
Fault-Tolerant Framework with Federated Learning for

Reliable and Robust Distributed System

Lokendra Gour1, Akhilesh A. Waoo2

{lokendra.gaur@gmail.com1, akhileshwaoo@gmail.com2}

Dept. of CS and IT, AKSU Satna1, HOD Dept. of CS and IT, AKSU Satna2

Abstract. Data intensive computing system like distributed systems suffer a potential

problem of data storage, load balancing and privacy of confidential data. The distributed data

needs to be analyzed and protected properly for ensuring data privacy and improving the fault

tolerance. Data privacy and security have become prominent issues for data-oriented

applications. Fault-tolerant must be deployed for smooth functioning of the distributed

computing system. A Federated learning (FL) model can be deployed on multiple edge

devices. The Federated learning model is deployed on both horizontal and vertical scopes.

The feature of distributed computing is that it is growing tremendously towards horizontal and

vertical directions. FL deployed with distributed deep learning could identify, recognize, and

resolve the faults at a large scale. Federated learning is a multimodal deep learning system

that captures training data across various distributed and decentralized edge devices.

Keywords: Big Data, Federated Learning, Edge Device, Fault Tolerance, Distributed

Computing

1 Introduction

Fault is one of the major challenges in distributed environment. Fault tolerating framework is the

most important element of a distributed system for reducing the chance of system failures.

Federated learning [1, 2] is a kind of distributed and decentralized learning approach. The

Federated learning (FL) method is most relevant approach applied in distributed system. Under

this model a set of workers are deployed on local premises to train the local datasets. FL approach

THEETAS 2022, April 16-17, Jabalpur, India
Copyright © 2022 EAI
DOI 10.4108/eai.16-4-2022.2318146

also provides the service of data privacy and data security.[3, 4, 5]. FL is capable of detecting and

diagnosing the anomalies and faults that occur frequently on edge devices and cloud.

Intelligent devices like smartphones, PCs or tablets and electronics devices achieved high scaling

in present time. Devices equipped with multiple sensors and IoTs generates and consumes a

tremendous quantity of information. In distributed computing end-user devices perform the

training on local models and use localized datasets. The role parameter server is to aggregate the

local updates and upgrading global models. Edge device operates as an intermediary system

between the cloud and end-user devices. Edge behaves like the cloud. Each edge performs the

work of obtaining the outcome of end devices, implements collections and classification, and

finally delivers its intermediary output to the cloud environment for more processing.

The algorithm is designed on the principle of ensemble learning. Under this approach gradients are

evaluated from the active nodes by a separate unit called aggregator. The variant of stochastic

Gradient Descent (SGD) algorithm is implemented.[8, 9, 10].

2 System Architecture

Figure 1.1 depicts the model. The central server or parameter server performs the job of collecting

local gradients. The fundamental function of the main controller is to receive requests from edge

nodes. The basic purpose of the central server is to establish coordination among various working

modules. The key objective of the proposed model is to enhance fault tolerance of the system by

applying the machine learning prediction module [11, 12, 13, 14, 15]. Various computational units

and methods of the system are framed and deployed by the algorithmic model.

Federated learning refers to the operations together with local data are executed at edge device.

Mathematically federated learning is a graph G = (N, E), where the N = set of computational nodes

and E = set of edges (bi/directional communication channel or links). The graph based framework

for federated learning includes several edge devices like smart mobile phones [16, 17, 18], smart

sensors, etc. Processes are executed on the edge devices. Every edge device has its own

computational model together with associated data [19, 20].

 Local/Global Local/Global Local/Global

 Gradient Gradient Gradient

Figure 1.1 Architecture of Federated Learning

Figure 1.2 depicts the distribution of federated learning across the edge devices. The deep learning

model operates among the edge devices. Each end device holds its dataset. Since data is stored on

its local premises, data security and privacy is achieved. The central server merely orchestrates the

edge devices. The updated information produced by the end devices is propagated to the central

server for aggregation and in turn for final prediction. Privacy is implemented on both the central

server and on end devices. Deep learning is the inter-nodal process for obtaining the hidden

pattern or features of the datasets.

Parameter

Server

Worker

1

Worker

2
Worker

N

Figure 1.2 Federated Learning Distributed on Edge Devices

3 Proposed Methodologies

The Federated Learning algorithm incorporates an ensemble learning approach and establishes

coordination among multiple distributed working machines. The system needs to communicate

and aggregate the model's updated information in a secure, efficient, scalable, and fault-tolerant

way. There is no need to share or exchange the local data for centralized updates. Data is updated

at local domain on edge devices that preserves the privacy of confidential data.

