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Abstract. This study aims to formulate convolution for reduced biquaternion linear canonical transform 

(RBLCT). The research method used in this research was conducted as a library research at the PSDKU 

Makassar Graphic Engineering Study Program, Graphic Engineering Department, Creative Media State 

Polytechnic, Makassar. Research results obtained through the definition of RBLCT was obtained by 

determining the definition of reduced biquaternion Fourier transform (RBFT), and by analyzing the 

properties. The analysis of properties was conducted by replacing the FT kernel with the RBFT kernel is 

the definition of LCT. The proposed convolution for RBLCT are the extensions of LCT convolution over 

the domain of RBLCT domain. This study also reveals an evidence is much simpler since it uses the 

conjugation properties of RBLCT kernel. As the application of results, the RBLCT convolutions theorems 

are discussed to analyze the frequency-swift filter in general. 
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1   Introduction 

This Word document can be used as a template for papers to be published in EAI Core 

Proceedings. Follow the text for further instructions on text formating, tables, figures, citations 

and references. 

Digital image processing and signal processing are objects of current discussion which are 

activities that are closely related to mathematical processes. The Fourier transform was first 

discovered by a mathematician Joseph Fourier. The Fourier transform is an extension of the 

Fourier series. The development of the Fourier series to the Fourier transform is because non-

periodic functions are easier to analyze with the Fourier transform. 

In reality, apart from being in contact with real space, there is also a complex space, so the 

Fourier transform is being developed in a complex space, namely the Fourier Quaternion 

transform (TFQ). TFQ is a generalization of the real and complex Fourier transform using 

quaternion algebra. Quaternion is an expansion of complex numbers which was first discovered 

by Hamilton. The discussion of quaternions has been widely developed on the problem of signal 

processing, image processing, aircraft radar and so on. However, since it is known that the 

multiplication rule of quaternions is not commutative, this limits the application of quaternions 

in signal and image processing. Moreover, in general, the convolution of the two signal 

quaternions f(x,y) and g(x,y) cannot be calculated by the product of the Fourier transforms 

F(u,v) and G(u,v) in the frequency domain. 

With these weaknesses, a reduced biquatenion has been proposed which has a commutative 

multiplication rule [1]. This commutative property is an advantage over quaternions. A 

biquaternion is an eight-dimensional hypercomplex number with addition and multiplication 

operations similar to that of a quaternion. The collection of biquaternions forms four-

dimensional (4D) algebra on complex numbers. 
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Linear canonical transformation (TKL) which is a generalization of several 

transformations, including Fourier transform, Laplace transform, fractional Fourier transform, 

Fresnel transform and other transformations has an important role in many fields of optics [2] 

as well as processing signal [3]. TKL is more attractive in various applications due to the 

accuracy and efficiency of its transformation calculations [4], and many of the basic properties 

of these transformations are known, including shift, modulation, convolution, correlation and 

the uncertainty principle [5]. 

In previous studies, the convolution theorem for linear canonical transformation (TKL) has 

been introduced which is based on the properties of the convolution theorem for the Fourier 

Transform which is explicitly shown by the authors some important properties of the relation 

between TKL and convolution, and provides an alternative form of the TKL correlation theorem 

[6]. Likewise, the convolution for one-sided TKLQ and its important properties such as 

linearity, shift, modulation and so on [7]. 

This research was conducted using a literature review method, by first introducing the 

definition of the reduced Biquaternion Fourier transform (TFBT) and its important properties 

such as linearity, shift or dilation, scale, modulation, parseval, and plansherel. Furthermore, 

based on the definition of the reduced biquaternion Fourier transform (TFBT), we obtain the 

definition of the reduced linear biquaternion canonical transform (TKLBT) by replacing the 

Kernel of TF with the kernel of TFBT in the definition of TKL. And in the end it will be obtained 

an alternative form of the convolution for the reduced biquaternion linear canonical 

transformation. 

2  Research Methods 

 
2.1 Problem identification 

 Problem identification is the initial stage of research to determine the focus of the 

research problem. 

2.2 Literature Study 

 Literature studies were conducted on research journals related to the field of research 

as a stage to complete the basic knowledge of researchers for the purposes of conducting 

research. 

a) Activities for formulating the definition of TKLBT. 

b) The activity of formulating the inverse definition of TKLBT. 

c) TKLBT convolution theorem formulation activities. 

2.3 Research framework 

 After compiling the definition of TKLBT, then a framework is made based on the 

formulation of the problem and research objectives. 

The order of the framework of thought in this research activity can be described in a flow chart 

below. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.  Result and Discussion 

 
3.1 TKLBT Definition 

 

 

Based on the definition of the reduced Biquaternion Fourier transform (TFBT), the 

definition of TKLBT is obtained by replacing the kernel from TF with the kernel from TFBT in 

the definition of TKL. 

Denoted by  𝑆𝐿 (2, ℝ), a special linear group of degree 2 on ℝ, is a group of a matrix of the 

order 2×2 with a determinant of one. Suppose 

 

As = (as, bs, cs, ds) = (
as 𝑏s

cs 𝑑s
) ∈ 𝑆𝐿 (2, ℝ), s = 1,2. 

