
1

Impact of Shuffle on Trajectories on Certain Classes of Partial array
Languages

H. Geetha1 K. Suresh2 P. Venkatesh Babu3 and T. Kalyani4

1,2,4Department of Mathematics,
1,2 St. Joseph’s College of Engineering,

4 St. Joseph’s Institute of Technology
Chennai-119, Tamilnadu, India.

3 Department of Architecture,
SRM SEAD, SRMIST,

Chennai-89, Tamil Nadu, India.
E-mail: geethahvenki@hotmail.com, dhivasuresh@gmail.com,sp.v.babu@gmail.com

Abstract. In the recent years many tools are being used for developing picture languages. The vital and most interesting among
such tools is the shuffle on trajectories. The above tool can be applied on various disciplines. In this paper,a Finite State Matrix
Partial array Automaton is defined and someresults over Finite State Matrix Partial array Automaton and Online Tessellation
Partial Automaton are studied.

Key Words: Finite State Matrix Partial Array automaton, online Tessellation Partial Automaton

1 Introduction

Berstel and Boasson [1] introduced the concept of partial words in their study on biological molecules. This

concept of partial words was converted to arrays and thus the partial arrays were introduced and their combinatorial
studies were also done. The recognizability of partial arrays using online tessellation automaton was studied in depth
in [7]. The introduction of shuffle on trajectories and syntactic constraints were studied by mateescu et.al [5]. The
concept of trajectories was applied to contextual array grammars in [4]. The shuffle on trajectories over finite array
languages was studied [2]. Shuffle on array languages generated by array grammars was discussed in [6]. Inspired by
the above studies, the tool shuffle on trajectories over partial array languages and its effects on certain classes of partial
arrays were introduced [3].

 In this paper we define Finite State Matrix Partial Array automaton and applied shuffle on trajectories to
arrive two interesting theorems.

2 Preliminaries

In this section we give the definition of partial array and online Tessellation partial automaton.

Definition. 1

A deterministic online tessellation partial automaton (OTPA) is 0= ({ }, , , , ,)δΣ∪ ◊ hQ Q q FB where Q is a
set of states, hQ is the states associated with the holes ◊ . 0q Q∈ is the begining state. ()hF Q Q⊆ ∪ is a set of
finishing states, the mapping δ function defined as 1 1 1: { }δ × ×Σ∪ ◊ →Q Q Q . Where 1 = hQ Q Q∪ . For
computation of a two-dimensional OTPA we refer [7]. The language of finite partial arrays recognized by OTPA, B
is denoted by ()L B and ()OTPAL is the set of partial array languages recognized by OTPA.

3 Main Results

 In this section we define finite state matrix partial array automaton and a theorem on regular partial matrix
array languages and on recognizable partial array Languages.

Definition. 2

A finite state matrix partial array automaton (FSMPA)is constructedas = (, { }, , , , , , ,$)δ δΣ∪ ◊ Γ ' '
h h h hQ S F FB

where 1=h h h k hQ Q Q Q∪ ∪ ∪ , 1=ih j hQ Q φ∩ for i j≠ , that includes the states associated to ◊ . Σ and Γ are
the finite set of inputs and stack symbols respectively, with # | |= kΓ . Each ihQ has an initial state either { }iq or

ICASISET 2020, May 16-17, Chennai, India
Copyright © 2021 EAI
DOI 10.4108/eai.16-5-2020.2304023

mailto:geethahvenki@hotmail.com

2

{ }hiq and a final state { }if or { }hif = 1, ,i k . Define ()=1
= { } { }}k'

h i hii
F f f∪ is the set of transition states.

()=1
= { } { }k

h i hii
S q q∪ the set of start states. hQ has an initial state 0q and h hF Q⊆ is the set of end states.

$ ∈ Σ is to denote the end .δ is defined as : { } { }ih ihQ Qδ ε×Σ∪ ◊ → × , { } { } $i hif f∪ × into 0({ })h iS q s∪ × , here

is is the stack withrespect to .ihQ 'δ is defined from hQ ×Γ into the finite subsets of hQ . Initially , the input
matrix is placed at the end marker.

