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Abstract. Data intensive computing system like distributed systems suffer a potential 

problem of data storage, load balancing and privacy of confidential data. The distributed data 

needs to be analyzed and protected properly for ensuring data privacy and improving the fault 

tolerance. Data privacy and security have become prominent issues for data-oriented 

applications. Fault-tolerant must be deployed for smooth functioning of the distributed 

computing system. A Federated learning (FL) model can be deployed on multiple edge 

devices. The Federated learning model is deployed on both horizontal and vertical scopes. 

The feature of distributed computing is that it is growing tremendously towards horizontal and 

vertical directions. FL deployed with distributed deep learning could identify, recognize, and 

resolve the faults at a large scale. Federated learning is a multimodal deep learning system 

that captures training data across various distributed and decentralized edge devices.  
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1 Introduction 

 

Fault is one of the major challenges in distributed environment. Fault tolerating framework is the 

most important element of a distributed system for reducing the chance of system failures. 

Federated learning [1, 2] is a kind of distributed and decentralized learning approach. The 

Federated learning (FL) method is most relevant approach applied in distributed system. Under 

this model a set of workers are deployed on local premises to train the local datasets. FL approach 
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also provides the service of data privacy and data security.[3, 4, 5]. FL is capable of detecting and 

diagnosing the anomalies and faults that occur frequently on edge devices and cloud.  

 

Intelligent devices like smartphones, PCs or tablets and electronics devices achieved high scaling 

in present time. Devices equipped with multiple sensors and IoTs generates and consumes a 

tremendous quantity of information. In distributed computing end-user devices perform the 

training on local models and use localized datasets. The role parameter server is to aggregate the 

local updates and upgrading global models. Edge device operates as an intermediary system 

between the cloud and end-user devices. Edge behaves like the cloud. Each edge performs the 

work of obtaining the outcome of end devices, implements collections and classification, and 

finally delivers its intermediary output to the cloud environment for more processing.  

 

The algorithm is designed on the principle of ensemble learning. Under this approach gradients are 

evaluated from the active nodes by a separate unit called aggregator. The variant of stochastic 

Gradient Descent (SGD) algorithm is implemented.[8, 9, 10].  

 

2 System Architecture  

Figure 1.1 depicts the model. The central server or parameter server performs the job of collecting 

local gradients. The fundamental function of the main controller is to receive requests from edge 

nodes. The basic purpose of the central server is to establish coordination among various working 

modules. The key objective of the proposed model is to enhance fault tolerance of the system by 

applying the machine learning prediction module [11, 12, 13, 14, 15]. Various computational units 

and methods of the system are framed and deployed by the algorithmic model. 

 

Federated learning refers to the operations together with local data are executed at edge device. 

Mathematically federated learning is a graph G = (N, E), where the N = set of computational nodes 

and E = set of edges (bi/directional communication channel or links). The graph based framework 

for federated learning includes several edge devices like smart mobile phones [16, 17, 18], smart 



sensors, etc. Processes are executed on the edge devices. Every edge device has its own 

computational model together with associated data [19, 20].  
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Figure 1.1 Architecture of Federated Learning 

Figure 1.2 depicts the distribution of federated learning across the edge devices. The deep learning 

model operates among the edge devices. Each end device holds its dataset. Since data is stored on 

its local premises, data security and privacy is achieved. The central server merely orchestrates the 

edge devices. The updated information produced by the end devices is propagated to the central 

server for aggregation and in turn for final prediction. Privacy is implemented on both the central 

server and on end devices. Deep learning is the inter-nodal process for obtaining the hidden 

pattern or features of the datasets. 
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Figure 1.2 Federated Learning Distributed on Edge Devices 

3 Proposed Methodologies 

 

The Federated Learning algorithm incorporates an ensemble learning approach and establishes 

coordination among multiple distributed working machines. The system needs to communicate 

and aggregate the model's updated information in a secure, efficient, scalable, and fault-tolerant 

way. There is no need to share or exchange the local data for centralized updates. Data is updated 

at local domain on edge devices that preserves the privacy of confidential data. 

