
The Practicality of using Virtual Machine
Introspection Technique with Machine

Learning Algorithms for the Detection of
Intrusions in Cloud

A Alfred Raja Melvin1, Dr. G Jaspher W Kathrine2, Dr. J Immanuel Johnraja3

{alfredraja@karunya.edu.in1, kathrine@karunya.edu2,
immanueljohnraja@karunya.edu3}

Ph.D Scholar, Dept. of CSE, KITS
1
,

Assistant Professor,Dept. of CSE, KITS

2
,

Associate Professor, Dept. of CSE, KITS
3

Abstract. This paper presents a novel pattern generation algorithm for the
implementation of Virtual Machine Introspection (VMI) based Intrusion
Detection System (IDS) for Cloud Computing. The method uses Drakvuf
VMI technique for gathering the behavioral characteristics of malware and
benign samples. The behavioral characteristics data are then fed to the
proposed algorithm for the generation of patterns in-order to generate the
dataset. The algorithm includes the generation of frequency distribution of
each system calls, hash value based on SHA256 algorithm for the list of file
names, hash value based on SHA256 algorithm for the list of process
names. Finally, the generated dataset is evaluated using Machine Learning
(ML) algorithms with 10-Fold cross validation. It is found that J48 (C4.5)
tree classification algorithm performed well with high detection accuracy
compared to other ML algorithms. The detection accuracy is 99.1379% for
dataset size of 232 instances. As the number of instances in the dataset was
increased, the detection accuracy has improved to the maximum of 100%
for the dataset size of 273 instances.

Keywords: Virtual Machine Introspection, Virtual Machine Monitor,
Intrusion Detection System, Malware, Machine Learning, Cloud
Computing.

1 Introduction

Due to the advancement in cloud computing, many enterprises are now relying
on cloud computing to process, store and access their data and services. The
companies are investing in cloud computing since they only have to pay for the
services they use. Also, the services are readily, swiftly available and become
accessible from anywhere in the globe. One primary benefit of cloud is its
flexibility and scalability i.e., it can be easily scale in or out, scale up or down.

ICASISET 2020, May 16-17, Chennai, India
Copyright © 2021 EAI
DOI 10.4108/eai.16-5-2020.2303939

2

The definition of cloud computing as per Microsoft is “It is the provisioning of
computing services like servers, storages, databases, networking, software over
the Internet”. In reality, it may be the provisioning of anything over Internet.
Typically the deployment model for cloud may be either IaaS or PaaS or SaaS.

The Virtualization technology is the foundational and fundamental for the
building up of Cloud Services. In Virtualization technology, the Hypervisor or
Virtual Machine Monitor (VMM) is a system software component responsible for
creating and managing the Virtual Machines (VM) and its resources like virtual
CPU, virtual storage, virtual memory, virtual networks, etc, for the provisioning of
services over Cloud. The virtual machines running guest OS (32 bit or 64 bit) can
be of any OS flavour like Microsoft Windows XP/7/8/10, Linux OS, BSD OS
etc.,. Popular examples of Hypervisor are VMware, VirtualBox, KVM, Xen.

Even though Cloud Computing provides a lot of benefits, it encounters serious
security threats. According to the Cisco Annual Security Report 2018 [1],
computer attackers are abusing the cloud computing services and its resources for
malicious use. A user may register and use the cloud computing resources for
launching traditional attacks like DoS, DDoS, Phishing etc., In addition to these,
an attacker may launch cloud specific attacks like VM side channel attacks, VM
Escape attack VMDoS attack, etc.,

According to Symantec Threat Report (February 2019) [2], there are around 70
million records stolen due to poorly configured S3 buckets at Amazon cloud
platform. In addition to this, hardware chip vulnerabilities like Meltdown, Spectre
and Foreshadow allow an attacker to get unauthorized access to memory of other
cloud instance since they share pools of memory. European Network and
Information Security Agency (ENISA) reported that Dropbox was attacked by
Distributed Denial of Service attack during Jan 2013 and experienced loss of
service for about 15 hours [3]. Security researchers has identified exploit on
Amazon cloud platform in their Elastic Search ver 1.1x [4].