 1

1

$ $

m mn

i in

b b

b b

where { },1ijb i m∈Σ∪ ◊ ≤ ≤ and 1 j n≤ ≤ .
 To begin with, the FSMPA starts recognizing from bottom to top as per δ transition, after reaching the

first $ it writes a symbol from Γ and then reaches the next column. This process is repeated untill the matrix of size
m n× is read. At this stage the storage will have n symbols. Now, using 'δ from left to right and attains final
state, if not the matrix is rejected .

 The configuration (, (,), ,)p i j x t where p the present state in hQ , (,)i j is the location of the input, x
is a partial word, t is the number of positions from left.

 If (, (1,), ,)q m n x r+ is an arrangement and (,)' q zδ has 'q implies
(, (1,), ,)q m n x r+ (, (1,), , 1)'

'
q m n z r

δ
+ +� where q belongs to '

hF and 'q is in hS .

Definition. 3
The set of all languages accepted by FSMPA is denoted as

* *
0

() = {[], = 1,2, , = 1,2, , , 1 / { },

(, (1,1), ,1) (, (1,), ,1) (, (1,), ,)
δ δ

ε

≥ ∈Σ∪ ◊

+ +

 ij ij

'

'

L b i m j n m n b

p q m n x p m n x n

B

� �

with p in hS , 'p in hF and x in +Γ }
Note: The languages accepted by finite state matrix partial array automaton (FSMPA) are all regular partial matrix
array languages.

Theorem. 1

1L and 2L are the regular partial matrix array languages and if * *{ , } { , }T r u l d⊆ ∪ , a regular set of
trajectories, then 21 TШL L is also a regular partial matrix array language.

Proof.
 Let 1 1 1 1 1 1 1 1= (, { }, , , , , , ,$)' '

h h h hQ S F Fδ δΣ∪ ◊ ΓA and

2 2 2 2 2 2 2 2= (, { }, , , , , , ,$)' '
h h h hQ S F Fδ δΣ∪ ◊ ΓA are the two FSMPA and thus 1 1() =L LA and 2 2() =L LA .

1hQ and 2hQ are defined respectively as

1 1 11 12 1= , , ,h h h h kh
Q Q Q Q Q∪ ∪ ∪ with 1 1i jQ Q≠ and

2 2 21 22 2= , ,h h h h k hQ Q Q Q Q∪ ∪ ∪ with 2 2i jQ Q≠ for i j≠ ,

1Γ and 2Γ are the stack symbols and they correspond to one and only one 1ihQ and 2ihQ respectively.

1| |Γ and 2| |Γ each equal to k . Each 1ihQ and 2ihQ has astart state 1 1{ } { }i h iq or q and 2iq or 2h iq . Each with final

states 1if or 1h if and 2if or 2h if where = 1,2, ,i k . 1 1 1=1
= { }k

h i h ii
S q q∪ and 2 2 2=1

= { }k
h i h ii

S q q∪ are the

set of begining states. 1 1 1=1
= { }k'

h i h ii
F f f∪ and 2 2 2=1

= { }k'
h i h ii

F f f∪ . 1hQ and 2hQ have starting states

10 10{ }hq q∪ and 20 20{ }hq q∪ respectively. 1 1 2 2,h h h hF Q F Q⊆ ⊆ are the end states. 1δ is from 1 { }ihQ ×Σ∪ ◊ into

the finite subsets of 1 { }ihQ × ò , = 1,2, ,i k and from 1 $if × into { }()1 10 10 1h h iS q q s∪ ∪ × where 1is is the stack

3

symbol corresponding to 1iQ . 1
'δ is the mapping from 1hQ ×Γ into finite subset of 1hQ . Similarly we define 2δ and

2
'δ .