Federated Learning Algorithm

Algorithm: FedLearning

Input: Dataset x

Output: Fault Resilient Model

1. Set initial value for algorithm

2. for r <=n do

3. Evaluate : outputi = ƒƿp (xi , θi);

4. calculate objective function: ci =

loss (α(xi), outputi);

5. If dir< ɛ

6. then

7. Break;

8. else

9. Evaluate: gradr = bƿp (xr ,

θi, cr);

10. compute edge devices’ gradients on

their own local premises

 and then aggregate updated

gradients;

11. Update: θr+1 = θr – k * gradnew ;

12. end if

13. end for

14. return Fault Resilient system with parameters

Table 1.1 Details of variates used in FedLearning

S. No. Variates Description

1 Xr The data point at ith sample

2 θ Model parameters

3 ƒƿp Forward propagation procedure

4 of The objective function

5 loss The cost or loss function

6 out Output of iteration

7 ci Cost calculation

8 bƿp Back propagation procedure

9 ɛ Arbitrarily error

10 grads Gradient evaluated

11 gradnew Gradient evaluated by central computing server

12 k Rate of learning/training

Table 1.1 shows the parameters and hyper-parameters used in the computational model. These parameters are

tuned to enhance the performance of the candidate system under consideration.

4 Experimental Setup

The proposed model is implemented by using Python language. Anaconda and Google Colab have

been used as frameworks for proposed model. Keras and TensorFlow are used for model building.

Functional API is best suited logic for proposed work. Dataset is bifurcated as training and testing

the samples. To cover faults within an identified fault deep learning model is deployed to track the

faults.

Various packages, libraries and dependencies are installed and configured to setup the workflow

of the model. Some of the tools like R and Theano are used for visualization of the result/outcome.

Keras framework facilitates both sequential and functional models. It also support various kinds of

libraries and modules.

4.1 Dataset Used

Datasets are the key ingredient to train, test, and validate the model for deep learning. Accurate

and relevant datasets are hardly available or accessible for model training and testing in

connection with fault tolerance. This research paper uses the datasets from Backblaze hard drive

failure rates. The Backblaze dataset comprises various attributes like manufacturer, model name,

drive size, drive count, Average age, etc. Drive size and drive failures have been taken as key

attributes for predictions.

Table 1.2 shows the samples of data-points taken from Backblaze dataset. This dataset contains a

large volume of data samples. Here only key attributes are considered for simplicity. Some of the

key attributes are date, serial number, model, capacity bytes and failure etc.

Large dataset creates a major problem of loading in RAM as well as slow down the training,

testing and inference process. One of the solutions for such kinds of problem is to create mini-

batches or batches for the underlying dataset. Under the Keras functional API framework, inbuilt

functions are implemented for ingesting the mini-batches to the proposed deep learning model.

Backblaze Hard Drive Failure Rates for 2020

(Reporting Period 01/01/2020 – 12/31/2020 inclusive)

date serial_number model capacity_bytes failure smart_1_normalized smart_1_raw
02-01-2019 ZCH07RLC ST12000NM0007 1.20001E+13 1 78 68082488