Since many threats, vulnerabilities and attacks are possible in cloud
environment and its resources, protection to cloud computing components is very
essential. Different security solutions are available to ensure protection for
traditional computing and network environment. They are Intrusion Detection
System, Intrusion Detection and Prevention System, Firewall, Antivirus, and by
implementing strong security policies.

IDS solution is very promising and used by many enterprises. However
traditional IDS cannot detect cloud specific malicious activities and attacks.
Therefore, an implementation of Cloud specific IDS is essential. A Cloud specific
IDS based on VMI technique is possible since it provides monitoring of process
activities inside the VM from the hypervisor. Security researchers have used VMI
technique to study and understand the behaviour of malware samples since it
provides features like Isolation, Interception, Live Environment, Memory
Snapshot, Introspection, and Stealthy Environment. Cloud administrators can
develop and Implement Security Solutions using VMI, without affecting the
privacy concerns of the customers. Therefore, VMI based IDS can be designed to
detect Intrusions at Cloud Computing.

Many frameworks for VMI are available of which LibVMI is popular and open

3

source. Drakvuf tool developed by Lengel [5] is based on LibVMI which was
implemented over Xen hypervisor. So far, Drakvuf is used only for dynamic
malware analysis.

Problem Statement

• The complexity of the existing methods for the implementation of IDS
for securing VMs in cloud computing is high.

• There is no standard dataset available based on the behavioural
characteristics of malware through virtual machine introspected data.

• The introspected data (log) of Drakvuf needs lot of manual processing in-
order to conclude whether the presence of Intrusion is present or not.

This paper presents the study and possibility of implementing VMI based IDS

using Drakvuf with Machine Learning algorithms. The following steps are
followed to carry out the experiment. First, the Installation and Configuration of
analysis environment using Xen virtualization with Drakvuf was done. Secondly,
malware and benign samples are submitted to analysis environment and its
behavioural characteristics and events are recorded. Thirdly, a proposed feature
generation procedure was followed to extract the essential details from the
recorded events in-order to generate the dataset with labels. Fourthly and finally,
various ML algorithms are used to evaluate the detection accuracy of Intrusions
based on 10-fold cross-validation tests and the results are discussed.

The remaining section of this paper are arranged as follows, section-II depicts
the existing work, section-III provide details about the proposed IDS architecture,
section-IV present details about the System Implementation and Evaluation
Results, and section-V discuss about the conclusion and future work.

2 Existing Work

In recent years VMI has emerged as an application for the development of IDS
and for dynamic malware analysis due to its ability to gather digital artefacts of
virtual machine environment.

Rajendra Patil et al [6] has proposed an in-VM Agent based malware detection
system for virtual machine instances in cloud computing. The agent periodically
checks for newly launched executables and verify the maliciousness by comparing
its signature with the known malware signature database. If the executable
signature is unknown, it selects the optimal features using bat algorithm of the
binary executable file and send those details to the hypervisor. The hypervisor
runs a anomaly based detection system which checks the received features
(profile) and decides whether it is malware or not by applying Random Forest
classifier. The newly added profile will be used later for the detection of similar
malware across all VMs. Even though the system is scalable (able to detect

4

malware across multiple VMs), recent intelligent malware may not exhibit its
execution due to the presence of in-VM agent which poses a challenge.

Bhavesh Borisaniya et al [7] proposed a security framework based on VMI for
cloud. Their implementation is based on Nitro tool and supports multi-threaded
analysis which has the ability to monitor and detect malicious activities across
Virtual Machines hosted on multiple cloud servers.

Ajay Kumara et al [8] proposed an Intelligent Cross View Analyzer based on
VMI, Memory Forensics Analysis (MFA) and ML algorithms. They used an in-
guest agent inside VM and VMI to get details of the processes. Also they used ML
algorithms on the mined information of binary executables gathered using
Memory Forensics Analysis. Even though their detection accuracy is good; the
complexity of their implementation is very high.

Preeti Mishra et al [9] proposed a security framework based on NIDS and VMI
based IDS. According to them NIDS will act as the first layer of protection and
then a second level of defence implemented at virtualization layer.