 Define 0= ({ , , , }, , , ,)T
T T Tr u d q q FδA is a finite deterministic automaton such that () =TL TA and the

FSMPA , ()= { }, , , , , , , ,$'
h h h hQ S F Fδ δΣ∪ ◊ ΓA such that 21 T() = ШLL LA . Here hQ is the set of states associated

with ◊ , 1=h h h k hQ R R R∪ ∪ ∪ , ih j hR R≠ , i j≠ . Each ihR has astarting state iq or iqh and a final state if

or hif , = 1,2, ,i k .
=1

= { }k
h i hii

S q q∪ , hR has a start state 0q . hF R⊆ is the end state. $ is the end marker.

Define 1 2=h h T hQ Q Q Q× × , 1 2
0 0 0= {(, ,)}T

hS q q q , or more precisely we define hS as { }10 10 0 20 20(), , ()T
h h hq q q q q ,

1 2=h h T hF F F F× × and 1 2=' ' ' '
h h T hF F F F× × A run of A on an input **({ })∈ Σ∪ ◊P imitate either 1A or 2A and

as time varies , changes the functioning from 1A to 2A or from 2A to 1A . For each of the changes the transition in

TA as follows:
If change is from 1A to 2A then it is interpreted as u or d andit is r or respectively if it is from

2A to 1A . The input P is accepted by A iff 1 2,L L and T are recongnized byeach of 1 2,A A and TA
respectively.
The mappingδ is defined as:
If T is a column shuffle, then the transition is

1 2 1 1 2 1 1 2

1 1 2 1 1 2

1 2 2 1 2 2

1 2 2 1

((, ,),) = {[((,), (,),)],[((,), (,),)],
[((,), (,),)],[((,), (,),)],
[(, (,), (,))],[(, (,), (,))],
[(, (,), (,))],[(,

T T T T T

T T T T h

T T T T

h T T h

q q q a q a q r q q q r q
q a q u q q q u q

q q u q a q q u q
q q u q a q

δ δ δ δ δ
δ δ δ δ

δ δ δ δ
δ δ

◊
◊

◊

2 2(,), (,))]}T Tq u qδ δ ◊

.If T is a row shuffle, then it is

defined as

2 2

1 2 1 1 2 1 1 2

1 1 1 1

1 2 2 1 2 2

1 2 2 1

((, ,),) = {[((,), (,),)],[((,), (,),)],
[((,), (,),)],[((,), (,),)],

[(, (,), (,))],[(, (,), (,))],
[(, (,), (,))],[(

T T T T T

T T h T T h

T T T T

h T T h

q q q a q a q l q q q l q
q q l q q a q l q

q q d q a q q d q
q q d q a q

δ δ δ δ δ
δ δ δ δ

δ δ δ δ
δ δ

◊
◊

◊

2 2 2, (,), (,))]}T q d qδ δ ◊

where 1 1 1{ , }h hq q Q∈ , 2 2 2{ , }h hq q Q∈ , T Tq Q∈ and { , , , }r u l d T∈ , 'δ is defined from hR ×Γ into hR . Thus we
have 21 T() ШLL L=A and 21 TШL L is a regular partial matrix array language.

Theorem. 2

For any two recognizable partial array languages 1 2,L L , 21 TШL L is a recognizable partial array language, where

* *{ , } { , }T r u l d⊆ ∪ is regular.
Proof.Let 1L and 2L be the two recognizable partial array languages accepted by OTPA, 1A and 2A are such
that () = , = 1,2.i iL L iA

Define ()0= { }, , , , , ,i i
i i h i iQ Q q F δΣ∪ ◊A where iQ is set of states, i

hQ is the finite states associated with

, i
oq◊ is the initial state and 0

i
iq Q∈ , for = 1,2.i i

i i hF Q Q⊆ ∪ are all final states. The transition function iδ is
defined as : ({ })i p p pQ Q Qδ × × Σ∪ ◊ → .

