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Abstract 

A typical microcontroller-based system often includes multiple interfaces with an ability to support clock gating and other low power 
features. For such a complex subsystem, finding issues in block level interaction, low power flows and architecture requires exhaustive 
random test framework at subsystem level along with unit level randomization. There is no standard approach for developing random 
verification environment for such subsystems, thus resulting in increased time for development and maintenance. Debugging issues 
wherein concurrent traffic from different interfaces is active, is challenging and time consuming. In order to support multiple projects 
with different configurations there is need for scalable and structured approach which would help in achieving quality verification 
without affecting time to market. A novel dashboard style architecture proposed in this paper, provides fully scalable solution for 
subsystem level random verification with improved debug ability and execution efficiency, thus contributing to High Velocity 
Development Model (HVDM). With this scalable approach for random verification, bring up time for a new IP in a Sub system random 
verification environment is seen reduced by 60% and time required for achieving tape-in quality coverage is seen reduced by 40%, as 
compared to the traditional approach. The results published are derived from the improvement seen by implementation of this 
methodology in a Low Power Sensor Subsystem that was delivered to multiple SoCs, in time with quality. 
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1. Introduction

Constrained Random Verification (CRV) is becoming 
more critical with increase in design size and complexity. 
Comprehensive verification at Sub System level, 
involving interaction between multiple IPs, interleaved 
with different Low Power states, can be achieved only 
through CRV.  The random verification environment is 
often complex as it involves configuring multiple IPs and 
intersection of flows to enable entry and exit to different 
low power states. Maintaining and adding new IPs to 
existing verification framework is not straightforward 
which results in addition of lot of custom code. Another 
problem is the ramp up time for a verification engineer to 
understand this complex environment and time required 
in debugging.  As time to market (TTM) along with 
quality verification is very important for the success of 
product, there is a need for fully scalable standard random 
test framework with better debug ability and 

controllability.  Currently there is no standard 
methodology that provides or guides on such a 
framework. 

This paper provides tools to attack this complex 
verification challenge in 3 steps: 

1. Creation of a Scalable Dashboard Framework
2. Scalable Monitor for easier Debug
3. “Probability Calculator” as a tool for tightening

the constraints for better coverage

This approach provides random environment that can 
scale from block level directed test to full system level 
random test with concurrent traffic and various low power 
flows. Dashboard structure used in this approach makes it 
scalable and adding a new flow or a Sub-IP becomes easy. 
In order to reduce time required for debugging a test, a 
dashboard monitor is developed. This dashboard monitor 
provides complete picture of various concurrent flows and 
helps in narrowing down debug to a specific flow.  
Typical CRV environment has large number of 
constraints. Modifying constraints for hitting “hard to 
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reach” coverage is cumbersome, and one needs to run a 
full regression and then analyse the coverage report. This 
method may result in several iterations and wastage of 
compute resource and time. This methodology uses a 
static probability calculator which iterates over constraints 
and gives probability of a scenario under all given 
constraints without having to run any regression thus 
saving compute resource and time.  Using this proposed 
solution, the time required for bringing up a new flow 
significantly reduced from ~3days to a one-day effort. 
Modifying stimulus for hitting complex coverage and 
debugging a test failure becomes methodical which results 
in improved speed of execution. This methodology can be 
used effectively to solve the problem of subsystem 
random verification with reusability across projects with 
different configurations.  

2. Overview of the proposed
methodology

This paper will use a typical Microcontroller based 
Subsystem (depicted in Fig. 1.)  as an example, to 
elaborate on the proposed methodology. 

Fig. 1. A typical Microcontroller based Subsystem 

Architecturally, a typical Sub System would have a 
single/ dual core that acts as the Main master, along with 
a DMA which offloads some of the traffic from the core 
and is the secondary Master. The subsystem would 
support multiple peripheral IPs which can serve both as 
masters or slaves. And one or more system memories that 
sit on a network fabric. There will be a Clocks and reset 
unit and a Power Management unit to control all the low 
power states supported by the subsystem.  

The verification state space of such a subsystem will 
entail ability to setup requirements and configurations to 
enable all the valid masters to generate traffic and enable 
access to all slaves, concurrently. If the subsystem 
supports one or more low power states, the verification 
state space increases multi folds where it needs to cross 
all the system traffic with low power scenarios as well.  
Just randomly kicking off all the traffic generators may 
provide functional coverage w.r.t concurrency of traffic in 
the subsystem but will not provide the ability to the user 
to control the traffic streams of interest or the ability to 
control the entry/exit to/from desired low power states 
within different windows of interest. It will also not 

provide fine control to the user to generate wake up at 
interesting windows in the subsystem to exit the low 
power states. That fine control can be achieved only if 
there is a framework that keeps track of state of all the 
components of the subsystem and has handles to control 
entry/ exit of the subsystem in and out of active and low 
power state at desired windows of interest. 

