
1 
 

Impact of Shuffle on Trajectories on Certain Classes of Partial array 
Languages 

H. Geetha1 K. Suresh2 P. Venkatesh Babu3 and T. Kalyani4 

1,2,4Department of Mathematics,  
1,2 St. Joseph’s College of Engineering,  

4 St. Joseph’s Institute of Technology 
Chennai-119, Tamilnadu, India.   

3 Department of Architecture,  
SRM SEAD, SRMIST,  

Chennai-89, Tamil Nadu, India.  
E-mail: geethahvenki@hotmail.com, dhivasuresh@gmail.com,sp.v.babu@gmail.com 

 

Abstract. In the recent years many tools are being used for developing picture languages. The vital and most interesting among 
such tools is the shuffle on trajectories. The above tool can be applied on various disciplines. In this paper,a Finite State Matrix 
Partial array Automaton is defined and someresults over Finite State Matrix Partial array Automaton and Online Tessellation 
Partial Automaton are studied. 
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1  Introduction 

 
Berstel and Boasson [1] introduced the concept of partial words in their study on biological molecules. This 

concept of partial words was converted to arrays and thus the partial arrays were introduced and their combinatorial 
studies were also done. The recognizability of partial arrays using online tessellation automaton was studied in depth 
in [7]. The introduction of shuffle on trajectories and syntactic constraints were studied by mateescu et.al [5]. The 
concept of trajectories was applied to contextual array grammars in [4]. The shuffle on trajectories over finite array 
languages was studied [2]. Shuffle on array languages generated by array grammars was discussed in [6]. Inspired by 
the above studies, the tool shuffle on trajectories over partial array languages and its effects on certain classes of partial 
arrays were introduced [3].  

 In this paper we define Finite State Matrix Partial Array automaton and applied shuffle on trajectories to 
arrive two interesting theorems. 

 
2  Preliminaries 

In this section we give the definition of partial array and online Tessellation partial automaton.  
 

 
Definition. 1 

A deterministic online tessellation partial automaton (OTPA) is 0= ( { }, , , , , )δΣ∪ ◊ hQ Q q FB  where Q is a 
set of states, hQ  is the states associated with the holes ◊ . 0q Q∈  is the begining state. ( )hF Q Q⊆ ∪  is a set of 
finishing states, the mapping δ  function defined as 1 1 1: { }δ × ×Σ∪ ◊ →Q Q Q . Where 1 = hQ Q Q∪ . For 
computation of a two-dimensional OTPA we refer [7]. The language of finite partial arrays recognized by OTPA, B  
is denoted by ( )L B  and ( )OTPAL  is the set of partial array languages recognized by OTPA.   
 
3  Main Results 
 

 In this section we define finite state matrix partial array automaton and a theorem on regular partial matrix 
array languages and on recognizable partial array Languages.   

 
Definition. 2 

A finite state matrix partial array automaton (FSMPA)is constructedas = ( , { }, , , , , , ,$)δ δΣ∪ ◊ Γ ' '
h h h hQ S F FB  

where 1=h h h k hQ Q Q Q∪ ∪ ∪ , 1=ih j hQ Q φ∩  for i j≠ , that includes the states associated to ◊ . Σ  and Γ  are 
the finite set of inputs and stack symbols respectively, with # | |= kΓ . Each ihQ  has an initial state either { }iq  or 
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{ }hiq  and a final state { }if  or { }hif = 1, ,i k . Define ( )=1
= { } { }}k'

h i hii
F f f∪  is the set of transition states. 

( )=1
= { } { }k

h i hii
S q q∪  the set of start states. hQ  has an initial state 0q  and h hF Q⊆  is the set of end states. 

$ ∈ Σ  is to denote the end .δ  is defined as : { } { }ih ihQ Qδ ε×Σ∪ ◊ → × , { } { } $i hif f∪ ×  into 0( { })h iS q s∪ × , here 

is  is the stack withrespect to .ihQ 'δ  is defined from hQ ×Γ  into the finite subsets of hQ . Initially , the input 
matrix is placed at the end marker.  

 1

1

$ $

m mn

i in

b b

b b





  



 

where { },1ijb i m∈Σ∪ ◊ ≤ ≤  and 1 j n≤ ≤ . 
 To begin with, the FSMPA starts recognizing from bottom to top as per δ  transition, after reaching the 

first $  it writes a symbol from Γ and then reaches the next column. This process is repeated untill the matrix of size 
m n×  is read. At this stage the storage will have n  symbols. Now, using 'δ  from left to right and attains  final 
state, if not the matrix is rejected .  

 The configuration ( , ( , ), , )p i j x t  where p  the present state in hQ , ( , )i j  is the location of the input, x  
is a partial word, t  is the number of positions from left.  

 If ( , ( 1, ), , )q m n x r+  is an arrangement  and ( , )' q zδ has 'q implies 
( , ( 1, ), , )q m n x r+ ( , ( 1, ), , 1)'

'
q m n z r

δ
+ +�  where q belongs to '

hF  and 'q  is in hS .    