Michael et al [10] proposed a anomaly based malware detection system at
hypervisor. They utilized features gathered from system and network level of
cloud node. One class Support Vector Machine (SVM) is used in-order to
differentiate between malware and benign. Even though the system may detect
new type of attacks and malware, the system's detection accuracy is only 90% and
it is not scalable.

Mishra et al [11] proposed a system call analysis approach named Malicious
System Call Sequence Detection (MSCSD) to detect malware at VM. They used
C4.5 ML algorithm to train the classifier to differentiate between malware and
benign samples. Even though the system is scalable, the system can be
compromised since its implemented inside the VM.

Aristide et al [12] proposed a system named AccessMiner at hypervisor for the
detection of malware based on anomaly detection method. The anomaly system is
built based on the interaction patterns between the benign programs and operating
system during the training phase. Thereafter any application interaction pattern
which does not match with the existing are considered as malware. Even though
the system may detect zero day malware, their implementation promises only 90%
of detection accuracy only.

Marnerides et al [13] proposed malware detection at hypervisor based on the
information collected from system and network level from VM. They applied a
Ensemble Emprical Mode Decomposition technique to detect the malware. The
detection accuracy is around 90% only.

Lengyel et al has developed Drakvuf which is a binary malware analysis
engine. It is a VMI based technique, works on the principle of kernel debugging.
So far, it’s widely been used in the field of malware analysis.

The hypothesis to carry out this research is to find out whether the Introspected
data of Drakvuf VMI technique is really useful for the development of IDS or not.
The next section describes the architecture and working of Drakvuf.

5

3 Proposed IDS Architecture

An IDS consists of three components namely Data source, Sensor and
Decision Engine. The Data source depicts the source of data which is applied to
train the system. The Sensor component depicts the live monitoring environment.
The Decision Engine classifies the data, take decision and raise alarm during the
case of intrusions. The architecture of proposed IDS is shown in figure 1. First, the
raw data source comes from VMI component. The VM running guest OS provides
a real environment for the sample execution. During malware execution, the
system traces all system calls (APIs), registry key changes, File names accessed,
created, modified, processes impacted. The system call features are extracted
using the proposed algorithm to generate the proposed dataset. This dataset is
further used to train the model.

Fig. 1. Architecture of Proposed IDS

6

The live monitoring environment inside hypervisor is provided by VMI. After
pre-processing, the live monitored details are supplied to detection engine. The
decision engine makes use of machine learning algorithms to detect the presence
of intrusion. An alarm will be raised if intrusion is detected.

4 Experimental Setup and Results

The workflow diagram of our experimental setup is shown in figure 2.

Fig. 2. Workflow of the Experimental Setup

The first step in the experiment is gathering malware samples. Malware

samples are collected from theZoo[14] project and Vxheaven [15] archives.
Majority of malware collected are viruses and remaining are Trojan horses. All
malware collected are based on windows platform, since majority of the malware
are written targeting windows platform[17] [18]. Also majority of PC users are
using only Microsoft windows platform. In addition to malware samples, regular,
free and open source software, in-built windows software is also used. The goal is
to train the system to understand the difference between malware and benign
sample. The number of malware and benign samples used in the experiment are
listed in table 1.

Table 1. Malware and Benign Samples used in the Experiment

Samples Type Count
1 Viruses Malware 175
2 Trojans Malware 50
3 Accessories Benign 30
4 System Tools Benign 18
Total # of Samples 273

4.1 Analysis Engine (AE)

The objective of AE is to gather the behavioural characteristics of malware
samples. The input for AE is the list of malware samples and benign software. The
output of AE is the behavioural characteristics of malware sample and benign
software respectively in the form of log file. The Dynamic Malware Analysis
Engine is implemented using Xen virtualization technology, LibVMI framework
and Drakvuf tool. The system configuration used for AE is Dell Optiplex

7

workstation with intel core i7 CPU with clock speed of 3.60 GHZ, Hard Disk
capacity of 1TB and memory of size 8GB running Ubuntu 16.04 Linux OS as the
host machine. The host machine is configured to create and run two virtual
machines parallel in-order to execute the malware/benign samples. The VM is
configured to run windows 7 OS (64 bit) as guest OS with memory of size 1GB,
Hard Disk capacity of 30GB and one dedicated CPU. The number of VMs can be
increased based on the limitation of host machine capacity. A simplified shell
script was developed in-order to automate the analysis process.