 



Federated Learning Algorithm 

Algorithm: FedLearning 

Input: Dataset x 

Output: Fault Resilient Model  

1. Set initial value for algorithm 

2. for r <=n do 

3.           Evaluate : outputi = ƒƿp (xi , θi); 

4.           calculate objective function: ci = 

loss (α(xi), outputi); 

5.           If dir< ɛ  

6.           then 

7.                     Break; 

8.           else 

9.                     Evaluate: gradr =  bƿp (xr , 

θi, cr); 

10.           compute edge devices’ gradients on 

their own local premises  

                         and then aggregate updated 

gradients; 

11.           Update: θr+1 = θr – k * gradnew ; 

12.           end if 

13.  end for 

14.  return Fault Resilient system with parameters            

 

 

 



Table 1.1 Details of variates used in FedLearning 

S. No. Variates  Description 

1 Xr The data point at ith sample 

2 θ Model parameters 

3 ƒƿp Forward propagation procedure 

4 of The objective function 

5 loss The cost or loss function 

6 out Output of iteration 

7 ci Cost calculation 

8 bƿp Back propagation procedure 

9 ɛ Arbitrarily error  

10 grads Gradient evaluated  

11 gradnew Gradient evaluated by central computing server 

12 k Rate of learning/training 

Table 1.1 shows the parameters and hyper-parameters used in the computational model. These parameters are 

tuned to enhance the performance of the candidate system under consideration. 

 

4 Experimental Setup 

 

The proposed model is implemented by using Python language. Anaconda and Google Colab have 

been used as frameworks for proposed model. Keras and TensorFlow are used for model building. 

Functional API is best suited logic for proposed work. Dataset is bifurcated as training and testing 

the samples. To cover faults within an identified fault deep learning model is deployed to track the 

faults. 

 

Various packages, libraries and dependencies are installed and configured to setup the workflow 

of the model. Some of the tools like R and Theano are used for visualization of the result/outcome. 



Keras framework facilitates both sequential and functional models. It also support various kinds of 

libraries and modules. 

 

4.1 Dataset Used 

 

Datasets are the key ingredient to train, test, and validate the model for deep learning. Accurate 

and relevant datasets are hardly available or accessible for model training and testing in 

connection with fault tolerance. This research paper uses the datasets from Backblaze hard drive 

failure rates. The Backblaze dataset comprises various attributes like manufacturer, model name, 

drive size, drive count, Average age, etc. Drive size and drive failures have been taken as key 

attributes for predictions. 

 

Table 1.2 shows the samples of data-points taken from Backblaze dataset. This dataset contains a 

large volume of data samples. Here only key attributes are considered for simplicity. Some of the 

key attributes are date, serial number, model, capacity bytes and failure etc. 

 

Large dataset creates a major problem of loading in RAM as well as slow down the training, 

testing and inference process. One of the solutions for such kinds of problem is to create mini-

batches or batches for the underlying dataset. Under the Keras functional API framework, inbuilt 

functions are implemented for ingesting the mini-batches to the proposed deep learning model. 

 

 

 

 

 

 

 

 



 

 

 

 

 

Backblaze Hard Drive Failure Rates for 2020 

(Reporting Period 01/01/2020 – 12/31/2020 inclusive) 

date serial_number model capacity_bytes failure smart_1_normalized smart_1_raw
02-01-2019 ZCH07RLC ST12000NM0007 1.20001E+13 1 78 68082488

