
1

Random verification Strategy for Microcontroller based
Subsystems for faster Convergence
Ruchita Pathak1,*, Vishal Kumar Dewan1 and Aravind Bhat1

1Intel technologies, Bangalore, India

Abstract

A typical microcontroller-based system often includes multiple interfaces with an ability to support clock gating and other low power
features. For such a complex subsystem, finding issues in block level interaction, low power flows and architecture requires exhaustive
random test framework at subsystem level along with unit level randomization. There is no standard approach for developing random
verification environment for such subsystems, thus resulting in increased time for development and maintenance. Debugging issues
wherein concurrent traffic from different interfaces is active, is challenging and time consuming. In order to support multiple projects
with different configurations there is need for scalable and structured approach which would help in achieving quality verification
without affecting time to market. A novel dashboard style architecture proposed in this paper, provides fully scalable solution for
subsystem level random verification with improved debug ability and execution efficiency, thus contributing to High Velocity
Development Model (HVDM). With this scalable approach for random verification, bring up time for a new IP in a Sub system random
verification environment is seen reduced by 60% and time required for achieving tape-in quality coverage is seen reduced by 40%, as
compared to the traditional approach. The results published are derived from the improvement seen by implementation of this
methodology in a Low Power Sensor Subsystem that was delivered to multiple SoCs, in time with quality.

Keywords: HVDM, Scalable, Random verification, low power, Microcontroller, Controllability, Coverage

Received on 15 May 2019, accepted on 23 June 2019, published on 16 July 2019

Copyright © 2019 Ruchita Pathak et al., licensed to EAI. This is an open access article distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and
reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.16-7-2019.162214

*Corresponding author. Email: Ruchita.chaddha@intel.com

1. Introduction

Constrained Random Verification (CRV) is becoming
more critical with increase in design size and complexity.
Comprehensive verification at Sub System level,
involving interaction between multiple IPs, interleaved
with different Low Power states, can be achieved only
through CRV. The random verification environment is
often complex as it involves configuring multiple IPs and
intersection of flows to enable entry and exit to different
low power states. Maintaining and adding new IPs to
existing verification framework is not straightforward
which results in addition of lot of custom code. Another
problem is the ramp up time for a verification engineer to
understand this complex environment and time required
in debugging. As time to market (TTM) along with
quality verification is very important for the success of
product, there is a need for fully scalable standard random
test framework with better debug ability and

controllability. Currently there is no standard
methodology that provides or guides on such a
framework.

This paper provides tools to attack this complex
verification challenge in 3 steps:

1. Creation of a Scalable Dashboard Framework
2. Scalable Monitor for easier Debug
3. “Probability Calculator” as a tool for tightening

the constraints for better coverage

This approach provides random environment that can
scale from block level directed test to full system level
random test with concurrent traffic and various low power
flows. Dashboard structure used in this approach makes it
scalable and adding a new flow or a Sub-IP becomes easy.
In order to reduce time required for debugging a test, a
dashboard monitor is developed. This dashboard monitor
provides complete picture of various concurrent flows and
helps in narrowing down debug to a specific flow.
Typical CRV environment has large number of
constraints. Modifying constraints for hitting “hard to

EAI Endorsed Transactions on
Cloud Systems

03 2019 - 07 2019 | Volume 5 | Issue 15 | e3

EAI Endorsed Transactions
on Cloud Systems Research Article

http://creativecommons.org/licenses/by/3.0/

Ruchita Pathak, Vishal Kumar Dewan and Aravind Bhat

2

reach” coverage is cumbersome, and one needs to run a
full regression and then analyse the coverage report. This
method may result in several iterations and wastage of
compute resource and time. This methodology uses a
static probability calculator which iterates over constraints
and gives probability of a scenario under all given
constraints without having to run any regression thus
saving compute resource and time. Using this proposed
solution, the time required for bringing up a new flow
significantly reduced from ~3days to a one-day effort.
Modifying stimulus for hitting complex coverage and
debugging a test failure becomes methodical which results
in improved speed of execution. This methodology can be
used effectively to solve the problem of subsystem
random verification with reusability across projects with
different configurations.

