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Abstract.Sarcasm detection is a critical step to sentiment analysis, with the aim 
of understanding, and exploiting the available information from platforms such 
as social media. The accuracy of sarcasm detection depends on the nature of 
word embeddings. This research performs a comprehensive analysis of different 
word embedding techniques for effective sarcasm detection. A hybrid 
combination of optimizers including; the Adaptive Moment Estimation (Adam), 
the Adaptive Gradient Algorithm (AdaGrad) and Adadelta functions and 
activation functions like Rectified Linear Unit (ReLU) and Leaky ReLU have 
been experimented with.Different word embedding techniques including; Bag 
of Words (BoW), BoW with Term Frequency–Inverse Document Frequency 
(TF-IDF), Word2vec and Global Vectors for word representation (GloVe) are 
evaluated. The highest accuracy of 61.68% was achieved with 
theGloVeembeddings and an AdaGrad optimizer and a ReLU activation 
function, used in the deep learning model. 
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1   Introduction 

Sarcasm is the expression of criticism and mockery in a particular context, by 
employing words that mean the opposite of what is intended. This verbal irony in 
sarcastic text challenges the domain of sentiment analysis. 

With the emergence of smart mobile devices and faster internet speeds, there has 
been an exponential growth in the use of social media websites. There are about 5.112 
billion unique mobile users around the world. Social media websites are recognized as 
global platforms for registering opinions and reviews. This data is invaluable to 
companies that use targeted product advertising and opinion mining. Hence,designing 
a reliable sarcasm detector is advantageous to numerous distinct domains. 

Over 80% of the data generated from social media channels is unstructured [1]. 
Sarcasm detection from this unstructured text data is a challenge. As and when events 
occur, social media users post their opinions and views on these websites. Yet, 
determining the veracity and legitimacy of the data can be a very challenging task [1]. 
Another issue is that the data lacks visual or vocal context that assists humans in 
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identifying sarcasm [2]. In this work,different techniquesare compared for sarcasm 
detection. 

2   Related Works 

Various researches related to sarcasm detection in social media blogs have 
been conducted over the last two decades.The text classification for the sarcasm 
detector can be done by using two approaches. These methods are predominantly 
classified as (1) Machine learning methods (2) Deep learning methods. 

2.1   Machine Learning Based Methods  

Classification related problems in sarcasm detection are handled with multiple 
machine learning algorithms including; Logistic Regression, Naïve Bayes classifier, 
Random Forestand Support Vector Machine (SVM). Chandra Pandey et al. performed 
classification using k-means clustering and cuckoo search. Unlike the traditional 
feature sets, the work proposed by Chandra Pandey et al. uses BoW representation for 
text classification [3].Chandra Pandey et al. employed the use of Gaussian Naive 
Bayes algorithm on Parts of Speech (PoS) tags for sarcasm detection [4]. The work 
proposed by Mukherjee et al. consisted of employing a similar Naïve Bayes classifier 
on the Twitter dataset that was collected. A hybrid combination of PoS tags, content 
words and function words were used in their work [5]. 

Sulis et al. used a number of classification algorithms witha novel set of structural 
and affective features. The features used in this work included tweet length and 
Linguistic Inquiry and Word Counts dictionary (LIWC) which analyses not only the 
polarity of the tweet, but also the psycholinguistic features in the text [6]. This set of 
features combined with the random forest classifier, boosted their accuracy as 
compared to that of Mukherjee et al. The performance of several algorithms, with 
different feature sets have been compared in the research works of  Bouazizi et al. [7], 
Kumar et al. [8] and Bharti et al. [1],[9] .An improvement in accuracy is seen in the 
work proposed by Kumar et al. as the dataset that is used has over 25,000 records 
unlike the 6000 tweets used by Bouazizi et al. 