The sample (malware/benign) inside the VM was initiated (started executing)
from the hypervisor using Drakvuf based on process injection technique.
Immediately after the process was injected, the system traces the system call
execution, file access details and processes spawned details for a duration of 60
seconds. The duration is set to 60 sec as mentioned by the author which is enough
to gather the behavioural characteristics of any malware. Finally, for each
malware or benign sample the system generates a log file which will be further
processed for dataset generation.

4.2 Pre-processing

The objective of pre-processing stage is to generate Patterns from the Drakvuf log
files in-order to accurately differentiate between malware and benign process.
The patterns generated are used to build the Dataset. The Dataset is later used for
evaluations.

A novel pattern generation algorithm (algorithm1) was proposed to build the
Dataset. In order to generate patterns for the classification of malware and benign
samples, three main features are considered. They are API function names
(System calls), File names and Process names. The steps involved in the algorithm
are as follows. First, API names or System call names of around 227 are gathered
from all process logs and are used in the dataset generation process. The reason
for including system calls is because its execution pattern helps us to understand
the behavioural characteristics of process. In windows OS, the API names starts
with Nt are all system calls. The top ten most frequently used system calls and its
description is shown in table 2. Second, File names created, deleted, modified or
accessed during the process execution with its full pathname are taken for the
analysis. Third, Process names are the list of processes spawned during the sample
execution is also considered for analysis.

Table 2. Top Ten Windows API Function Names

S.No. API Function Name Description
1 NtOpenFile Windows API Function to open a file or

device or directory or volume that exists.
2 NtCreateFile Windows API Function to create file,

directory or opens existing file, device,

8

directory or volume.
3 NtWriteFile Windows API routine to write data to an

open file.
4 NtOpenKey Windows API routine to open an existing

registry key.
5 NtCreateKey Windows API routine to create a new

registry key or to open an existing key.
6 NtQueryKey Windows API routine to provide information

about the class of a registry key.
7 NtOpenProcess Windows API routine to open a handle to a

process object and sets the access rights to
this object.

8 NtOpenThread Windows API function to open a handle to a
thread object with the access specified.

9 NtQueryInformationProcess Windows API function used to retrieve the
information about the specified process.

10 NtQueryInformationThread Windows API function used to retrieve
information about the specified thread.

The basic principle behind the pattern generation algorithm for system calls is
frequency distribution (i.e., the number of occurrences of a particular system call)
from the log file. Next, the list of pathnames (filename) is considered as a string of
characters which are supplied to SHA256 algorithm for the generation of 256-bit
(32 byte) hash value. Lastly, the lists of processes spawned are considered as a
string of characters which are supplied to SHA256 algorithm for the generation of
256-bit (32 byte) hash value. The proposed algorithm to build the dataset is shown
below in algorithm1.

Algorithm1: Generate Dataset
Input: Sample Set (Ss), System Call List (Sl)
Output: Dataset, Ds
For i in Sample Set (Ss)
 L  Log file of i
 M  Metadata of i
 For j in System Call List (Sl)
 C  Append Count of j in L
 End
 Fs  List of file names in M
 Ps  List of process names in M
 Fv  SHA256 of Fs
 Pv  SHA256 of Ps
 Append Label, C, Fv, Pv  Ds
End

Finally, the frequency values of each system calls (totally 227), SHA256 hash

value for the list of file names, SHA256 hash value for the list of process names
are used to generate the Dataset. This Dataset generated contains a total of 230

9

features including the label for classification. Each record in the dataset is labelled
as either malware or benign. This dataset is used in-order to train the classifier.
This dataset is made available public through github[16]. The snapshot of the
dataset is shown in figure 3.