2. Overview of the proposed
methodology

This paper will use a typical Microcontroller based
Subsystem (depicted in Fig. 1.) as an example, to
elaborate on the proposed methodology.

Fig. 1. A typical Microcontroller based Subsystem

Architecturally, a typical Sub System would have a
single/ dual core that acts as the Main master, along with
a DMA which offloads some of the traffic from the core
and is the secondary Master. The subsystem would
support multiple peripheral IPs which can serve both as
masters or slaves. And one or more system memories that
sit on a network fabric. There will be a Clocks and reset
unit and a Power Management unit to control all the low
power states supported by the subsystem.

The verification state space of such a subsystem will
entail ability to setup requirements and configurations to
enable all the valid masters to generate traffic and enable
access to all slaves, concurrently. If the subsystem
supports one or more low power states, the verification
state space increases multi folds where it needs to cross
all the system traffic with low power scenarios as well.
Just randomly kicking off all the traffic generators may
provide functional coverage w.r.t concurrency of traffic in
the subsystem but will not provide the ability to the user
to control the traffic streams of interest or the ability to
control the entry/exit to/from desired low power states
within different windows of interest. It will also not

provide fine control to the user to generate wake up at
interesting windows in the subsystem to exit the low
power states. That fine control can be achieved only if
there is a framework that keeps track of state of all the
components of the subsystem and has handles to control
entry/ exit of the subsystem in and out of active and low
power state at desired windows of interest.

This paper proposes such a methodology to develop a
framework which provides ample control to the validator
of a complex subsystem handling multiple low power
states, to achieve desired validation coverage with quality
in minimal duration. It also ensures reusability and
portability of the different components of the subsystem
Random engine to serve different SoCs or even different
generations of the same SoC [1].

The fundamental aspect of this proposed methodology
is to use constrained random verification along with
scalable dashboard mechanism [2]. Fig. 2 gives the
architectural view of the main components used in this
methodology. The two main components are called, the
C-Engine and the SV-Engine. Few of the sub-components
may vary a little from one subsystem to another however
the overall architecture would remain the same.

A. C Engine

C-Engine as name suggest is a random test case software
written in C-language that runs on microcontroller core of
the subsystem for configuring IPs, initiating low power
flows and respond to host-initiated flows. This component
is the backbone for scalability and consists of Dashboard
(DB), Scheduler and APIs and Interrupt Service Routines
(ISR) for controllers within subsystem.
Dashboard is a simple C Data structure where in each row
corresponds to one controller or low power flow and it
has as many rows as number of controllers and low power

Fabric

Core
DMA

I2C Ethernet SPI PCIe Memory
Controller

Memory

Power
Management Clocks

UART

Fig. 2. Architectural view of the proposed methodology

EAI Endorsed Transactions on
Cloud Systems

03 2019 - 07 2019 | Volume 5 | Issue 15 | e3

Random verification Strategy for Microcontroller based Subsystems for faster Convergence

3

features within subsystem. Adding a new controller is
equivalent to increasing dashboard size by one and adding
API and ISR within C-engine for a new controller.
Typical dashboard structure is shown in Fig. 3.

Fig. 3. Dashboard Structure with Controller flows

Each column of the DB together gives the status of any
flow corresponding to each row and consists of static
(project specific) and dynamic (run time) bits. The DB is
initialized once, setting project specific bits with
appropriate values and dynamic bits with default values.

For the purpose of discussion in this paper, the
example assumes two project static bits: “Vnn
Dependency” and “TCG Dependency”. “Vnn
dependency” bit indicates if the specific Controller/ agent
requires Vnn signal to be set before it can generate traffic.
And the “Trunk Clock Gating (TCG) dependency” bit
indicates if the controller/ agent needs to be in quiescence
if the subsystem must enter a low power state. Task
Enable (TE) bit if set, means a flow should be enabled.
Task Scheduler (TS) bit when set indicates a flow is
already triggered. TCG lock bit is used for preventing
triggering of a new flow so that the system can enter clock
gated state. TE bits are programmed randomly based on a
trigger controlled by SV-engine. DB acts as a book
keeping and used by scheduler explained below, to
schedule tasks based on status bits. DB also contains API
pointers that simplifies job of a scheduler. By setting a
TE bit for any one agent this fully random test can used as
a directed IP test.

