FN
A

 , FP
other

Other FP
A

 , FN
other

 FP
A

 , FN
other

 TP
other

FN
other

 , FP
other

In this paper we present a DL pipeline inherited from 

state-of-the-art DL pipeline for classification and 

localization of normal objects (from MS COCO, PASCAl 

VOC 2012, 2007 etc.) and optimized with domain 

specific knowledge to get high accuracy for MURA 

defects. For final metric we define custom F1 score and 

report it per defect as well as for overall test set. Table 1. 

show the custom F1 score metric used in this paper, where 

Intersection of Union (IOU), True Positive (TP), False 

Positive (FP), True Negative (TN) and False Negative 

(FN) are shown in abbreviated form. Type A is any 

MURA defect class for which F1 score is calculated. 

Overall F1 score can then be simply calculated by 

summing TP, TN, FP and FN over all MURA defect 

classes. Our dataset consists of 4 MURA defect classes. 

We have deviated from the standard mean average 

precision (MAP) reported in related literature for 

quantifying the quality of DL pipeline because the 

manufacturing yield is also dependent on recall; bad recall 

can lead to un-necessary tuning of process step 

parameters thus affecting the manufacturing yield.  

Lastly, the contribution are twofold:- 

 We present the first application of DL for MURA

defect classification and localization. We also define

minimum heuristics (no tunable thresholds) pipeline

which is much easier to adapt for newer MURA

dataset (OLED/LED/LCD). Whatever minimum

heuristic is defined comes from inspection process

setup (specifically the different wavelengths used for

imaging) which can be common across different

MURA dataset.

 We present technique for re-using state-of-the-art DL

pipeline for classification and localization trained on

normal objects. We rely heavily on Transfer

Learning (TL) concept and process by fine-tuning

the inherited DL pipelines for our dataset. Some part

of domain specific optimization techniques described

here can be applied to any DL pipeline. So as state-

EAI Endorsed Transactions on 
Cloud Systems 

03 2019 - 07 2019 | Volume 5 | Issue 15 | e6



3 

of-the-art DL pipeline improves for normal objects, 

they can be directly plugged in for improved 

accuracy for MURA.   

Throughout this paper, although we disclose results for 

real MURA defects, we will use publicly available images 

for illustration purposes. This is done in order to preserve 

the confidentiality of sensitive data. The rest of the paper 

is organized as follows. Section 2 gives overview of the 

related work in the field. Section 3 contains detailed 

explanation of proposed pipeline while the results are 

presented in section 4. 

2. Related work

2.1. Literature survey for MURA defect 
inspection 

There are several electrical and vision based inspection 

techniques available for MURA defect inspection [2]–[8].  

In TFT-LCD the voltage-imaging technique measures 

the characteristics of a LCD array by directly measuring 

the actual voltage distribution on the TFT pixels. 

However, probes used for voltage measurement must be 

separately designed for each panel configuration. In 

vision-based techniques, Song et al. [2] developed a 

wavelet based method to detect the MURA defects in 

low-resolution LCD images that involve non-textured 

surfaces. Lu et al. [3] applied the Independent Component 

Analysis (ICA) to detect defects in patterned LCDs. These 

approaches define hand-crafted heuristics and thresholds 

which had to be separately designed for different MURA 

defects. To overcome this limitation traditional machine 

learning (ML) approaches have also been applied. Liu et 

al. [4] used the Locally Linear Embedding (LLE) to 

extract image features and then applied Support Vector 

Machine (SVM) for classification without localization. To 

perform localization Kim et al. [5] used adaptive multi-

level defect detection and probability density estimation 

for TFT-LCD inspection. Lin et al. [6] presented an image 

processing method for defect detection in TFT-LCD 

images and used genetic algorithm (GA) for adjusting 

heuristics automatically. Ngo et al. [7] also presented an 

automatic detection method for MURA by accurate 

reconstruction of the background by training separately on 

the background but using test set images of MURA. In 

non-ML based method, Du-Ming Tsai et al. [8] used 

Fourier transform based technique to remove the repeated 

patterns in background and then used adaptive threshold 

to perform defect segmentation. These traditional ML and 

non-ML methods, though successful in some cases, fail to 

adapt successfully to more generic datasets. 