Fig. 3. Snapshot of the Generated Dataset

4.3 Classification and Results

The objective of this component is to build a classifier based on suitable machine
learning algorithms, and evaluate the detection accuracy. The input for this stage
is the generated Dataset and output is the evaluation results.

The popular and open source machine learning tool, WEKA is used to evaluate
the generated dataset. The screenshot of WEKA tool after loading the dataset is
shown in figure 4. The dataset contains a total of 273 Instances (Records), with
225 instances of malware and 48 instances of benign samples. All experiments are
carried out with 10-fold cross validation. The popular classification algorithms
namely J48 (C4.5), Random Forest, JRip and NaiveBayes are evaluated on the
dataset. J48 (C4.5) and Random Forest are based on tree classifier, JRip is based
on rule classifier and Naïve Bayes is based on bayes theorem.

10

Fig. 4. Dataset loaded in WEKA tool

Classification using C4.5 algorithm: It is a Machine Learning algorithm to
generate a decision tree which is used for classification and it is often referred to
as statistical classifier. A binary classification using C4.5 (J48) algorithm is
applied using WEKA tool. The classes in the dataset are Malware (Intrusion) and
Benign (Normal). The decision tree (pruned) generated by this algorithm is shown
in figure 5. The size of the generated tree is 7 with four numbers of leaves. From
the pruned tree, it is clear that the system calls – NtcreateToken,
NtReleaseWorkerFactoryWorker, NtAllocateLocallyUniqueid are significant in
making decision. The time taken to build the model is 0.18 seconds. Referring to
table 3, 273 out of total 273 instances are correctly classified giving the intrusion
detection accuracy of 100% with zero false positive rates.

Fig. 5. Pruned Decision Tree – C4.5 Classifier

11

Random Forest: It is a Machine Learning algorithm which operates by
constructing multitude of decision trees. It can be applied for solving classification
and regression problems. The time taken to build the classifier for our dataset by
this algorithm is 0.36 seconds. The evaluation result of this algorithm is shown in
table 3. 271 out of 273 instances are correctly classified giving a detection
accuracy of 99.2674% and false positive rate of 0.034.

JRip. It is a Machine Learning algorithm which implements a propositional rule
learner called Repeated Incremental Pruning to Produce Error Reduction
(RIPPER). The time taken to build the classifier for our dataset by this algorithm
is 0.17 seconds. The evaluation result of this algorithm is shown in table 3. 272
out of 273 instances are correctly classified giving a detection accuracy of
99.6337% and false positive rate of 0.017.

NaiveBayes. It is a Machine Learning algorithm based on Baye’s theorem. It
assumes that the presence of particular feature in a class is unrelated to another
feature. The time taken to build the classifier for our dataset by this algorithm is
0.1 seconds. The evaluation result of this algorithm is shown in table 3. 21
instances are incorrectly classified and 252 out of 273 instances are correctly
classified giving a detection accuracy of 92.3077% and false positive rate of
0.049.

The evaluation results during the experiment is shown in table 3,

Table 3. Evaluation Summary for Generated Dataset (273 Instances)

ML Algorithms J48 Random
Forest

JRip NaiveBayes
 Parameters

Correctly classified 273 271 272 252
Incorrectly
Classified

0 2 1 21

TP Rate 1.000 0.993 0.996 0.923
FP Rate 0.000 0.034 0.017 0.049
F Measure (average) 1.000 0.993 0.996 0.927
Detection Accuracy 100% 99.2674% 99.6337% 92.3077%

In-order to evaluate the performance of the proposed system, the following
metrics are considered,

12

Accuracy: It is the measure by which the algorithm can classify correctly between
the malware and benign sample, i.e., the ability to differentiate between positive
and negative instances. The comparison graph of detection accuracy on ML
algorithms is shown in figure 5. The detection accuracy of C4.5 (J48) is 100%,
JRip is 99.63%, Random Forrest is 99.27% and NaiveBayes is 92.31%. Since the
detection accuracy of C4.5 algorithm is higher, we can claim that it is the best
classifier for the proposed system. However, the dataset is not balanced (refer to
table 1). Therefore, F1 Score (F measure) metric is also considered for analysis.
Accuracy is calculated by the formula (Equation 1),

 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇

 Eq. 1

Fig. 5. Detection Accuracy

TP refers to True Positive, TN refers to True Negative, FP refers to False Positive
and FN refers to False Negative in the formula.