This paper proposes such a methodology to develop a 
framework which provides ample control to the validator 
of a complex subsystem handling multiple low power 
states, to achieve desired validation coverage with quality 
in minimal duration. It also ensures reusability and 
portability of the different components of the subsystem 
Random engine to serve different SoCs or even different 
generations of the same SoC [1]. 

The fundamental aspect of this proposed methodology 
is to use constrained random verification along with 
scalable dashboard mechanism [2]. Fig. 2 gives the 
architectural view of the main components used in this 
methodology. The two main components are called, the 
C-Engine and the SV-Engine. Few of the sub-components
may vary a little from one subsystem to another however
the overall architecture would remain the same.

A. C Engine

C-Engine as name suggest is a random test case software
written in C-language that runs on microcontroller core of
the subsystem for configuring IPs, initiating low power
flows and respond to host-initiated flows. This component
is the backbone for scalability and consists of Dashboard
(DB), Scheduler and APIs and Interrupt Service Routines
(ISR) for controllers within subsystem.
Dashboard is a simple C Data structure where in each row
corresponds to one controller or low power flow and it
has as many rows as number of controllers and low power
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Fig. 2. Architectural view of the proposed methodology
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features within subsystem. Adding a new controller is 
equivalent to increasing dashboard size by one and adding 
API and ISR within C-engine for a new controller. 
Typical dashboard structure is shown in Fig. 3.  

Fig. 3. Dashboard Structure with Controller flows 

Each column of the DB together gives the status of any 
flow corresponding to each row and consists of static 
(project specific) and dynamic (run time) bits. The DB is 
initialized once, setting project specific bits with 
appropriate values and dynamic bits with default values.  

For the purpose of discussion in this paper, the 
example assumes two project static bits: “Vnn 
Dependency” and “TCG Dependency”. “Vnn 
dependency” bit indicates if the specific Controller/ agent 
requires Vnn signal to be set before it can generate traffic. 
And the “Trunk Clock Gating (TCG) dependency” bit 
indicates if the controller/ agent needs to be in quiescence 
if the subsystem must enter a low power state. Task 
Enable (TE) bit if set, means a flow should be enabled. 
Task Scheduler (TS) bit when set indicates a flow is 
already triggered. TCG lock bit is used for preventing 
triggering of a new flow so that the system can enter clock 
gated state. TE bits are programmed randomly based on a 
trigger controlled by SV-engine. DB acts as a book 
keeping and used by scheduler explained below, to 
schedule tasks based on status bits. DB also contains API 
pointers that simplifies job of a scheduler.  By setting a 
TE bit for any one agent this fully random test can used as 
a directed IP test.    

Scheduler is a Finite State Machine (FSM) that iterates 
over DB in random order and calls controller API after its 
dependency bits are satisfied. Scheduler is completely 
agnostic to different entries in the DB and does a 
mechanical job of updating DB and calling API’s based 
on current state of DB. Scheduler uses API pointer in a 
DB to call the correct API. Due to this implementation 
scheduler need not change with respect to addition or 
removal of rows in the DB. Fig. 4. Shows the scheduler 

FSM.  

Fig. 4.  Scheduler FSM 

Consider for example a DMA controller entry in DB. 
Initial state for DMA after DB initialization would be Idle 
with its Vnn and TCG dependency bits set. When SV 
engine sets TE bit, state of the entry changes to TaskEn. 
Scheduler reads this entry and request for Vnn by setting 
Vnn_req bit as DMA would need Vnn for DRAM data 
transfer which is indicated by Vnn dependency bit. This 
changes entry state from TaskEn to 
SetupVnnandWaitforAck.  Once Vnn_ack is received 
scheduler sets TS bit and invokes corresponding API for 
configuration of DMA and state changes to CallAPI. 
When the DMA transfer is over and an interrupt is 
asserted, ISR clears TE and TS bits and DMA entry enters 
Cleanup Vnn state. Scheduler now de-asserts Vnn, 
clearing Vnn_req and Vnn_ack bits in DB and state goes 
back to Idle.    

B. SV Engine

SV engine handles 3 main tasks of managing all the
randomization needed for covering the subsystem state 
space: 

1. Generating all the legal traffic from external
world to the subsystem

2. Creating quiescence condition needed for
entering clock gate

3. Generate random constraints for 1 and 2

All the randomization needed by the subsystem, both 
for internal traffic within the sub-system and external 
traffic, is achieved by SV engine using weighted 
constrained randomization. The random data generated by 
SV engine is backdoor jammed in pre-assigned locations 
in SRAM and systematically picked up by C engine and 
used for all internal controller traffic thus saving a lot of 
microcontroller cycles which would otherwise get 
consumed in creating randomization through 
microcontroller.  