Definition 1. The reduced biquaternion linear canonical transformation (TKLBT) of the 

reduced biquaternion signal f is defined by 

 

𝑳𝐴1,𝐴2

𝒊,𝒌 {𝑓}(𝝎) 

=  {
∫ 𝐾𝐴1

(𝑥1 , 𝜔1)𝑓(𝒙)𝐾𝐴2
(𝑥2,, 𝜔2)  𝑑𝒙,

𝑅2
  𝑏𝑛 ≠ 0, 𝑛 = 1,2

√𝑑1𝑑2𝑒𝒊(
𝑐1𝑑1

2
)𝜔1

2

𝑓(𝑑1𝜔1, 𝑑2𝜔2)𝑒𝒌(
𝑐2𝑑2

2
)𝜔2

2

, 𝑏1 = 0 atau 𝑏2 = 0

,    (1) 

where the kernel of TKLBT is given by each. 

𝐾𝐴1
(𝑥1, 𝜔1) =  

1

√2𝜋𝑏1𝒊
𝑒

𝒊
1
2

 (
𝑎1
𝑏1

 𝑥1
2− 

2
𝑏1

 𝑥1 𝜔1+ 
𝑑1
𝑏1

𝜔1
2)

,                                   (2) 

dan 

𝐾𝐴2
(𝑥2, 𝜔2) =  

1

√2𝜋𝑏2𝒌
𝑒

𝒌
1
2

 (
𝑎2
𝑏2

 𝑥2
2− 

2
𝑏2

 𝑥2 𝜔2+ 
𝑑2
𝑏2

𝜔2
2)

.                               (3) 
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With 𝑒𝒊(
𝑐1𝑑1

2
)𝜔1

2

 dan 𝑒𝒌(
𝑐1𝑑1

2
)𝜔1

2

called Chirp signal in signal processing. Because 

𝑳𝐴1,𝐴2

𝒊,𝒌 {𝑓}(𝝎) is trivial for 𝑏1 = 0 or 𝑏2 = 0, in this study it is always assumed that 𝑏𝑛 ≠ 0 

for𝑛 = 1,2. As a special case, when 𝐴1 =  𝐴2 = (𝑎𝑠 , 𝑏𝑠, 𝑐𝑠, 𝑑𝑠) = (0, 1, −1, 0 ) for 𝑠 =  1, 2, 

the definition of TKLBT in equation (1) is reduced to the definition of TFBT, namely 

 

                   𝐿𝐴1,𝐴2

𝑖,𝑘 {𝑓}(𝝎) =  ∫   
𝑅2

1

√2𝜋𝒊
 𝑒−𝒊𝜔1𝑥1𝑓(𝒙)

1

√2𝜋𝒌
𝑒−𝒌𝜔2𝑥2 𝑑𝒙 

                    =  
1

√2𝜋𝒊
ℱ𝑅𝐵{𝑓}(𝝎)

1

√2𝜋𝒌
.                                                       (4) 

Theorem 1. The inverse of the reduced biquaternion linear canonical transformation is given 

by 

 

𝑓(𝒙) = {
∫ 𝐾𝐴1

−1(𝑥1 , 𝜔1)𝐿𝐴1,𝐴2

𝒊,𝒌 𝑓(𝝎)𝐾𝐴2
−1(𝑥2,, 𝜔2)  𝑑𝝎,

𝑅2
  𝑏𝑛 ≠ 0, 𝑛 = 1,2

√𝑎1𝑎2𝑒−𝒊(
𝑐1𝑎1

2
)𝑥1

2

𝑓(𝑎1𝑥1, 𝑎2𝑥2)𝑒−𝒌(
𝑐2𝑎2

2
)𝑥2

2

, 𝑏1 = 0 atau 𝑏2 = 0

, 

(5) 

when 𝐴1
−1 = (𝑑1, −𝑏1, −𝑐1, 𝑎1) and 𝐴2

−1 = (𝑑2, −𝑏2, −𝑐2, 𝑎2).   

 
3.2 Characteristics of TKLBT 

 

The following proposition presents some useful properties of the kernel functions 𝐾𝐴1
(𝑥1, 𝜔1) 

and 𝐾𝐴2
(𝑥2, 𝜔2) TKLBT, which will be used to derive the Parseval formula 

Proposition 1. Given the kernels of the functions 𝐾𝐴1
(𝑥1, 𝜔1) and 𝐾𝐴2

(𝑥2, 𝜔2)defined by (2) 

and (3). next we get: 

 

I. 𝐾𝐴1
(−𝑥1, 𝜔1) = 𝐾𝐴1

(𝑥1, −𝜔1) and 𝐾𝐴2
(−𝑥2, 𝜔2) = 𝐾𝐴2

(𝑥2, −𝜔2); 

II. 𝐾𝐴1
(−𝑥1, −𝜔1) = 𝐾𝐴1

(𝑥1, 𝜔1) dand 𝐾𝐴2
(−𝑥2, −𝜔2) = 𝐾𝐴2

(𝑥2, 𝜔2); 

III. 𝐾𝐴1
(𝑥1, 𝜔1)𝐾𝐴2

(𝑥2, 𝜔2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝐾𝐴1
−1(𝑥1, 𝜔1)𝐾𝐴2

−1(𝑥2, 𝜔2). 