F Measure (F1 Score): It is the harmonic mean of precision (p) and recall (r).
Precision measures the proportion of the detected intrusion that are actually
intrusion. Recall measures the proportion of intrusions that are correctly identified.
The average (between intrusion and normal) F Measure value for J48, Random
Forrest, JRip and NaiveBayes are 1.000, 0.993, 0.996 and 0.927 respectively. The
F measure value ranges between 0 to 1. Since the F measure value for J48 is the
highest, we conclude that the model built using J48 classifier performs well. The
comparison graph on F measure values for ML algorithms is shown in figure 6. F1
score is given by the formula (Equation 2),

 Eq. 2

13

Fig. 6. F1 Score

False Positive (FP) Rate: It is the measure by which the system raises an alarm as
intrusion (malicious) but it is not an intrusion. The higher the false positive rate,
the higher will be false alarm. For any efficient IDS system, false alarm must be as
less as possible. The FP rate values on J48, Random Forest, JRip and Naive Bayes
algorithms on proposed system are 0.000, 0.034, 0.017 and 0.049 respectively.
Since J48 has less false positive compared to others, we conclude that J48 is best
suitable for the proposed system. The comparison graph on FP rate values for ML
algorithms is shown in figure 7. It is calculated by the formula (Equation 3),

 𝐹𝐹𝑇𝑇

𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇
 Eq. 3

Fig. 7. False Positive Rate

14

Fig. 8. Evaluation Results of J48 Tree Classifier

From table3 and figures 5 to 7, it is clear that J48 (C4.5) tree classifier is best

suitable for the proposed system, since it has the highest detection accuracy and
least False Positive rate. The evaluation result of J48 Tree Classifier is shown in
figure 8.

Therefore, our proposed pattern generation algorithm for Drakvuf Virtual
Machine Introspected data with J48 (C4.5) tree classifier ML algorithm is suitable
to detect the Intrusions at Virtual Machines of Cloud Computing.

5 Conclusion and Future Work

This paper presented the possibility of implementing VMI based IDS with
Machine Learning algorithms. We explained the proposed architecture of IDS and
presented the steps in creating the dataset from VMI introspected system call data.

Based on the Experiments conducted and Evaluation results, it is concluded
that the proposed IDS with C4.5 (J48) Machine Learning algorithm performs
better compared to Random Forrest, RIPPER and NaiveBayes ML algorithms in-
terms of detection accuracy and F Measure. The detection accuracy of proposed
IDS with J48 is 0.73% better than Random Forrest, 0.37% better than RIPPER and
7.7% better than NaiveBayes algorithm as shown in table 3. The F Measure shows
that J48 algorithm score is higher compared to other algorithms as depicted in
figure 6. Also, the False Positive Rate in C4.5 algorithm is less compared to other
ML algorithms as depicted in figure 7. Therefore, the proposed IDS with C4.5

15

(J48) ML algorithm is best suitable for implementing Intrusion Detection System
for Cloud. The following are the contributions of this research,

i. This research produces a new dataset based on virtual machine Introspected
data.
ii. It provides a practical method on implementing VMI based IDS for cloud.

In continuation of this work, the same classifier (J48) will be evaluated with
supplied Test Data using the proposed pattern generation algorithm on the Live
Virtual Machine Environment. The future work is to develop an Intrusion
Detection System (IDS) Application based on Virtual Machine Introspection Data
with Machine Learning and proposed pattern generation algorithm.

Acknowledgments

The authors thank the management and the department for providing support and
computing facilities (Computing Security Research Lab) to carry out this research.

References

[1] Cisco Annual Security Report 2018.
https://www.cisco.com/c/dam/m/hu_hu/campaigns/security-hub/pdf/acr-2018.pdf,
2018.

[2] Symantec Threat Report 2019.
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf,
2019.