Project Specific 
Static bits Flow Dynamic status bits 

EAI Endorsed Transactions on 
Cloud Systems 

03 2019 - 07 2019 | Volume 5 | Issue 15 | e3



Ruchita Pathak, Vishal Kumar Dewan and Aravind Bhat 

4 

The SV traffic generator manages triggering of all 
traffic external to the sub-system, like GPIO or IPC that 
can wake the subsystem. Relaunching of traffic threads is 
introduced in order to maintain high density of traffic 
throughout traffic phase. It depicts a system level 
Manager which triggers and controls all the valid traffic 
threads on a platform [3]. 

The SV engine achieves quiescence for Low Power 
(LP) states by using “anchor mechanism”. Anchors are 
typically, certain microcontroller states, FSM states 
within the subsystem or some RTL signals of interest. The 
SV engine lets the subsystem reach a state (anchor) of 
interest before triggering off external traffic causing the 
wakeup of the system from the LP state. 

C and SV engines work together to make subsystem 
random test framework. SV engine randomizes agent 
configuration which is loaded it into the SRAM and 
initiates trigger for randomly setting TE bits in DB. 
Scheduler iterates over DB and takes appropriate action as 
explained above for DMA entry. Once programmed 
number of loops are done SV engine triggers end of the 
test.     

Fig. 5. C and SV engine monitors dump 

3. Debug Efficiency 

Debugging test failure at chip level can be complex due to 
concurrent traffic from different controllers. In order to 
achieve HVDM, reducing debug time becomes critical. 
To improve debug time, C-engine and SV engine 
monitors were developed that gives overall picture of 
concurrent traffic from both microcontroller side and 
host-initiated traffic and helps in quickly identifying the 
source of failure. Fig. 5. below Shows C and SV engine 
monitors dump.  
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4. Coverage Goal

With the increase in the number of Controllers in the 
subsystem, supported low power states and number of 
wake sources, the complexity of the subsystem can grow 
rapidly. This results in large number of functional Cover 
Groups, cross coverage and coverage for   corner case 
scenarios. To address this need of meeting complex 
coverage, finer control is required on the stimulus. With 
large number of inter dependent constraints, predicting 
the occurrence of a scenario, becomes extremely essential 
and difficult at the same time. This problem was 
addressed by innovating the idea of “Probability 
Calculator” (PC). PC can be used to statically calculate 
the probability of a random variable, without running a 
single cycle of simulation. 

By using probabilities of all the random variables 
including their weightage, it calculates probability of a 
certain scenario for e.g.  “A successful entry into Deep 
Sleep with Memories power Gated and Logic not Power 
Gated and wakeup by a Ethernet Rx Magic Packet event”.  
Traditional method has been to run regressions, generate 
and merge coverage and then get feedback from the 
coverage report to take any corrective actions. But by 
using this calculator as shown in Fig. 6. turnaround time 
is reduced from several hours to minutes. Based on the 
feedback from the Calculator, corrective actions can be 
taken in terms of either running more seeds upfront or by 
adjusting the weightage on the random variable 
constraint, affecting the probability of a scenario.  

Fig. 6. Stimulus control with Probability Calculator 

5. Results

Table 1 presents improvements measured in various areas 
of verification with proposed solution for a Subsystem 
that was delivered to multiple SoCs 

Table 1. Improvements achieved with proposed 
solution 

areas of 
Improvemen

t  

Traditional 
Method  

Proposed 
Solution  

%Improveme
nt  

Justification  

Integration 
of new IP 

flow  

~3days  ~1day  66%  Scalable and 
structured 
framework  

Debug time  ~2days  ~1day  50%  C and SV engine 
monitors  

Functional 
Coverage 
Targets 

~3days  ~2days  33%  Flow 
controllability 
and  
Static probability 
calculator   

6. Summary

The proposed solution helped in achieving High Velocity 
Development Model with quality verification. Currently 
no standard framework for subsystem random verification 
exists which can be reused across different subsystems. 
Structured and scalable implementation used in this 
methodology enabled easy integration of a new IPs and 
power flows into existing Random Engine. This 
methodology can be adapted by any microcontroller-
based subsystem with little modification specific to the 
subsystem. Proposed static probability calculator and 
innovative debug solution proved very useful in reducing 
debug efforts and time required for achieving 100% 
coverage goal.      
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