Proof 1. By using equation (2) the proof of the proposition 𝐾𝐴1
(−𝑥1, 𝜔1) = 𝐾𝐴1

(𝑥1, −𝜔1) is 

as follows 

 

𝐾𝐴1
(−𝑥1, 𝜔1) =

1

√2𝜋𝑏1𝒊
𝑒

𝒊
1
2

 (
𝑎1
𝑏1

 (−𝑥1)2− 
2

𝑏1
(−𝑥1 )𝜔1+ 

𝑑1
𝑏1

𝜔1
2)

 

              =
1

√2𝜋𝑏1𝒊
𝑒

𝒊
1
2

 (
𝑎1
𝑏1

 𝑥1
2+ 

2
𝑏1

𝑥1𝜔1+ 
𝑑1
𝑏1

𝜔1
2)

, 

Similar to 

𝐾𝐴1
(𝑥1, −𝜔1) =  

1

√2𝜋𝑏1𝒊
𝑒

𝒊
1
2

 (
𝑎1
𝑏1

 𝑥1
2− 

2
𝑏1

 𝑥1 (−𝜔1)+ 
𝑑1
𝑏1

(−𝜔1)2)
 

          =  
1

√2𝜋𝑏1𝒊
𝑒

𝒊
1
2

 (
𝑎1
𝑏1

𝑥1
2+ 

2
𝑏1

 𝑥1 𝜔1+ 
𝑑1
𝑏1

𝜔1
2)

 

= 𝐾𝐴1
(−𝑥1, 𝜔1).                     

If the same operation is performed in equation (3), then we get 



 

 

 

 

 

𝐾𝐴2
(−𝑥2, 𝜔2) =

1

√2𝜋𝑏2𝒌
𝑒

𝒌
1
2

 (
𝑎2
𝑏2

 (−𝑥2)2− 
2

𝑏2
(−𝑥2 )𝜔2+ 

𝑑2
𝑏2

𝜔2
2)

 

              =
1

√2𝜋𝑏2𝒌
𝑒

𝒌
1
2

 (
𝑎2
𝑏2

 𝑥2
2+ 

2
𝑏2

𝑥2𝜔2+ 
𝑑2
𝑏2

𝜔2
2)

, 

Similar to 

𝐾𝐴2
(𝑥2, −𝜔2) =  

1

√2𝜋𝑏2𝒌
𝑒

𝒌
1
2

 (
𝑎2
𝑏2

 𝑥2
2− 

2
𝑏2

 𝑥2 (−𝜔2)+ 
𝑑2
𝑏2

(−𝜔2)2)
 

          =  
1

√2𝜋𝑏2𝒌
𝑒

𝒌
1
2

 (
𝑎2
𝑏2

𝑥2
2+ 

2
𝑏2

 𝑥2 𝜔2+ 
𝑑2
𝑏2

𝜔2
2)

 

= 𝐾𝐴2
(−𝑥2, 𝜔2).                        

 

Proof 2. By using equation (2) the proof of the proposition 𝐾𝐴1
(−𝑥1, −𝜔1) = 𝐾𝐴1

(𝑥1, 𝜔1)   is 

as follows 

 

𝐾𝐴1
(−𝑥1, −𝜔1) =  

1

√2𝜋𝑏1𝒊
𝑒

𝒊
1
2

 (
𝑎1
𝑏1

 (−𝑥1)2− 
2

𝑏1
 (−𝑥1 )(−𝜔1)+ 

𝑑1
𝑏1

(−𝜔1)2)
 

     =  
1

√2𝜋𝑏1𝒊
𝑒

𝒊
1
2

 (
𝑎1
𝑏1

 𝑥1
2− 

2
𝑏1

 𝑥1 𝜔1+ 
𝑑1
𝑏1

𝜔1
2)

 

= 𝐾𝐴1
(𝑥1, 𝜔1).                                   

while 𝐾𝐴2
(−𝑥2, −𝜔2) = 𝐾𝐴2

(𝑥2, 𝜔2)  can be proven by using equation (3), as follows 

 

𝐾𝐴2
(−𝑥2, −𝜔2) =  

1

√2𝜋𝑏2𝒌
𝑒

𝒌
1
2

 (
𝑎2
𝑏2

 (−𝑥2)2− 
2

𝑏2
 (−𝑥2 )(−𝜔2)+ 

𝑑2
𝑏2

(−𝜔2)2)
 

=  
1

√2𝜋𝑏2𝒌
𝑒

𝒌
1
2

 (
𝑎2
𝑏2

 𝑥2
2− 

2
𝑏2

 𝑥2 𝜔2+ 
𝑑2
𝑏2

𝜔2
2)