[3] European Union Agency for Cybersecurity.
https://www.enisa.europa.eu/publications/incident-reporting-for-cloud-computing,
2013.

[4] Amazon cloud infested with DDoS botnets. http://www.techwalls.com/amazon-cloud-
infested-ddos-botnets/, 2014.

[5] Lengyel, T.K., Maresca, S., Payne, B.D., Webster, G.D., Vogl, S., Kiayias, A.: Scala-
bility, fidelity and stealth in the drakvuf dynamic malware analysis system. In-
Proceedings of the 30th Annual Computer Security Applications Conference. ACM;
2014. 386 – 395.

[6] Rajendra Patil, Harsha Dudeja, Chirag Modi.: Designing in-VM-assisted lightweight
agent-based malware detection framework for securing virtual machines in cloud
computing. International Journal of Information Security. Springer, 2019.

[7] Borisaniya, B., Patel, D.: Towards virtual machine introspection based security
framework for cloud. Indian Academy of Sciences. Springer, 2019.

[8] Ajay Kumara, M.A., Jaidhar, C.D.: Leveraging virtual machine introspection with
memory forensics to detect and characterize unknown malware using machine learn-
ing techniques at hypervisor. Digital Investigation, 2017. 99 - 123.

[9] Preeti Mishra, Emmanuel S. Pilli, Vijay Varadharajan, Udaya Tupakula.: NvCloud-
IDS - A Security Architecture to Detect Intrusions at Network and Virtualization Lay-

https://www.cisco.com/c/dam/m/hu_hu/campaigns/security-hub/pdf/acr-2018.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://www.enisa.europa.eu/publications/incident-reporting-for-cloud-computing
http://www.techwalls.com/amazon-cloud-infested-ddos-botnets/
http://www.techwalls.com/amazon-cloud-infested-ddos-botnets/

16

er in Cloud Environment. International Conference on Advances in Computing.
Communications and Informatics (ICACCI), 2016. 56 - 62.

[10] Michael R. Watson, Noor-ul-hassan Shirazi, Angelos K. Marnerides, Andreas Mau-
the, David Hutchison.: Malware Detection in Cloud Computing Infrastructures. IEEE
TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2016, 192 -
205.

[11] Preeti Mishra, Emmanuel S. Pilli, Vijay Varadharajan, Udaya Tupakula.: Securing
Virtual Machines from Anomalies using Program-Behavior Analysis in Cloud Envi-
ronment. International Conference on High Performance Computing and Communica-
tions, 2016. 991 - 998.

[12] Aristide Fattori, Andrea Lanzi, Davide Balzarotti, Engin Kirda.: Hypervisor-based
malware protection with AccessMiner. Computers and Security. 52, 33 - 50 (2015).

[13] Angelos K. Marnerides, Petros Spachos, Periklis Chatzimisios, Andreas U. Mauthe.:
Malware Detection in the Cloud under Ensemble Empirical Mode Decomposition. In-
ternational Conference on Computing, Networking and Communications and Infor-
mation Security, 2015. 82 - 88.

[14] TheZoo Malware Collection. http://github.com/ytisf/theZoo
[15] Computer virus collection. http://archive.org/details/vxheaven-windows-virus-

collection
[16] Dynamic Malware Dataset based on VMI. https://github.com/aarmelvin/dynamic-

malware-analysis.
[17] K. Vijayakumar, Chokkalingam Arun, “Integrated cloud-based risk assessment model

for continuous integration”,Int. J. Reasoning-based Intelligent Systems”, Vol. 10,
Nos. 3/4, 2018.

[18] K. Vijayakumar, S. Suchitra and P. Swathi Shri, “A secured cloud storage auditing
with empirical outsourcing of key updates”, Int. J. Reasoning-based Intelligent Sys-
tems, Vol. 11, No. 2, 2019.

http://github.com/ytisf/theZoo
http://archive.org/details/vxheaven-windows-virus-collection
http://archive.org/details/vxheaven-windows-virus-collection
https://github.com/aarmelvin/dynamic-malware-analysis
https://github.com/aarmelvin/dynamic-malware-analysis