DL techniques have also been applied for MURA 

defect classification. Hua yang et al. [1] applied TL and 

deployed an Extreme Learning Machine (ELM) for online 

MURA defect classification with impressive results. DL 

methods for both classification and localization of defects 

have been applied for defects other than MURA. Liu Ri-

Xian et al. [9] applied Deep Belief Network (DBN) as 

goodness of fit for defect identification in capsule and 

solar cells. Adaptation of DL in MURA domain is still 

limited mainly due to scarcity of public datasets. Even 

when in-house dataset is available, the number of training 

images are usually less as individual images have to be 

manually labelled. Additionally, due to low contrast of 

defects, manual labels are also not very reliable.  Our 

work overcomes these limitations by utilizing state-of-

the-art DL pipelines trained for normal objects and 

modifying them appropriately for MURA datasets 

containing small number of images. The authors are of the 

opinion that this will facilitate widespread usage of DL in 

MURA domain.  

Figure 1.  Literature Survey for state of art DL for 
normal object detection [12]. (2017. Recent new 
state of art DL networks has come but they can fit 
directly here in this paper) 

2.2. Literature Survey of state of art DL 
pipeline for normal object detection 

For normal object classification and localization, DL 

techniques have outshined other techniques in terms of 

performance. MS COCO, Pascal VOC 2012, 2007 are 

some of the challenges in this area where DL techniques 

have consistently occupied top position in recent years. 

Literature survey reveals two major variants of DL 

pipelines being used in this area: single stage and two 

stage. In single stage classification and localization 

happens in a single pipeline whereas in two stage variant 

two separate pipelines are used. First pipeline gives object 

proposals and second pipeline performs classification and 

localization over the predicted proposals. The pipelines 

can be trained simultaneously or separately. Fig. 1 shows 

a consolidated view of speed vs. accuracy for different 

pipelines. An apparent trade-off is visible for the two 

categories of performance evaluation. In next section we 

will present the base DL network pipeline from which our 

final DL pipeline (working on MURA defect dataset) is 

inherited.  

Deep Learning based MURA Defect Detection
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3. Proposed DL pipeline for MURA

3.1. Choosing Base DL Pipeline 

Figure 2. Single stage and Two stage DL networks 

We tried both single stage and two stage DL based 

classification and localization pipelines to choose the base 

network. In single stage we tried Single Shot Detector 

(SSD) which also encompasses YOLO [10] and for two 

stage we tried variants of Faster Region Convolutional 

Neural Network (Faster RCNN). Fig. 2 illustrates the two 

said pipelines. Faster RCNN performed poorly than SSD 

in default training configuration particularly because of 

the low performance of Region Proposal Network (RPN). 

Overall F1 for Faster RCNN was ~10% while that for 

SSD was ~30%. As MURA defects don’t have well-

defined boundary that segregates them from the 

background, RPN fails to learn the foreground object 

pattern and gives low quality proposals which affect the 

overall accuracy of the Faster RCNN pipeline. 

Comparatively, the dense proposal matching in case of 

SSD performs better. Training with only MURA dataset 

of 344 images was insufficient especially given the depth 

of the pipelines. Typically, dataset of the size of ImageNet 

is required for training such deep networks. So we utilized 

the TL concept: for feature generation in both the 

pipelines we used the pre-trained weights from detection 

pipeline trained on ImageNet. Only the last block of 

feature network was fine-tuned over our dataset. We tried 

with pre-trained weights of VGG16 [13] and RESNET 51 

[14], both giving almost equal score with RESNET 

performing marginally better (~1%) but at the cost of 

increased training time. So for our base model accuracy 

we selected SSD with pre-trained VGG 16 [14] which 

give combined F1 score of ~30%.  