       

= 𝐾𝐴2
(𝑥2, 𝜔2).                                               

 

Proof 3. From equations (2) and (3) it can be written as follows 

𝐾𝐴1
(𝑥1, 𝜔1)𝐾𝐴2

(𝑥2, 𝜔2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
1

√2𝜋𝑏1𝒊
𝑒

𝒊
1
2

 (
𝑎1
𝑏1

 𝑥1
2− 

2
𝑏1

 𝑥1 𝜔1+ 
𝑑1
𝑏1

𝜔1
2)

 

        
1

√2𝜋𝑏2𝒌
𝑒

𝒌
1
2

 (
𝑎2
𝑏2

 𝑥2
2− 

2
𝑏2

 𝑥2 𝜔2+ 
𝑑2
𝑏2

𝜔2
2)

  

  =
1

√2𝜋𝑏1(−𝒊)
𝑒

−𝒊
1
2

 (
𝑎1
𝑏1

 𝑥1
2− 

2
𝑏1

 𝑥1 𝜔1+ 
𝑑1
𝑏1

𝜔1
2) 1

√2𝜋𝑏2(−𝒌)
𝑒

−𝒌
1
2

 (
𝑎2
𝑏2

 𝑥2
2− 

2
𝑏2

 𝑥2 𝜔2+ 
𝑑2
𝑏2

𝜔2
2)

 

  =
1

√−2𝜋𝑏1𝒊
𝑒

−𝒊
1
2

 ( 
𝑎1
𝑏1

 − 
2

𝑏1
 𝑥1 𝜔1+ 

𝑑1
𝑏1

𝜔1
2) 1

√−2𝜋𝑏2𝒌
𝑒

−𝒌
1
2

 ( 
𝑎2
𝑏2

 𝑥2
2− 

2
𝑏2

 𝑥2 𝜔2+ 
𝑑2
𝑏2

𝜔2
2)

, 

by using the inverse TKLBT in equation (5), it can be written as follows 

𝐾𝐴1
−1(𝑥1, 𝜔1)𝐾𝐴2

−1(𝑥2, 𝜔2) =
1

√2𝜋(−𝑏1)𝒊
𝑒

𝒊
1
2

 (
𝑎1

(−𝑏1)
 𝑥1

2− 
2

(−𝑏1)
 𝑥1 𝜔1+ 

𝑑1
(−𝑏1)

𝜔1
2)

 

             
1

√2𝜋(−𝑏2)𝒌
𝑒

𝒌
1
2

 (
𝑎2

(−𝑏2)
 𝑥2

2− 
2

(−𝑏2)
 𝑥2 𝜔2+ 

𝑑2
(−𝑏2)

𝜔2
2)

 



 

 

 

 

 

   =
1

√−2𝜋𝑏1𝒊
𝑒

𝒊
1
2

 (− 
𝑎1
𝑏1

𝑥1
2 + 

2
𝑏1

 𝑥1 𝜔1− 
𝑑1
𝑏1

𝜔1
2) 1

√−2𝜋𝑏2𝒌
𝑒

𝒌
1
2

 (− 
𝑎2
𝑏2

 𝑥2
2+ 

2
𝑏2

 𝑥2 𝜔2− 
𝑑2
𝑏2

𝜔2
2)

 

   =
1

√−2𝜋𝑏1𝒊
𝑒

−𝒊
1
2

 ( 
𝑎1
𝑏1

 𝑥1
2− 

2
𝑏1

 𝑥1 𝜔1+ 
𝑑1
𝑏1

𝜔1
2) 1

√−2𝜋𝑏2𝒌
𝑒

−𝒌
1
2

 ( 
𝑎2
𝑏2

 𝑥2
2− 

2
𝑏2

 𝑥2 𝜔2+ 
𝑑2
𝑏2

𝜔2
2)

 

       = 𝐾𝐴1
(𝑥1, 𝜔1)𝐾𝐴2

(𝑥2, 𝜔2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

 

The following lemma describes in general the relationship between TKLBT and TFBT 

of a signal f. 

 

Lemma 1. TKLBT of signal f with parameter matrix 𝐴1 =  (𝑎1, 𝑏1, 𝑐1, 𝑑1)  dan 𝐴2 =
 (𝑎2, 𝑏2, 𝑐2, 𝑑2) can be written as signal f of TFBT which is written in the form 

𝐿𝐴1,𝐴2

𝑖,𝑘 {𝑓}(𝝎) =
1

√2𝜋𝑏1𝒊

1

√2𝜋𝑏1𝒌
𝑒

𝒊𝑑1
2𝑏1

𝜔1
2

𝑒
𝒌𝑑2
2𝑏2

𝜔2
2

ℱ𝑅𝐵 {𝑒
𝒊𝑎1
2𝑏1

𝑥1
2

𝑒
𝒌𝑎2
2𝑏2

𝑥2
2

𝑓(𝒙)} 

(
𝜔1

𝑏1

,
𝜔2

𝑏2

).                                                                                    (6) 