The use of Graphical User Interfaces such as Auto- Waikato Environment for 
Knowledge Analysis (Auto-WEKA) [10] and SENTA [11] have proved to improve 
sarcasm detection. Methods involving the use of hand engineered featuresextracted 
from the text dataset are primarily used for sarcasm detection. A deep learning model 
provides for a more efficient method of classifying huge volumes of data. 

2.2   Deep Learning Based Methods 

Various deep learning architectures have been utilized in the recent research in 
sarcasm detection. Dutta et al. presented an approach that involved the stacking of 
Elman-type RNNs on top of each other to construct a deep RNN for text classification 
[12]. This work used GloVe embeddings which performed better than the BoW 



embeddings used by Porwal et al. [13]. The work proposed by Mehndiratta et al. [14] 
also concluded that GloVe achieved a higher accuracy. 

The work proposed by Ren et al. focuses on utilizing the contextual information 
with respect to the target tweet, rather than feature engineering. This work uses 
Word2vec embeddings as their input features to capture contextual information from 
the dataset [15]. Naza et al. proposed a Convolutional Neural Network (CNN) 
architecture for sarcasm detection that makes use of softmax activation for classifying 
the tweets. This work has not only used Word2vec word embeddings but also 
incorporated the tweet length to improve their model [16]. Ghosh et al. proposed an 
Artificial Neural Network (ANN) model for sarcasm detection. Unlike, Ren et al., 
Ghosh et al. make use of GloVe instead of Word2vec embeddings [17][18]. 

By adding attention and LSTM to these basic CNN architectures, the metrics 
obtained during classification can be improved by a great deal. An Attention-based 
LSTM network was employed in the work presented by Ghosh et al. This work uses 
LIWC features to train their model [19]. PoS tags are passed as the input features to 
the bidirectional Long Short-Term Memory (BiLSTM) network in the work proposed 
by Patro et al. [20]. Son et al. presentedthe sAtt-BLSTM convNet deep learning 
model. It is a hybrid of a soft attention-based bidirectional long short term memory 
(sAtt-BLSTM) and a convolution neural network (convNet) model for sarcasm 
classification. This model performs significantly better than Ghosh et al in terms of 
accuracy, F1 score, precision and recall. Son et al. use GloVe embeddings unlike 
Ghosh et al. [21]. The work proposed by Subramanian et al not only utilizes GloVe 
embeddings, but also stylometric features of the text. Therefore, this work performs 
better than the models that use only word embeddings [22][26].It also performs better 
than the Embeddings from Language Model (ELMo) embeddings used in the work 
presented by Ilié et al. [23][27].  

3   Materials and Methods 

3.1   Dataset 

In this work, the Self-Annotated Reddit Corpus (SARC) constructed by Khodak 
et al. is used [24]. Social media platforms make large-scale, user-generated content 
available for analysis. However, due to restrictions in text length in such platforms, 
authors use acronyms and abbreviations in their statements. To avoid the number 
abbreviations used in the text, the Reddit platform is preferred to other social media 
platforms [25]. The available SARC dataset consists of 1008799 records. There are 
505208 sarcastic and 503591 non-sarcastic posts in the dataset. In this work, a 
balanced dataset was extracted from SARC. 

3.2   Proposed System 

To logically mine the Reddit posts present in the SARC dataset, pre-processing is 
carried out on the text data. The SARC dataset consists of 1008799 records. A 



balanced dataset is constructed by randomly selecting, 50,000 sarcastic and 50,000 
non-sarcastic data records from SARC. Preprocessing is performed on this balanced 
dataset. The different kinds of preprocessing steps that are carried out are listed 
below.The posts from Reddit are converted to type string and target labels are 
converted to type integer.Duplicate posts and stop words are removed. Punctuation, 
URLs and special characters such as @, # are removed.Non-ASCII English characters 
are removed. The words are converted to lower case.Natural Language tool-Kit 
(NLTK) is used for tokenization. WordNetLemmatizer is employed for stemming to 
the root word.  