The transition in TA is as follows: a change from 1A to 2A (2A to 1A) is taken as u or d (r or l ,)
respectively. The input P is accepted by A iff each of , = 1,2i iA and TA accepts 1L and 2L and T
respectively.

 Define 1 2= ,TQ Q Q Q× × 1 2
0 0= { , , },T oQ q q q where 1

1 1= hQ Q Q∪ and 2
2 2= hQ Q Q∪ , thus

1 2
1 1 2= () ()h hQ Q Q Q Q Q∪ × × ∪ , 1 2= TF F F F× × .

The transition δ is defined as : ({ }) 2QQ Qδ × × Σ∪ ◊ → and is given as follows:

4

2 1 2
1 1 2 2[(, ,), (, ,),]'

T Tq q q q q q bδ
1 1 2 1 2 2

1 1 2 1 1 2 1 2= {[(, ,), ((,),)],[, (,), (, ,)],T T T Tq q b q r q q q u q q bδ δ δ δ
1 1 2

1 1 2 1[(, ,), (,),]T Tq q b q l qδ δ 1 2 2
1 2 1 2,[, (,), (, ,)]}T Tq q d q q bδ δ

 and
1 2 1 2
1 1 2 2[(, ,), (, ,),]T Tq q q q q qδ ◊

1 1 2 1 2 2
1 1 2 1 1 2 1 2= {[(, ,), ((,),)],[, (,), (, ,)],T T T Tq q q r q q q u q qδ δ δ δ◊ ◊
1 2 2

1 1 2 1[(, ,), (,),]T Tq q q l qδ δ◊ 1 2 2
1 2 1 2,[, (,), (, ,)]}T Tq q d q qδ δ ◊

 where 1 1 2 2
1 2 1 1 2 2, , , , ,T Tq q Q q Q q q Q b∈ ∈ ∈ ∈Σ . By the above transition it can be easily verified that 21 T() = ШLL LA

and hence 21 TШL L is also recognizable.
4 Conclusion

The impact of shuffle on trajectories over a regular matrix partial array languages and on the recognizable

partial array languages are studied. The procedure can be applied in automation and in recognition of certain classes of
designs. This can be applied in understanding the transformation of shapes in Architectural application and in
evolution of two dimensional patterns.

References

[1] J. Berstel and L. Boassan, Partial words and a theorem of Fine and wilf, Theoretical Computer Science, 218
(1999), 135-141.
[2] H. Geetha, D.G. Thomas, T. Kalyani and A.S. Prasanna Venkatesan, Shuffle on trajectories over finite array
languages, in J.K. Aggarwal et.al (eds), International Conference on Combinatorial Image Analysis, Lecture
Notes in Computer Science 6636, 2011, 261-274.
[3] H.Geetha, K.Sasikala, P.Venkatesh Babu and T.Kalyani Shuffle on trajectories Over Partial Array Languages
presented in ICMTA 2020 and published in AIP Conference proceedings,volume2277,06November 2020
030001-1 - 030001-8.
[4] P. Helen Chandra, C.Martin-Vide, K.G. Subramanian, D.L. Van and P.S.P.Wang, parallel contextual array
grammars and trajectories in Handbook of pattern recognition and computer vision.
[5] A. Mateescu, G. Rozenberg and A. Salomaa, Shuffle on trajectories: syntactic constraints, Theoretical Computer
Science, 197 (1998), 1-56.
[6] D.K. Sheena Christy, V. Masilamani, D.G. Thomas, Atulya K. Nayar and Robinson Thamburaj, Shuffle on array
languages generated by array grammars Mathematics for application, math.Appl. 3(2014), 17-31.
[7] F. Sweety, D.G. Thomas, V.R. Dare and T. Kalyani, Recognizability of partial array languages, The Journal of
combinatorial Mathematics and Computational Computing (2007), 237-249.

	Impact of Shuffle on Trajectories on Certain Classes of Partial array Languages
	1 Introduction
	2 Preliminaries
	3 Main Results
	4 Conclusion