3.2. Modified DL Pipeline for MURA 
inspection 

To increase accuracy of base network we applied many 

optimization strategies which can be broadly divided into 

network specific and domain specific. In next paragraph 

we discuss network specific optimizations followed by 

domain specific optimizations in subsequent paragraph. 

Note that network specific optimization is specific to 

state-of-the-art network chosen as base (SSD for this 

paper). Domain specific optimizations are independent 

and can be applied to any new DL pipeline. 

For network specific optimization we modified two 
things:-  

 Loss Function Optimization:-

The SSD pipeline uses multi-box loss for training. In 
multi-box loss the loss gradients are applied only to 
the overlapping boxes (the proposal box having 
greater than 0.5 overlap with GT) and equal number of 
non-overlapping boxes randomly chosen from all the 
proposals. This accounts for less than 1% of boxes 
being trained per batch. This causes training to be 
slow and also many of the boxes remain un-trained 
even after the training process (mainly due to low 
training set size of about 344 images compared to 
millions of images in ImageNet). We changed the 
multi-box loss with weighted loss where all the 
proposal are simultaneously trained with loss gradient, 
which get proportionately divided between 
overlapping and non-overlapping boxes as per the 
ratio of their count. This results in improvement of F1 
score on test set by ~10%.  

 Generic network optimization:-

Further improvement of the base network was

performed by employing following techniques:

regularization using as dropout, adding batch

normalization to control the variation between layers

and augmenting training dataset to 4x by using

generic modifications such as image flip. These

actions resulted in improvement of test F1 score by

additional ~10%.

Ramya Bagavath Singh et al.

EAI Endorsed Transactions on 
Cloud Systems 

03 2019 - 07 2019 | Volume 5 | Issue 15 | e6



5 

For domain specific optimization we perform following:- 

 Image pre-processing:-

Figure 3. Pseudocode for modified standardization 
used as pre-processing  

We tried pre-processing steps to specifically increase 
contrast between defect and background. Fig. 3 shows 
the pseudocode for modified standardization which 
was found to increase the contrast between the defects 
and background the most. This preprocessing method 
increased the F1 score by additional ~10%. 

 Domain specific data augmentation:-

In our dataset defects of type 0, 1 and 3 (especially 
type 3) are small defects compared to panel image size 
whereas type 2 is much bigger defect. So we define a 
pre-processing step exclusively for small defects 
which we call as crop and combine as illustrated in 
Fig. 4. We perform ordered crop and during training 
we supply only those crops which contain defect. 
However during testing we supply all the crops in 
ordered fashion and perform concatenation of the 
result. This technique increases the F1 score of smaller 
defects (especially for Type 3 which was more than 
~10% increase) but decreases score for the bigger 
defects. Overall Score increased marginally by ~5% as 
our dataset contained more number of smaller defects. 

Figure 4. Crop and Combine data 
augmentation technique

 Ensemble Network: -

Due to large correlation of MURA defect classes with 
background manufacturing steps, defects from 
different classes may appear similar. We observed this 
empirically as well; the trained DL network gets 
confused with similar looking defects. So we divided 
the network into separate networks; each network 
detecting different class of similar looking defect. 
Also as crop and combine technique (figure 4 above) 
can only be applied to small defects, we trained 
separate networks for bigger and smaller defects as 
well. We trained an ensemble of three networks as 
shown in Fig. 5: first network trained for type 0 and 1, 
second network trained for type 2 and third network 
trained for type 3. Note that even though type 0 and 
type 1 look similar, network didn’t confuse between 
them because type 1 only appeared at edges of the 
panel image. During testing we passed test images to 
all the networks and consolidated the output. Each 
network performed better individually (~5% increase) 
on their specific test sets containing only the defects 
for which they were trained; however the overall score 
decreases by ~5% due to increase in false positive 
cases (especially for the case when test image of 
defect was supplied to network which was trained for 
other defect).  