 

Fig. 1. Block diagram depicting the systematic flow of the deep learning model. 

3.2.1   Approach    

Existing approaches are unable to detect the subtleties of sarcasm in text as 
lexicon based features do not represent context incongruity. The context incongruity 
parameter can be measured with the help of word embeddings. Word Embeddings 
capture semantic similarity or discordance scores which can enhance sarcasm 
detection. Hence, by incorporating word embeddings in the feature extraction process, 
an improvement in the sarcasm detection methods can be observed. 

3.2.2   Word Embeddings 

This work experiments with four types of word embeddings:  
 



1. Bag of Words (BoW): This technique is used to convert text into word count 
vectors that can be used in the deep learning model. The frequency with which each 
word appears in the document out of all the words in the document is considered 
while constructing the corresponding vector representation. 
 
2. BoW and TF-IDF: The TF-IDF score for each word is calculated and used to 
further enhance the word embedding representation. TF-IDF is a numerical statistic 
that is intended to reflect the significanceof a word in a document. The wordcounts 
are replaced with the TF-IDF scores in the entire corpus. 
 
3. Word2Vec: Here, the unique words in the corpus are assigned corresponding 
vectors in the vector space. Words sharing common contexts are grouped in close 
proximity to each other. Word2Vec learns by streaming sentences. Each sentence is 
then represented by a weighted average of the word embeddings of each word present 
in the sentence having a dimension of 100. These vectors represent the word with 
respect to a local context.  
 
4. GloVe: Each sentence is represented by a weighted average of the GloVe word 
embeddings of each word in the sentence. Unlike Word2Vec, GloVe aims at creating 
word vectors in a vector space by making use of global count statistics of each word 
rather than only the local information. GloVe learns based on a co-occurrence matrix. 
The learned word vectors are then trained such that their differences predict co-
occurrence ratios. These ratios are used to create 100 dimensional word vectors. 

3.2.3Training the Deep Learning Model 

A simple deep learning architecture is used to compare various word 
embedding techniques. The embedding layer has a vocabulary of 2115 unique words 
and an input length of 100. An embedding space of 100 dimensions is used in the 
proposed work. A dense layer having 128 neurons is used on the embedding vectors. 
This layer is followed by a dropout layer, which is connected to the output layer.  

3.2.4   Classification 

The final layer of the deep learning architecture performs binary 
classification. This output layer consists of a dense layer with 1 neuron, thus 
presenting a single column vector output.  

4Results and Discussion 

The proposed experiment was conductedon the balanced dataset extracted 
from the SARC benchmark dataset. The source code was executed in Tensorflow 
Deep Learning programming framework with the Tesla K80 GPU. Various optimizer 
functions are used with the word embeddings in the output layer. These optimizers 



include; Adam, AdaGrad and Adadelta functions. Both ReLU and Leaky ReLU 
activation functions were used. The model was trained for 100 epochs. The accuracy, 
precision, recall and F1 scores are analyzed for every experiment that is carried 
out.The results of the conducted experiments have been recorded in table 1. 

 

Table 1.Performance comparison of various optimizer and activation functions on 
the deep learning model, using four different word embedding techniques. 

 

Word Embedding Optimizer            Activation Train 
accuracy 

Validation 
accuracy 

Test 
accuracy 

Precision Recall F1 
score 

 
BoW 
 
 
 
 
 