Proof. A simple calculation using definition 1 shows that 

  𝐿𝐴1,𝐴2

𝑖,𝑘 {𝑓}(𝝎) =  
1

√2𝜋𝑏1𝒊
∫   

ℝ2
𝑒

𝒊
1
2

(
𝑎1
𝑏1

𝑥1
2−

2
𝑏1

𝑥1𝜔1+
𝑑1
𝑏1

𝜔1
2)

𝑓(𝒙)
1

√2𝜋𝑏1k
 

        𝑒
𝒌

1
2

(
𝑎2
𝑏2

𝑥2
2−

2
𝑏2

𝑥2𝜔2+
𝑑2
𝑏2

𝜔2
2)

 𝑑𝒙 

 =  
1

√2𝜋𝑏1𝒊
∫   

ℝ2
𝑒

𝒊
𝑎1

2𝑏1
𝑥1

2−𝒊
𝜔1
𝑏1

𝑥1+𝒊
𝑑1

2𝑏1
𝜔1

2

𝑓(𝒙)
1

√2𝜋𝑏1𝒌
𝑒

𝒌
𝑎2

2𝑏2
𝑥2

2−𝒌
𝜔2
𝑏2

𝑥2+𝑘
𝑑2

2𝑏2
𝜔2

2

𝑑𝒙 

=
1

√2𝜋𝑏1𝒊
𝑒

𝒊
𝑑1

2𝑏1
𝜔1

2

 ∫  𝑒
−𝒊

𝜔1
𝑏1

𝑥1  (𝑒
𝒊

𝑎1
2𝑏1

𝑥1
2

𝑒
𝒌

𝑎2
2𝑏2

𝑥2
2

𝑓(𝒙))
1

√2𝜋𝑏1𝒌
𝑒

−𝒌𝑥2
𝜔2
𝑏2 𝑒

𝒌
𝑑2

2𝑏2
𝜔2

2

 𝑑𝒙
ℝ2

 

=
1

√2𝜋𝑏1𝒊
𝑒

𝒊
𝑑1

2𝑏1
𝜔1

2

ℱ𝑅𝐵  {𝑒
𝒊

𝑎1
2𝑏1

𝑥1
2

𝑒
𝒌

𝑎2
2𝑏2

𝑥2
2

𝑓(𝒙)} (
𝜔1

𝑏1

,
𝜔2

𝑏2

)
1

√2𝜋𝑏1𝒌
𝑒

𝒌𝑑2
2𝑏2

𝜔2
2

.          (7) 

 

Where the last line is obtained from the definition of TFBT in equation (4). 

Furthermore, an alternative proof of the Plancherel formula for TKLBT is provided. 

Theorem 2. (Plancherel TKLBT). The two reduced biquaternion functions f and g of TKLBT 

have the Plancherel formula, which is given as 

∫   
ℝ2

𝑓(𝒙)𝑔(𝒙)̅̅ ̅̅ ̅̅ 𝑑𝒙 = ∫ 𝐿𝐴1,𝐴2

𝑖,k {𝑓}(𝜔)𝐿𝐴1,𝐴2

𝑖,k {𝑔}(𝜔) 𝑑𝝎.
ℝ2

            (8) 

Proof. By using the TKLBT inverse in equation (5), it is given that 

∫   
ℝ2

𝑓(𝒙)𝑔(𝒙)̅̅ ̅̅ ̅̅  𝑑𝒙 =  ∫ ∫  𝐿𝐴1,𝐴2

𝑖,k {𝑓}(𝝎)𝐾𝐴1
−1(𝑥1, 𝜔1)

ℝ2
 

ℝ2
 

𝐾𝐴2
−1(𝑥2, 𝜔2)𝑑𝝎𝑔(𝒙)̅̅ ̅̅ ̅̅  𝑑𝒙                        

By using proposition 1 part (iii), then the above equation can be written as 

         = ∫  𝐿𝐴1,𝐴2

𝑖,k {𝑓}(𝝎) ∫   𝐾𝐴1
−1(𝑥1, 𝜔1)𝐾𝐴2

−1(𝑥2, 𝜔2)𝑔(𝒙)̅̅ ̅̅ ̅̅  𝑑𝒙 𝑑𝝎
ℝ2

.
ℝ2

 

   = ∫  𝐿𝐴1,𝐴2

𝑖,k {𝑓}(𝝎) ∫   𝐾𝐴1
(𝑥1, 𝜔1)𝑔(𝒙)𝐾𝐴2

(𝑥2, 𝜔2)𝑑𝒙
ℝ2

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑑𝝎   

ℝ2
 



 

 

 

 

 

= ∫  𝐿𝐴1,𝐴2

𝑖,k {𝑓}(𝝎) 𝐿𝐴1,𝐴2

𝑖,k {𝑔}(𝝎)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝝎.
ℝ2

                                                  (9) 

 

In the first equation of equation (9) the reduced biquaternion function f has been 

replaced by the inverse TKLBT (7). In the second equation, the order of integration has been 

exchanged and in the third equation part (iii) in Proposition (1) has been applied, while in the 

last equation, the definition of TKLBT in equation (1) is used to complete the proof of the 

theorem. 