02-01-2019 ZJV0XJQ4 ST12000NM0007 1.20001E+13 0 83 205170872

02-01-2019 ZJV0XJQ3 ST12000NM0007 1.20001E+13 0 77 46805464

02-01-2019 ZJV0XJQ0 ST12000NM0007 1.20001E+13 0 82 173399264

02-01-2019 ZJV02XWG ST12000NM0007 1.20001E+13 0 75 29258232

02-01-2019 ZJV1CSVX ST12000NM0007 1.20001E+13 0 82 161342056

02-01-2019 ZJV02XWA ST12000NM0007 1.20001E+13 0 83 192689424

02-01-2019 ZJV1CSVV ST12000NM0007 1.20001E+13 0 82 160936720

02-01-2019 ZJV02XWV ST12000NM0007 1.20001E+13 0 79 73193616

02-01-2019 ZCH0EBLP ST12000NM0007 1.20001E+13 0 83 212894456

02-01-2019 ZJV0XJQV ST12000NM0007 1.20001E+13 0 78 57929328

02-01-2019 ZJV0XJQR ST12000NM0007 1.20001E+13 0 80 93227952

02-01-2019 ZJV0XJQQ ST12000NM0007 1.20001E+13 0 81 137430992

02-01-2019 ZJV1KAD3 ST12000NM0007 1.20001E+13 0 79 76757256

02-01-2019 ZJV0XJQY ST12000NM0007 1.20001E+13 0 83 200231288

02-01-2019 ZJV0XJQB ST12000NM0007 1.20001E+13 0 70 10147288

02-01-2019 ZJV0XJQA ST12000NM0007 1.20001E+13 0 100 764904

02-01-2019 ZJV0XJQL ST12000NM0007 1.20001E+13 0 81 135421464

02-01-2019 ZJV03K9Z ST12000NM0007 1.20001E+13 0 80 110830306

02-01-2019 ZJV0T568 ST12000NM0007 1.20001E+13 0 73 19541488

02-01-2019 ZJV0T563 ST12000NM0007 1.20001E+13 0 81 119246112

02-01-2019 ZJV0T564 ST12000NM0007 1.20001E+13 0 78 68717864

02-01-2019 ZJV0T567 ST12000NM0007 1.20001E+13 0 73 22185336

02-01-2019 ZJV0T566 ST12000NM0007 1.20001E+13 0 80 101574184

02-01-2019 ZCH03TMJ ST12000NM0007 1.20001E+13 0 77 48744200

02-01-2019 ZJV02TQE ST12000NM0007 1.20001E+13 0 79 84102696

02-01-2019 ZJV0T56K ST12000NM0007 1.20001E+13 0 84 242042648

02-01-2019 ZJV0T56M ST12000NM0007 1.20001E+13 0 83 221668744

02-01-2019 ZJV0T56L ST12000NM0007 1.20001E+13 0 82 146191184

02-01-2019 ZJV0T56A ST12000NM0007 1.20001E+13 0 83 199935272

02-01-2019 ZJV0T56F ST12000NM0007 1.20001E+13 0 79 82272992

02-01-2019 ZJV0T56Y ST12000NM0007 1.20001E+13 0 79 70917208

02-01-2019 ZJV0T56P ST12000NM0007 1.20001E+13 0 81 123420368

02-01-2019 ZJV0T56R ST12000NM0007 1.20001E+13 0 68 6385872

02-01-2019 ZJV0T56T ST12000NM0007 1.20001E+13 0 78 60084640

02-01-2019 ZJV0T56V ST12000NM0007 1.20001E+13 0 82 173420824

02-01-2019 ZJV19R5W ST12000NM0007 1.20001E+13 0 79 87710896

02-01-2019 ZJV1C4C6 ST12000NM0007 1.20001E+13 0 74 24691688

02-01-2019 ZCH0AFTE ST12000NM0007 1.20001E+13 0 83 207248536

02-01-2019 ZJV03R6X ST12000NM0007 1.20001E+13 0 79 86950680

02-01-2019 ZCH06DVN ST12000NM0007 1.20001E+13 0 75 33941832  

 

Table 1.2 Samples or data-points taken from Backblaze datasets 

4.2 Simulation Tools 



The proposed algorithm is implemented by using Keras API framework, Cloud based platforms 

like Google Colab and CloudSim simulator are used to simulate the model. Python and R 

languages are used to implement the business logic. Tensorquant is most popular tools for ML and 

DL. 

 

4.3 Cloud Platforms 

 

Deep learning model requires large datasets with multiple dimensions to yield accurate 

predictions. Whenever datasets become voluminous and complex, training and inference process 

goes slow down. Cloud platform provides various appropriate system resources and services like 

CPU processing speed, higher capacity RAM, GPU and TPU. AWS machine learning services are 

well suited cloud platform to resolve such kinds of problems. 

 

5 Comparison with the Existing Model 

 

The FedLearning is the best suited model that can tolerate the arbitrary faults most probable to 

occur in distributed systems. By compared to other models the proposed algorithm produces 

higher accuracy and calculated predictions. The present model gives better performance amongst 

the existing model in terms of processing speeds and better predictions. 

 

6 Conclusions and Discussion 

 

Disk failure is very common among the other system failures. Through the extensive analysis and 

training process on the voluminous data concerning disk failures assist the prediction on disk 

failures on unknown data points. Disk failure causes both economic and operational loss. 

 

7 Future Work 



 

FedLearning suffers the key problem of computational communication cost across the nodes and 

central server. The present body of the work opens the options for further research in the direction 

of communication cost of computation, data security and privacy of confidential data. In future, 

further work may include the integration of  Bayesian optimization algorithms with FedLearning 

algorithm. 
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