Scheduler is a Finite State Machine (FSM) that iterates
over DB in random order and calls controller API after its
dependency bits are satisfied. Scheduler is completely
agnostic to different entries in the DB and does a
mechanical job of updating DB and calling API’s based
on current state of DB. Scheduler uses API pointer in a
DB to call the correct API. Due to this implementation
scheduler need not change with respect to addition or
removal of rows in the DB. Fig. 4. Shows the scheduler

FSM.

Fig. 4. Scheduler FSM

Consider for example a DMA controller entry in DB.
Initial state for DMA after DB initialization would be Idle
with its Vnn and TCG dependency bits set. When SV
engine sets TE bit, state of the entry changes to TaskEn.
Scheduler reads this entry and request for Vnn by setting
Vnn_req bit as DMA would need Vnn for DRAM data
transfer which is indicated by Vnn dependency bit. This
changes entry state from TaskEn to
SetupVnnandWaitforAck. Once Vnn_ack is received
scheduler sets TS bit and invokes corresponding API for
configuration of DMA and state changes to CallAPI.
When the DMA transfer is over and an interrupt is
asserted, ISR clears TE and TS bits and DMA entry enters
Cleanup Vnn state. Scheduler now de-asserts Vnn,
clearing Vnn_req and Vnn_ack bits in DB and state goes
back to Idle.

B. SV Engine

SV engine handles 3 main tasks of managing all the
randomization needed for covering the subsystem state
space:

1. Generating all the legal traffic from external
world to the subsystem

2. Creating quiescence condition needed for
entering clock gate

3. Generate random constraints for 1 and 2

All the randomization needed by the subsystem, both
for internal traffic within the sub-system and external
traffic, is achieved by SV engine using weighted
constrained randomization. The random data generated by
SV engine is backdoor jammed in pre-assigned locations
in SRAM and systematically picked up by C engine and
used for all internal controller traffic thus saving a lot of
microcontroller cycles which would otherwise get
consumed in creating randomization through
microcontroller.

Project Specific
Static bits Flow Dynamic status bits

EAI Endorsed Transactions on
Cloud Systems

03 2019 - 07 2019 | Volume 5 | Issue 15 | e3

Ruchita Pathak, Vishal Kumar Dewan and Aravind Bhat

4

The SV traffic generator manages triggering of all
traffic external to the sub-system, like GPIO or IPC that
can wake the subsystem. Relaunching of traffic threads is
introduced in order to maintain high density of traffic
throughout traffic phase. It depicts a system level
Manager which triggers and controls all the valid traffic
threads on a platform [3].

The SV engine achieves quiescence for Low Power
(LP) states by using “anchor mechanism”. Anchors are
typically, certain microcontroller states, FSM states
within the subsystem or some RTL signals of interest. The
SV engine lets the subsystem reach a state (anchor) of
interest before triggering off external traffic causing the
wakeup of the system from the LP state.

C and SV engines work together to make subsystem
random test framework. SV engine randomizes agent
configuration which is loaded it into the SRAM and
initiates trigger for randomly setting TE bits in DB.
Scheduler iterates over DB and takes appropriate action as
explained above for DMA entry. Once programmed
number of loops are done SV engine triggers end of the
test.

Fig. 5. C and SV engine monitors dump

3. Debug Efficiency

Debugging test failure at chip level can be complex due to
concurrent traffic from different controllers. In order to
achieve HVDM, reducing debug time becomes critical.
To improve debug time, C-engine and SV engine
monitors were developed that gives overall picture of
concurrent traffic from both microcontroller side and
host-initiated traffic and helps in quickly identifying the
source of failure. Fig. 5. below Shows C and SV engine
monitors dump.