A special case of the Plancherel formula for TKLBT obtained the Plancherel formula 

from TKLBT as follows. 

Corollaries 1. (Parseval of TKLBT). If the reduced biquaternion function is f(x) = g(x), then 

the Plancherel formula from TKLBT will be reduced to the Parseval formula from TKLBT, 

which states that 

∫ |𝑓(𝒙)|2 𝑑𝒙 = 
ℝ2

∫ |𝐿𝐴1,𝐴2

𝑖,k {𝑓}(𝝎)|
2

 𝑑𝝎.                                        (10) 
ℝ2

 

Equation (10) is a statement about the energy content in the reduced biquaternion 

signal. It states that the total energy signal calculated in the spatial domain is the same as the 

total energy calculated in the TKLBT domain. Parseval's formula allows the reduced value 

biquaternion energy signal in either the spatial domain or the TKLBT domain and the domains 

can be interchanged for easy computation. 

 

3.3 Convolution Theorem for TKLBT 

Convolution plays an important role in signal processing, such as edge detection, 

sharpening and smoothing in image processing. It is well known that the classical convolution 

in the Fourier domain can be represented as the product of the Fourier transform separately. 

This result is similar to the convolution of the reduced Biquaternion Fourier transform (TFBT) 

as shown in the properties of TFBT. In this section, we will discuss the convolution theorem in 

the TKLBT domain, which can be more useful in practical analog filtering in the TKLBT 

domain and propose an alternative form of convolution for the TKLBT. This can be thought of 

as a continuation of the convolution in the TKL definition (see [2.30, 2.32]) to the TKLBT 

domain. 

Definition 2. The convolution for each reduced biquaternion function f and g, is defined by 

(𝑓 ⊙ 𝑔)(𝒙) =
1

√2𝜋𝑏1𝒊

1

√2𝜋𝑏2𝒌
∫ 𝑒

−𝒊
𝑎1

2𝑏1
𝑥1

2

𝑒
−𝒌

𝑎2
2𝑏2

𝑥2
2

𝑒
𝒊

𝑎1
2𝑏1

𝑡1
2

𝑒
𝒌

𝑎2
2𝑏2

𝑡2
2

 𝑓(𝒕)
ℝ2

 

𝑔(𝒙 − 𝒕)𝑒
𝒊

𝑎1
2𝑏1

(𝑥1−𝑡1)2

𝑒
𝒌

𝑎2
2𝑏2

(𝑥2−𝑡2)2

 𝑑𝒕.                                                     (11) 

 

The convolutions of two reduced biquaternions and TKLBT are given by the following theorem 

 

Theorem 3. Suppose f (x) and g (x) are two reduced biquaternion functions, then the following 

equation applies 

𝐿𝐴1,𝐴2

𝒊,𝒌 {𝑓 ⊙ 𝑔}(𝝎) = 𝑒
−𝒊

𝑑1𝜔1
2

2𝑏1 𝑒
−𝒌

𝑑2𝜔2
2

2𝑏2 𝐿𝐴1,𝐴2

𝒊,𝒌 {𝑓}(𝝎)𝐿𝐴1,𝐴2

𝒊,𝒌 {𝑔}(𝝎).              (12) 

Proof. With a direct calculation given 



 

 

 

 

 

𝐿𝐴1,𝐴2

𝒊,𝒌 {𝑓 ⊙ 𝑔}(𝝎) =
1

√2𝜋𝑏1𝒊
∫ ∫

1

√2𝜋𝑏1𝒊
𝑒

𝒊
1
2

(
𝑎1
𝑏1

𝑥1
2−

2
𝑏1

𝑥1𝜔1+
𝑑1
𝑏1

𝜔1
2)

𝑒
−𝒊

𝑎1
2𝑏1

𝑥1
2

ℝ2ℝ2

 

𝑒
−𝒌

𝑎2
2𝑏2

𝑥2
2 1

√2𝜋𝑏2𝒌
𝑒

𝒊
𝑎1

2𝑏1
𝑡1

2

𝑒
𝒌

𝑎2
2𝑏2

𝑡2
2 1

√2𝜋𝑏2𝒌
𝑓(𝒕)𝑔(𝒙 − 𝒕)𝑒

𝒊
𝑎1

2𝑏1
(𝑥1−𝑡1)2

 

            𝑒
𝒌

𝑎2
2𝑏2

(𝑥2−𝑡2)2

𝑒
𝒌

1
2

(
𝑎2
𝑏2

𝑥2
2−

2
𝑏2

𝑥2𝜔2+
𝑑2
𝑏2

𝜔2
2)

 𝑑𝒕 𝑑𝒙. 