Definition. 3 
The set of all languages accepted by FSMPA is denoted as 

* *
0

( ) = {[ ], = 1,2, , = 1,2, , , 1 / { },

( , (1,1), ,1) ( , ( 1, ), ,1) ( , ( 1, ), , )
δ δ

ε

≥ ∈Σ∪ ◊

+ +

 ij ij

'

'

L b i m j n m n b

p q m n x p m n x n

B

� �  

with p  in hS , 'p  in hF  and x  in +Γ }   
Note: The languages accepted by finite state matrix partial array automaton (FSMPA) are all regular partial matrix 
array languages.  
 
Theorem. 1 

1L  and 2L are  the regular partial matrix array languages and if * *{ , } { , }T r u l d⊆ ∪ , a regular set of 
trajectories, then 21 TШL L is also a regular partial matrix array language.   

Proof.  
 Let 1 1 1 1 1 1 1 1= ( , { }, , , , , , ,$)' '

h h h hQ S F Fδ δΣ∪ ◊ ΓA  and  

2 2 2 2 2 2 2 2= ( , { }, , , , , , ,$)' '
h h h hQ S F Fδ δΣ∪ ◊ ΓA  are the two FSMPA and thus 1 1( ) =L LA  and 2 2( ) =L LA . 

1hQ  and 2hQ  are defined respectively as  

1 1 11 12 1= , , ,h h h h kh
Q Q Q Q Q∪ ∪ ∪  with 1 1i jQ Q≠  and  

2 2 21 22 2= , ,h h h h k hQ Q Q Q Q∪ ∪ ∪  with 2 2i jQ Q≠  for i j≠ , 

1Γ  and 2Γ  are the stack symbols and they correspond to one and only one 1ihQ  and 2ihQ  respectively. 

1| |Γ  and 2| |Γ  each equal to k . Each 1ihQ  and 2ihQ  has astart state 1 1{ } { }i h iq or q  and 2iq  or 2h iq . Each with final 

states 1if  or 1h if  and 2if  or 2h if  where = 1,2, ,i k . 1 1 1=1
= { }k

h i h ii
S q q∪  and 2 2 2=1

= { }k
h i h ii

S q q∪  are the 

set of begining states. 1 1 1=1
= { }k'

h i h ii
F f f∪  and 2 2 2=1

= { }k'
h i h ii

F f f∪ . 1hQ  and 2hQ  have starting  states 

10 10{ }hq q∪  and 20 20{ }hq q∪  respectively. 1 1 2 2,h h h hF Q F Q⊆ ⊆  are the end states. 1δ  is from 1 { }ihQ ×Σ∪ ◊  into 

the finite subsets of 1 { }ihQ × ò , = 1,2, ,i k  and from 1 $if ×  into { }( )1 10 10 1h h iS q q s∪ ∪ ×  where 1is  is the stack 
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symbol corresponding to 1iQ . 1
'δ  is the mapping from 1hQ ×Γ  into finite subset of 1hQ . Similarly we define 2δ  and 

2
'δ .  

 Define 0= ({ , , , }, , , , )T
T T Tr u d q q FδA is a finite deterministic automaton such that ( ) =TL TA  and the 

FSMPA , ( )= { }, , , , , , , ,$'
h h h hQ S F Fδ δΣ∪ ◊ ΓA  such that 21 T( ) = ШLL LA . Here hQ  is the set of states associated 

with ◊ , 1=h h h k hQ R R R∪ ∪ ∪ , ih j hR R≠ , i j≠ . Each ihR  has astarting  state iq  or iqh  and a final state if  

or hif , = 1,2, ,i k . 
=1

= { }k
h i hii

S q q∪ , hR  has a start  state 0q . hF R⊆  is the end state. $  is the end marker. 

Define 1 2=h h T hQ Q Q Q× × , 1 2
0 0 0= {( , , )}T

hS q q q , or more precisely we define hS  as { }10 10 0 20 20( ), , ( )T
h h hq q q q q , 

1 2=h h T hF F F F× ×  and 1 2=' ' ' '
h h T hF F F F× ×  A run of A  on an input **( { })∈ Σ∪ ◊P imitate either 1A  or 2A  and 

as time varies , changes the functioning from 1A  to 2A  or from 2A  to 1A . For each of the changes the transition in 

TA  as follows: 
If change is from 1A  to 2A  then it is interpreted as u  or d  andit is r  or   respectively if it is from 

2A  to 1A . The input P  is accepted by A  iff 1 2,L L  and T are recongnized byeach of 1 2,A A  and TA
respectively. 
The mappingδ  is defined as: 
If T is a column shuffle, then the transition is 

1 2 1 1 2 1 1 2

1 1 2 1 1 2

1 2 2 1 2 2

1 2 2 1

(( , , ), ) = {[( ( , ), ( , ), )],[( ( , ), ( , ), )],
[( ( , ), ( , ), )],[( ( , ), ( , ), )],
[( , ( , ), ( , ))],[( , ( , ), ( , ))],
[( , ( , ), ( , ))],[( ,