02-01-2019 ZJV0XJQ4 ST12000NM0007 1.20001E+13 0 83 205170872

02-01-2019 ZJV0XJQ3 ST12000NM0007 1.20001E+13 0 77 46805464

02-01-2019 ZJV0XJQ0 ST12000NM0007 1.20001E+13 0 82 173399264

02-01-2019 ZJV02XWG ST12000NM0007 1.20001E+13 0 75 29258232

02-01-2019 ZJV1CSVX ST12000NM0007 1.20001E+13 0 82 161342056

02-01-2019 ZJV02XWA ST12000NM0007 1.20001E+13 0 83 192689424

02-01-2019 ZJV1CSVV ST12000NM0007 1.20001E+13 0 82 160936720

02-01-2019 ZJV02XWV ST12000NM0007 1.20001E+13 0 79 73193616

02-01-2019 ZCH0EBLP ST12000NM0007 1.20001E+13 0 83 212894456

02-01-2019 ZJV0XJQV ST12000NM0007 1.20001E+13 0 78 57929328

02-01-2019 ZJV0XJQR ST12000NM0007 1.20001E+13 0 80 93227952

02-01-2019 ZJV0XJQQ ST12000NM0007 1.20001E+13 0 81 137430992

02-01-2019 ZJV1KAD3 ST12000NM0007 1.20001E+13 0 79 76757256

02-01-2019 ZJV0XJQY ST12000NM0007 1.20001E+13 0 83 200231288

02-01-2019 ZJV0XJQB ST12000NM0007 1.20001E+13 0 70 10147288

02-01-2019 ZJV0XJQA ST12000NM0007 1.20001E+13 0 100 764904

02-01-2019 ZJV0XJQL ST12000NM0007 1.20001E+13 0 81 135421464

02-01-2019 ZJV03K9Z ST12000NM0007 1.20001E+13 0 80 110830306

02-01-2019 ZJV0T568 ST12000NM0007 1.20001E+13 0 73 19541488

02-01-2019 ZJV0T563 ST12000NM0007 1.20001E+13 0 81 119246112

02-01-2019 ZJV0T564 ST12000NM0007 1.20001E+13 0 78 68717864

02-01-2019 ZJV0T567 ST12000NM0007 1.20001E+13 0 73 22185336

02-01-2019 ZJV0T566 ST12000NM0007 1.20001E+13 0 80 101574184

02-01-2019 ZCH03TMJ ST12000NM0007 1.20001E+13 0 77 48744200

02-01-2019 ZJV02TQE ST12000NM0007 1.20001E+13 0 79 84102696

02-01-2019 ZJV0T56K ST12000NM0007 1.20001E+13 0 84 242042648

02-01-2019 ZJV0T56M ST12000NM0007 1.20001E+13 0 83 221668744

02-01-2019 ZJV0T56L ST12000NM0007 1.20001E+13 0 82 146191184

02-01-2019 ZJV0T56A ST12000NM0007 1.20001E+13 0 83 199935272

02-01-2019 ZJV0T56F ST12000NM0007 1.20001E+13 0 79 82272992

02-01-2019 ZJV0T56Y ST12000NM0007 1.20001E+13 0 79 70917208

02-01-2019 ZJV0T56P ST12000NM0007 1.20001E+13 0 81 123420368

02-01-2019 ZJV0T56R ST12000NM0007 1.20001E+13 0 68 6385872

02-01-2019 ZJV0T56T ST12000NM0007 1.20001E+13 0 78 60084640

02-01-2019 ZJV0T56V ST12000NM0007 1.20001E+13 0 82 173420824

02-01-2019 ZJV19R5W ST12000NM0007 1.20001E+13 0 79 87710896

02-01-2019 ZJV1C4C6 ST12000NM0007 1.20001E+13 0 74 24691688

02-01-2019 ZCH0AFTE ST12000NM0007 1.20001E+13 0 83 207248536

02-01-2019 ZJV03R6X ST12000NM0007 1.20001E+13 0 79 86950680

02-01-2019 ZCH06DVN ST12000NM0007 1.20001E+13 0 75 33941832

Table 1.2 Samples or data-points taken from Backblaze datasets

4.2 Simulation Tools

The proposed algorithm is implemented by using Keras API framework, Cloud based platforms

like Google Colab and CloudSim simulator are used to simulate the model. Python and R

languages are used to implement the business logic. Tensorquant is most popular tools for ML and

DL.

4.3 Cloud Platforms

Deep learning model requires large datasets with multiple dimensions to yield accurate

predictions. Whenever datasets become voluminous and complex, training and inference process

goes slow down. Cloud platform provides various appropriate system resources and services like

CPU processing speed, higher capacity RAM, GPU and TPU. AWS machine learning services are

well suited cloud platform to resolve such kinds of problems.

5 Comparison with the Existing Model

The FedLearning is the best suited model that can tolerate the arbitrary faults most probable to

occur in distributed systems. By compared to other models the proposed algorithm produces

higher accuracy and calculated predictions. The present model gives better performance amongst

the existing model in terms of processing speeds and better predictions.

6 Conclusions and Discussion

Disk failure is very common among the other system failures. Through the extensive analysis and

training process on the voluminous data concerning disk failures assist the prediction on disk

failures on unknown data points. Disk failure causes both economic and operational loss.

7 Future Work

FedLearning suffers the key problem of computational communication cost across the nodes and

central server. The present body of the work opens the options for further research in the direction

of communication cost of computation, data security and privacy of confidential data. In future,

further work may include the integration of Bayesian optimization algorithms with FedLearning

algorithm.

Acknowledgement

The authors are extremely grateful to AKS University, Satna for providing the relevant resources,

infrastructure, and technical support during the development of the entire project work.

References

[1] Chen Y, Qin X, Wang J, Yu C, Gao W, Fedhealth: A federated transfer learning framework for

wearable healthcare. IEEE Intelligent Systems. (2019)

[2] Kang J, Xiong Z, Niyato D, Zou Y, Zhang Y, Guizani M. Reliable federated learning for mobile

networks. IEEE Wireless Communications; 27 (2) pp. 72–80 (2020)

[3] Sugawara E, Fukushi M, Horiguchi S, Fault-tolerant multi-layer neural networks with ga training.

in Proc. 18th IEEE Int. Symp. Defect Fault Tolerance VLSI Syst. pp. 328–335. (2003)

[4] Mahdiani HR, Fakhraie SM, and C. Lucas, Relaxed fault-tolerant hardware implementation of

neural networks in the presence of multiple transient errors. IEEE Trans. Neural Netw. Learn. Syst.,

vol. 23, no. 8, pp. 1215–1228 (2012)

[5] Rincon CA., Paris JF, Vilalta R, Cheng AMK, D.D.E. Long, Disk failure prediction in

heterogeneous environments, in 2017 International Symposium on Performance Evaluation of

Computer and Telecommunication Systems (SPECTS). IEEE, Seattle, WA: pp. 1–7 (2017)

[6] Satyanarayanan M. The emergence of edge computing. Computer 50 (1) (2017) 30–39.

doi:10.1109/MC.2017.9.