 Wavelength based filtering before final prediction

(Information specific to Inspection Setup

instrument):-

Table 2. Wavelength Filtering 

MURA Defect Class Wavelength Rule 

Type 0 All wavelength except 
wavelength index 0 

Type 1 Only wavelength index 1 

Type 2 Only wavelength index 2 

Type 3 Only wavelength index 0 

In our dataset all defects (type 0, 1, 2 and 3) are 

provided in different wavelength. We empirically 

learnt from our training history (past train F1 Scores) 

that for each defect class, input images 

corresponding to certain wavelengths result in 

improved performance of the DL network. With this 

information we created a rule based filter (shown in 

table 2) using the wavelength of input image and 

added it just before calculating final metric in our 

ensemble network setup. Thus, as per the rule in 

table 2, DL network prediction of type 0 on any input 

wavelength image other than 0 would be trusted. The 

resulting ensemble network with this filtering 

technique increased overall F1 score by about ~30% 

giving the overall final score of ~80%. This huge 

increase in score depicts the importance of domain 

specific knowledge especially in case of MURA 

defects. 

Deep Learning based MURA Defect Detection
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Figure 5. Depicting the general optmization 
strategy followed in this paper (top). Final DL 
Network used for MURA dataset (bottom). 

4. Results and conclusion

Our in-house MURA dataset consisted of 344 images 
as already mentioned. We performed 5 fold cross-
validation on our dataset as well as for each fold we 
ran train and test evaluation for 5 times. This is to 
ensure that we average out any effect due to random 
initialization of parameter. Due to large time in 
training we did not integrate hyper-parameter tuning 
to further increase the final F1 score. We fixed the 
training epoch to 100 and saved model state after each 
epoch. For reporting metric we take mean of the 25 F1 
values as well as the standard deviation of the same. 
Table 3 shows the result summary. One can also see 
how the F1 score changes with induction of additional 
analysis methods. 
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 Table 3. Result table 

Dataset (MURA 
(1480X720)(344 
images) 

F1 Score (Table 1) in 
percentage on 20% test 
split. Reported = mean 
score (standard deviation) 

Processing Time in 
milli-sec (ms) 

Base Network 
(SSD) 

(1 model to train) 

Type 0=11.53 (1.32) 
Type 1=10.71 (0.64) 
Type 2=83.86 (1.40) 
Type 3 = 7.24 (2.20) 
Overall=30.51 (2.66) 

Training:- 30000 
ms/epoch 

Test:- 50 ms/image 

++a generic

network 
optimization 

(1 model to train) 

Type 0=36.66 (6.32) 
Type 1=44.87 (2.09) 
Type 2=74.11 (1.87) 
Type 3 = 34.17 (9.79) 
Overall=42.94 (5.26) 

Training:- 30000 
ms/epoch 

Test:- 50 ms/image 

++a Image prep-
processing 
(1 model to train) 

Type 0=55.89 (3.30) 
Type 1=57.08 (3.32) 
Type 2=98.89 (1.53) 
Type 3=30.61 (4.27) 
Overall=57.79 (5.12) 

Training:- 30000 
ms/epoch 
Test:- 50 ms/image 

++a Domain 

specific data 
augmentation 
(1 model to train) 

Type 0=59.46 (2.58) 
Type 1=66.42 (2.80) 
Type 2=82.54 (2.28) 
Type 3=40.38 (3.42) 
Overall=61.17 (3.86) 

Training:- 30000 
ms/epoch 
Test:- 50 ms/image 

++a Ensemble 

Network 
(3 models to train) 

*Type0=73.56 (7.85) 
*Type1=70.44 (5.60) 
*Type2=96.76 (5.26) 
*Type3=66.44 (6.69) 
Overall=56.18 (4.86) 

Training:- 70000 

ms/epochb 

Test:- 150 ms/image 

++a Wavelength

based filtering 
before final 
prediction 

(3 models to train) 

Type 0=72.68 (3.81) 
Type 1=99.32 (2.03)  
Type 2=98.65 (2.11) 
Type 3=85.88 (3.94) 
Overall=81.98 (1.98) 

Training:- 70000 

ms/epochb 

Test:- 150 ms/image 

a. Denote increment to previous model state. 

b. With multi GPU this can be performed parallel to reduce time further. 