T T T T T

T T T T h

T T T T

h T T h

q q q a q a q r q q q r q
q a q u q q q u q

q q u q a q q u q
q q u q a q

δ δ δ δ δ
δ δ δ δ

δ δ δ δ
δ δ

◊
◊

◊

2 2( , ), ( , ))]}T Tq u qδ δ ◊

.If T is a row shuffle, then it is 

defined as 

2 2

1 2 1 1 2 1 1 2

1 1 1 1

1 2 2 1 2 2

1 2 2 1

(( , , ), ) = {[( ( , ), ( , ), )],[( ( , ), ( , ), )],
[( ( , ), ( , ), )],[( ( , ), ( , ), )],

[( , ( , ), ( , ))],[( , ( , ), ( , ))],
[( , ( , ), ( , ))],[(

T T T T T

T T h T T h

T T T T

h T T h

q q q a q a q l q q q l q
q q l q q a q l q

q q d q a q q d q
q q d q a q

δ δ δ δ δ
δ δ δ δ

δ δ δ δ
δ δ

◊
◊

◊

2 2 2, ( , ), ( , ))]}T q d qδ δ ◊

 

where 1 1 1{ , }h hq q Q∈ , 2 2 2{ , }h hq q Q∈ , T Tq Q∈  and { , , , }r u l d T∈ , 'δ  is defined from hR ×Γ  into hR . Thus we 
have 21 T( ) ШLL L=A  and 21 TШL L  is a regular partial matrix array language.  
 
Theorem. 2 
 
For any two recognizable partial array languages 1 2,L L , 21 TШL L  is a recognizable partial array language,  where

* *{ , } { , }T r u l d⊆ ∪ is regular. 
Proof.Let 1L  and 2L  be the two recognizable partial array languages accepted by OTPA, 1A  and 2A  are such 
that ( ) = , = 1,2.i iL L iA  

Define ( )0= { }, , , , , ,i i
i i h i iQ Q q F δΣ∪ ◊A  where iQ  is set of states, i

hQ  is the finite states associated with 

, i
oq◊  is the initial state and 0

i
iq Q∈ , for = 1,2.i i

i i hF Q Q⊆ ∪  are all final states. The transition function iδ  is 
defined as : ( { })i p p pQ Q Qδ × × Σ∪ ◊ → . 

The  transition in TA  is as follows: a change from 1A  to 2A  ( 2A  to 1A  ) is taken as u  or d ( r  or l ,) 
respectively. The input P  is accepted by A  iff each of , = 1,2i iA  and TA  accepts 1L  and 2L  and T 
respectively.  

 Define 1 2= ,TQ Q Q Q× × 1 2
0 0= { , , },T oQ q q q  where 1

1 1= hQ Q Q∪  and 2
2 2= hQ Q Q∪ , thus 

1 2
1 1 2= ( ) ( )h hQ Q Q Q Q Q∪ × × ∪ , 1 2= TF F F F× × .  

The transition δ  is defined as : ( { }) 2QQ Qδ × × Σ∪ ◊ →  and is given as follows: 
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2 1 2
1 1 2 2[( , , ), ( , , ), ]'

T Tq q q q q q bδ  
1 1 2 1 2 2

1 1 2 1 1 2 1 2= {[ ( , , ), (( , ), )],[ , ( , ), ( , , )],T T T Tq q b q r q q q u q q bδ δ δ δ  
1 1 2

1 1 2 1[ ( , , ), ( , ), ]T Tq q b q l qδ δ 1 2 2
1 2 1 2,[ , ( , ), ( , , )]}T Tq q d q q bδ δ  

 and  
1 2 1 2
1 1 2 2[( , , ), ( , , ), ]T Tq q q q q qδ ◊  

1 1 2 1 2 2
1 1 2 1 1 2 1 2= {[ ( , , ), (( , ), )],[ , ( , ), ( , , )],T T T Tq q q r q q q u q qδ δ δ δ◊ ◊  
1 2 2

1 1 2 1[ ( , , ), ( , ), ]T Tq q q l qδ δ◊ 1 2 2
1 2 1 2,[ , ( , ), ( , , )]}T Tq q d q qδ δ ◊  

 where 1 1 2 2
1 2 1 1 2 2, , , , ,T Tq q Q q Q q q Q b∈ ∈ ∈ ∈Σ . By the above transition it can be easily verified that 21 T( ) = ШLL LA  

and hence 21 TШL L  is also recognizable. 
4  Conclusion 

 
The impact of shuffle on trajectories over a regular matrix partial array languages and on the recognizable 

partial array languages are studied. The procedure can be applied in automation and in recognition of certain classes of 
designs. This can be applied in understanding the transformation of shapes in Architectural application and in 
evolution of two dimensional patterns.  
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