[7] Khan WZ, Ahmed E, Hakak S, Yaqoob L, Ahmed A, Edge computing: A survey. Future

Generation Computer Systems 97 pp. 219–235 (2019)

[8] Seide F, Fu H, Droppo J, Li G, Yu D. 1-bit stochastic gradient descent and application to data-

parallel distributed training of speech dnns, in Interspeech , interspeech Edition, 2014, pp. 1–2

2014

[9] Gandikota V, Kane D, Maity RK, Mazumdar A, vqsgd: Vector quantized stochastic gradient

descent, arXiv preprint arXiv:1911.07971 (2019)

[10] Brutzkus A, Globerson A, Malach E, Shalev-Shwartz S, SGD learns over-parameterized networks

that probably generalize on linearly separable data, in International Conference on Learning

Representations, pp. 1–2 (2018)

[11] Leduc-Primeau F, Gripon V, Rabbat MG, Gross WJ, Fault-tolerant associative memories based on

c-partite graphs. IEEE Trans. Signal Process., vol. 64, no. 4, pp. 829–841 (2016)

[12] Patan K, Neural Network-Based Model Predictive Control: Fault Tolerance and Stability. IEEE

Transactions on Control Systems Technology. 23 pp. 1147–1155.

https://doi.org/10.1109/TCST.2014.2354981 (2015)

[13] Chandra P, Singh Y, Fault tolerance of feedforward artificial neural networks—A framework of a

study, in Proc. Int. Joint Conf. Neural Netw., vol. 1. pp. 489–494 (2003)

[14] Kumari P, Kaur P, A survey of fault tolerance in cloud computing, Journal of King Saud University

- Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2018.09.021 (2018)

[15] Du Z, Lingamneni A, Chen Y, Palem KV, Temam O, Wu C. Leveraging the error resilience of

neural networks for designing highly energy-efficient accelerators. IEEE Trans. Comput.-Aided

Des. Integr. Circuits Syst., vol. 34, no. 8, pp. 1223–1235 (2015)

[16] Yi S, Li C, Li Q, A survey of fog computing: Concepts, applications, and issues, in Proceedings of

the 2015 Workshop on Mobile Big Data, Mobidata '15, Association for Computing Machinery,

New York, NY, USA, pp. 3742 (2015)

[17] Yi S, Qin Z, Li Q, Security and privacy issues of fog computing: A survey, in: in International

Conference on Wireless Algorithms, Systems, and Applications (WASA), pp. 685–695. (2015)

[18] Tao Z, Xia Q, Hao Z, Li C, Ma L, Yi S, Li Q, A survey of virtual machine management in edge

computing, Proceedings of the IEEE 107 (8) pp. 1482–1499 (2019)

[19] Rodrigues TG, Suto K, Nishiyama H, Kato N, Temma K, Cloudlets activation scheme for scalable

mobile edge computing with transmission power control and virtual machine migration, IEEE

Transactions on Computers 67 (9) pp. 1287–1300 (2018)

[20] Nishio T, Yonetani R, Client selection for federated learning with heterogeneous resources in

mobile edge, in ICC 2019 - 2019 IEEE International Conference on Communications (ICC) (2019)

https://doi.org/10.1109/TCST.2014.2354981
https://doi.org/10.1016/j.jksuci.2018.09.021

[21] Yoshida N, Nishio T, Morikura M, Yamamoto K, Yonetani R, Hybrid-fl for wireless networks:

Cooperative learning mechanism using non-iid data, in ICC 2020 - 2020 IEEE International

Conference on Communications (ICC), pp. 1–7 (2020)

[22] Yang HH, Liu Z, S TQ. Quek, Poor HV, Scheduling policies for federated learning in wireless

networks, IEEE Transactions on Communications 68 (1) pp. 317–333 (2020)

[23] Dinh CT, Tran NH, H MN. Nguyen, Hong CS, Bao W, Zomaya AY, Gramoli V, Federated

learning over wireless networks: Convergence analysis and resource allocation, IEEE/ACM

Transactions on Networking (2020)