Dengan mensubstitusi variabel 𝒚 = 𝒙 − 𝒕, 𝑦1 = 𝑥1 − 𝑡1, dan 𝑦2 = 𝑥2 − 𝑡2, yang dapat 

dituliskan menjadi 𝒙 = 𝒚 + 𝒕, 𝑥1 = 𝑦1 + 𝑡1, dan 𝑥2 = 𝑦2 + 𝑡2, maka diperoleh 

 

By substituting the variables 𝒚 = 𝒙 − 𝒕, 𝑦1 = 𝑥1 − 𝑡1, dan 𝑦2 = 𝑥2 − 𝑡2, which can be written 

as 𝒙 = 𝒚 + 𝒕, 𝑥1 = 𝑦1 + 𝑡1, dan 𝑥2 = 𝑦2 + 𝑡2,  we get 

𝐿𝐴1,𝐴2

𝒊,𝒌 {𝑓 ⊙ 𝑔}(𝝎) =
1

√2𝜋𝑏1𝒊
∫ ∫

1

√2𝜋𝑏1𝒊
𝑒

𝒊
1
2

(
𝑎1
𝑏1

(𝑦1+𝑡1)2−
2

𝑏1
(𝑦1+𝑡1)𝜔1+

𝑑1
𝑏1

𝜔1
2)

ℝ2ℝ2

 

      𝑒
−𝒊

𝑎1
2𝑏1

(𝑦1+𝑡1)2

𝑒
−𝒌

𝑎2
2𝑏2

(𝑦2+𝑡2)2 1

√2𝜋𝑏2𝒌
𝑒

𝒊
𝑎1

2𝑏1
𝑡1

2

𝑒
𝒌

𝑎2
2𝑏2

𝑡2
2 1

√2𝜋𝑏2𝒌
𝑓(𝒕)𝑔(𝒙 − 𝒕) 

      𝑒
𝒊

𝑎1
2𝑏1

𝑦1
2

𝑒
𝒌

𝑎2
2𝑏2

𝑦2
2

𝑒
𝒌

1
2

(
𝑎2
𝑏2

(𝑦2+𝑡2)2−
2

𝑏2
(𝑦2+𝑡2)𝜔2+

𝑑2
𝑏2

𝜔2
2)

 𝑑𝒕 𝑑𝒙 

=
1

√2𝜋𝑏1𝒊
∫ ∫

1

√2𝜋𝑏1𝒊
𝑒

𝒊
1
2

(
𝑎1
𝑏1

(𝑦1
2+2𝑦1𝑡1+𝑡1

2)−
2

𝑏1
(𝑦1+𝑡1)𝜔1+

𝑑1
𝑏1

𝜔1
2)

𝑒
−𝒊

𝑎1
2𝑏1

(𝑦1
2+2𝑦1𝑡1+𝑡1

2)

ℝ2ℝ2

 

     𝑒
−𝒌

𝑎2
2𝑏2

(𝑦2
2+2𝑦2𝑡2+𝑡2

2) 1

√2𝜋𝑏2𝒌
𝑒

𝒊
𝑎1

2𝑏1
𝑡1

2

𝑒
𝒌

𝑎2
2𝑏2

𝑡2
2 1

√2𝜋𝑏2𝒌
𝑓(𝒕)𝑔(𝒙 − 𝒕)𝑒

𝒊
𝑎1

2𝑏1
𝑦1

2

 

     𝑒
𝒌

𝑎2
2𝑏2

𝑦2
2

𝑒
𝒌

1
2

(
𝑎2
𝑏2

(𝑦2
2+2𝑦2𝑡2+𝑡2

2)−
2

𝑏2
(𝑦2+𝑡2)𝜔2+

𝑑2
𝑏2

𝜔2
2)

 𝑑𝒕 𝑑𝒙 

=
1

√2𝜋𝑏1𝒊
∫ ∫

1

√2𝜋𝑏1𝒊
𝑒

𝒊
𝑎1

2𝑏1
𝑦1

2

𝑒
𝒊
𝑎1
𝑏1

𝑦1𝑡1𝑒
𝒊

𝑎1
2𝑏1

𝑡1
2

𝑒
−𝒊

1
𝑏1

𝑦1𝜔1𝑒
−𝒊

1
𝑏1

𝑡1𝜔1𝑒
𝒊

𝑑1
2𝑏1

𝜔1
2

ℝ2ℝ2

      

1

√2𝜋𝑏2𝒌
𝑒

−𝒊
𝑎1

2𝑏1
𝑦1

2

𝑒
−𝒊

𝑎1
𝑏1

𝑦1𝑡1𝑒
−𝒊

𝑎1
2𝑏1

𝑡1
2

𝑒
−𝒌

𝑎2
2𝑏2

𝑦2
2

𝑒
−𝒌

𝑎2
𝑏2

𝑦2𝑡2𝑒
−𝒌

𝑎2
2𝑏2

𝑡2
2

𝑒
𝒊

𝑎1
2𝑏1

𝑡1
2

𝑒
𝒌

𝑎2
2𝑏2

𝑡2
2

 