 
BoW and TF-IDF 

 
Adam 
Adam 
Adagrad 
Adagrad 
Adadelta  
Adadelta 
 
Adam 
Adam 
Adagrad 
Adagrad 
Adadelta 
Adadelta 

 
ReLU 
Leaky ReLU 
ReLU 
Leaky ReLU 
ReLU 
Leaky ReLU 
 
ReLU 
Leaky ReLU 
ReLU 
Leaky ReLU 
ReLU 
Leaky ReLU 

 
53.83 
53.14 
52.53 
52.01 
52.00 
52.12 
 
56.57 
55.62 
53.36 
53.19 
54.72 
54.20 

 
52.23 
52.55 
52.01 
52.22 
52.03 
52.39 
 
52.01 
51.29 
51.63 
52.00 
51.12 
51.04 

 
52.23 
52.55 
52.02 
52.22 
52.03 
52.39 
 
52.01 
51.33 
51.63 
52.07 
51.12 
51.04 

 
0.52 
0.52 
0.53 
0.52 
0.52 
0.52 
 
0.52 
0.52 
0.53 
0.52 
0.52 
0.52 

 
0.52 
0.52 
0.52 
0.52 
0.52 
0.52 
 
0.52 
0.52 
0.52 
0.52 
0.52 
0.52 

 
0.52 
0.52 
0.52 
0.52 
0.52 
0.52 
 
0.52 
0.52 
0.52 
0.52 
0.52 
0.52 

         
Word2vec 
 
 
 
 
 
 
GloVe 

Adam 
Adam 
Adagrad 
Adagrad 
Adadelta 
Adadelta 
 
Adam 
Adam 
Adagrad 
Adagrad 
Adadelta  
Adadelta 

ReLU 
Leaky ReLU 
ReLU 
Leaky ReLU 
ReLU 
Leaky ReLU 
 
ReLU 
Leaky ReLU 
ReLU 
Leaky ReLU 
ReLU 
Leaky ReLU 

58.97 
58.85 
55.46 
55.21 
59.52 
57.75 
 
59.01 
56.64 
63.41 
60.15 
55.71 
56.20 

52.29 
51.85 
52.54 
52.41 
52.03 
52.39 
 
52.00 
51.23 
61.68 
53.18 
50.12 
51.80 

52.28 
51.85 
52.54 
52.41 
52.02 
52.39 
 
52.00 
51.20 
60.14 
53.18 
50.12 
51.81 

0.52 
0.52 
0.53 
0.53 
0.53 
0.53 
 
0.52 
0.52 
0.57 
0.53 
0.52 
0.52 
 

0.52 
0.52 
0.53 
0.52 
0.52 
0.52 
 
0.52 
0.52 
0.56 
0.53 
0.52 
0.52 

0.52 
0.52 
0.53 
0.52 
0.52 
0.52 
 
0.52 
0.52 
0.56 
0.53 
0.52 
0.52 



 
Fig. 2. Bar chart depicting the best test accuracies observed for the word embeddings. 

The BoW embeddings performed best with the Adam optimizer and Leaky ReLU 
activation function. To further enhance the embedding, TF-IDF weights were added 
to the BoW representation. This hybrid performed best with Adagrad and Leaky 
ReLU. The Word2vec model performed well with Adagrad and ReLU. However, 
with the GloVe embeddings, a significant increase in accuracy can be observed. 

5   Conclusion 

This paper aims to depict the relevance of word embeddings in sarcasm detection. 
24 different combinations of word embedding techniques, optimizers and activation 
functions were used to compare the performance of word embeddings. Both the BoW 
embeddings and the BoW embeddings incorporated with TF-IDF scores, performed 
best with the Adam and Adagrad optimizers and the Leaky ReLU activation function, 
with accuracies of52.55% and 52.07% respectively. The Word2vec model gave an 
accuracy of 52.54% with Adagrad and ReLU. However, the precision, recall and F1 
score are observed to remain constant among all the combinations experimented with 
except for the GloVe embeddings.The AdaGrad optimizer with the ReLU activation 
function gave the highest accuracy of 60.14% with the GloVe word embeddings. The 
GloVe embeddings achieved a precision of 0.57, a recall of 0.56 and a F1 score of 
0.56. Through this work, the challenges in detecting sarcasm from social media 
platforms are discussed. This work emphasizes the significance of global context 
based word embeddings in sarcasm detection based on the experimental results 
obtained.  
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