EAI Endorsed Transactions on
Cloud Systems

03 2019 - 07 2019 | Volume 5 | Issue 15 | e3

5

4. Coverage Goal

With the increase in the number of Controllers in the
subsystem, supported low power states and number of
wake sources, the complexity of the subsystem can grow
rapidly. This results in large number of functional Cover
Groups, cross coverage and coverage for corner case
scenarios. To address this need of meeting complex
coverage, finer control is required on the stimulus. With
large number of inter dependent constraints, predicting
the occurrence of a scenario, becomes extremely essential
and difficult at the same time. This problem was
addressed by innovating the idea of “Probability
Calculator” (PC). PC can be used to statically calculate
the probability of a random variable, without running a
single cycle of simulation.

By using probabilities of all the random variables
including their weightage, it calculates probability of a
certain scenario for e.g. “A successful entry into Deep
Sleep with Memories power Gated and Logic not Power
Gated and wakeup by a Ethernet Rx Magic Packet event”.
Traditional method has been to run regressions, generate
and merge coverage and then get feedback from the
coverage report to take any corrective actions. But by
using this calculator as shown in Fig. 6. turnaround time
is reduced from several hours to minutes. Based on the
feedback from the Calculator, corrective actions can be
taken in terms of either running more seeds upfront or by
adjusting the weightage on the random variable
constraint, affecting the probability of a scenario.

Fig. 6. Stimulus control with Probability Calculator

5. Results

Table 1 presents improvements measured in various areas
of verification with proposed solution for a Subsystem
that was delivered to multiple SoCs

Table 1. Improvements achieved with proposed
solution

areas of
Improvemen

t

Traditional
Method

Proposed
Solution

%Improveme
nt

Justification

Integration
of new IP

flow

~3days ~1day 66% Scalable and
structured
framework

Debug time ~2days ~1day 50% C and SV engine
monitors

Functional
Coverage
Targets

~3days ~2days 33% Flow
controllability
and
Static probability
calculator

6. Summary

The proposed solution helped in achieving High Velocity
Development Model with quality verification. Currently
no standard framework for subsystem random verification
exists which can be reused across different subsystems.
Structured and scalable implementation used in this
methodology enabled easy integration of a new IPs and
power flows into existing Random Engine. This
methodology can be adapted by any microcontroller-
based subsystem with little modification specific to the
subsystem. Proposed static probability calculator and
innovative debug solution proved very useful in reducing
debug efforts and time required for achieving 100%
coverage goal.

Acknowledgements.
The authors would like to acknowledge Mangesh
Kondalkar for his valuable contributions towards
development of this Methodology and implementation.

References

[1] Hu Zhaohui, A. Pierres, Hu Shiqing, Chen Fang, P.
Royannez, Eng Pek See,Yean Ling Hoon, “Practical and
efficient SOC verification flow by reusing IPtestcase and
testbench”, 2012 International SoC Design
Conference (ISOCC),IEEE, 4-7 Nov. 2012.

[2] Sainath Karlapalem, Shashank Venugopal,
“Scalable, Constrained Random Software driven
Verification”, 17th International Workshop on
Microprocessor and SOC Test and Verification, 2016.

Modify constraints file

Randomize constraint class N times

Dump post randomize result

Plot the probability of a scenario

Probability as expected
?

Run a regression

Sc
en
ari
o
de
fini
tio
n
in

pe
rl

No

Yes

Random verification Strategy for Microcontroller based Subsystems for faster Convergence

EAI Endorsed Transactions on
Cloud Systems

03 2019 - 07 2019 | Volume 5 | Issue 15 | e3

Ruchita Pathak, Vishal Kumar Dewan and Aravind Bhat

6

[3] I. Silas, I. Frumkin, E. Hazan, E. Mor, G.
Zobin, "System-level validation of the intel
Pentium M processor", Intel Technol. J., vol. 7, no. 2,
pp. 38-43, May 2003.

EAI Endorsed Transactions on
Cloud Systems

03 2019 - 07 2019 | Volume 5 | Issue 15 | e3

	2. Overview of the proposed methodology