*Defect Specific test-set is used for getting the results

We have thus demonstrated results for classification and 
localization of MURA defects using state-of-the-art DL 
network with F1~80%, which is the best result of any that 
are reported for this purpose. The pre-processing steps 
and the network design employed can form the basis for 
future work in this field. Due to sensitive nature of 
MURA data, in this paper we could not add actual 
prediction result images of our pipeline over test-dataset. 

References 

[1] H. Yang, S. Mei, K. Song, B. Tao and Z. Yin, (2018)

“Transfer-Learning-Based Online Mura Defect

Classification”, IEEE Transactions on Semiconductor

Manufacturing, vol. 31, no. 1, pp. 116-123.

[2] Y. –C. Song, D.-H. Choi and K.-H. Park, (2006) “Wavelet-

based image enhancement for defect detection in thin film

transistor liquid crystal display panel”, Japanese Journal of

Applied Physics, vol. 45, pp. 5069-5072.

[3] C.-J. Lu and D.-M. Tsai, (2008) “Independent component

analysis based defect detection in patterned liquid crystal

display surfaces,” Image and Vision Computing, vol. 26,

pp. 955-970.

[4] Y.-H. Liu, Y.-K. Huang and M.-J. Lee, (2008) “Automatic

inline defect detection for a thin film transistor-liquid

crystal display array process using locally linear

embedding and support vector data description”,

Measurement Science and Technology, vol. 19, 095501.

[5] S.-Y. Kim, Y.-C. Song, C.-D. Jung and K.-H. Park, (2011)

“Effective defect detection in thin film transistor liquid

crystal display images using adaptive multi-level defect

detection and probability density function”, Optical

Review, vol. 18, pp. 191-196.

[6] C.-S. Lin, Y.-C. Liao, Y.-Long Lay, K.-C. Lee and M.-S.

Yeh, (2008) “High-speed TFT LCD defect-detection

system with genetic algorithm,” Assembly Automation,

vol. 28, pp. 69-76.

[7] C. Ngo, Y.-J. Park, J. Jung, R.-U. Hassan and J. Seok,

(2017) “A new algorithm on the automatic TFT ‐ LCD

mura defects inspection based on an effective background

reconstruction”, Journal of Society for Information

Display, vol. 25, pp. 737-75.

[8] Du-Ming Tsai, Yan-Hsin Tseng and S. K. Morris Fan,

(2018) “Defect Inspection of Liquid-Crystal-Display

(LCD) Panels in Repetitive Pattern Images Using 2D

Fourier Image Reconstruction”, International Conference

on Autonomic and Autonomous Systems.

[9] Ri-Xian, L & Ming-Hai, Y & Xian-Bao, (2015) “Defects

detection based on deep learning and transfer learning”,

Metallurgical and Mining Industry, 7, pp. 312-321.

[10] Joseph Redmon, Santosh Divvala, Ross Girshick and Ali

Farhadi, (2015) “You Only Look Once: Unified, Real-

Time Object Detection”, CVPR 2015.

[11] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C.,

(2016) “SSD: Single Shot MultiBox Detector”, in ECCV

2016.

[12] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He

and Piotr Dollár, (2017) “Focal Loss for Dense Object

Detection”, CVPR 2017.

[13] Karen Simonyan and Andrew Zisserman, (2014) “Very

Deep Convolutional Networks for Large-Scale Image

Recognition”, CVPR 2014.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun,

(2015) “Deep Residual Learning for Image Recognition”,

CVPR 2015.

EAI Endorsed Transactions on 
Cloud Systems 

03 2019 - 07 2019 | Volume 5 | Issue 15 | e6