 
1

√2𝜋𝑏2𝒌
𝑓(𝒕)𝑔(𝒚)𝑒

𝒊
𝑎1

2𝑏1
𝑦1

2

𝑒
𝒌

𝑎2
2𝑏2

𝑦2
2

𝑒
𝒌

𝑎2
2𝑏2

𝑦2
2

𝑒
𝒌

𝑎2
𝑏2

𝑦2𝑡2𝑒
𝒌

𝑎2
2𝑏2

𝑡2
2

𝑒
−𝒌

1
𝑏2

𝑦2𝜔2𝑒
−𝒌

1
𝑏2

𝑡2𝜔2
 

      𝑒
𝒌

𝑑2
2𝑏2

𝜔2
2

 𝑑𝒕 𝑑𝒚 

= ∫ ∫
1

√2𝜋𝑏1𝒊
𝑒

𝒊
𝑎1

2𝑏1
𝑡1

2

𝑒
−𝒊

1
𝑏1

𝑡1𝜔1𝑒
𝒊

𝑑1
2𝑏1

𝜔1
2

𝑓(𝒕)
1

√2𝜋𝑏2𝒌
ℝ2ℝ2

𝑒
𝒌

𝑎2
2𝑏2

𝑡2
2

𝑒
−𝒌

1
𝑏2

𝑡2𝜔2𝑒
𝒌

𝑑2
2𝑏2

𝜔2
2

 

       
1

√2𝜋𝑏1𝒊
𝑒

𝒊
𝑎1

2𝑏1
𝑦1

2

𝑒
−𝒊

1
𝑏1

𝑦1𝜔1𝑔(𝒚)
1

√2𝜋𝑏2𝒌
𝑒

𝒌
𝑎2

2𝑏2
𝑦2

2

𝑒
−𝒌

1
𝑏2

𝑦2𝜔2𝑑𝒕 𝑑𝒚 

= 𝐿𝐴1,𝐴2

𝒊,𝒌 {𝑓}(𝝎) ∫
1

√2𝜋𝑏1𝒊
ℝ2

𝑒
𝒊

𝑎1
2𝑏1

𝑦1
2

𝑒
−𝒊

1
𝑏1

𝑦1𝜔1𝑔(𝒚)
1

√2𝜋𝑏2𝒌
𝑒

𝒌
𝑎2

2𝑏2
𝑦2

2

𝑒
−𝒌

1
𝑏2

𝑦2𝜔2  𝑑𝒚. 

 (13) 



 

 

 

 

 

By multiplying both sides of the identity above by 𝑒
𝒊

𝑑1
2𝑏1

𝜔1
2

 and 𝑒
𝒌

𝑑2
2𝑏2

𝜔2
2

  and using the Definition 

of TKLBT (1), we get 

𝑒
𝒊

𝑑1
2𝑏1

𝜔1
2

𝐿𝐴1,𝐴2

𝒊,𝒌 {𝑓 ⊙ 𝑔}(𝝎)𝑒
𝒌

𝑑2
2𝑏2

𝜔2
2

= 𝐿𝐴1,𝐴2

𝒊,𝒌 {𝑓}(𝝎) ∫
1

√2𝜋𝑏1𝒊
ℝ2

 𝑒
𝒊

𝑎1
2𝑏1

𝑦1
2

 

      𝑒
−𝒊

1
𝑏1

𝑦1𝜔1𝑒
𝒊

𝑑1
2𝑏1

𝜔1
2

𝑔(𝒚)
1

√2𝜋𝑏2𝒌
𝑒

𝒌
𝑎2

2𝑏2
𝑦2

2

𝑒
−𝒌

1
𝑏2

𝑦2𝜔2𝑒
𝒌

𝑑2
2𝑏2

𝜔2
2

 𝑑𝒚     

= 𝐿𝐴1,𝐴2

𝒊,𝒌 {𝑓}(𝝎)𝐿𝐴1,𝐴2

𝒊,𝒌 {𝑔}(𝝎).                                                                                      (14) 

This is the expected result. 

In the following, another way is proposed to generalize the definition of the 

convolution of two reduced biquaternion signals in the TKLBT domain. 

Definition 3. The convolution for each reduced biquaternion signal f and g, is defined by 

(𝑓 ⊙ 𝑔)(𝒙) =
1

√2𝜋𝑏1𝒊

1

√2𝜋𝑏2𝒌
∫ 𝑒

𝒊
𝑎1
𝑏1

𝑡1(𝑡1−𝑥1)
𝑓(𝒕)𝑔(𝒙 − 𝒕)𝑒

𝒌
𝑎2
𝑏2

𝑡2(𝑡2−𝑥2)

ℝ2

𝑑𝒕.  (15) 

In addition, the following important theorem explains how the convolution of two 

reduced biquaternion functions interacts with their TKLBT. 

Theorem 4. Let 𝑓(𝒙) = 𝑓0(𝒙) + 𝑓1(𝒙) + 𝑓2(𝒙) + 𝑓3(𝒙) and 𝑔(𝒙) = 𝑔0(𝒙) + 𝑔1(𝒙) +
𝑔2(𝒙) + 𝑔3(𝒙)  are two reduced biquaternion functions, then the TKLBT of the convolution of 

f and g is given by 

𝐿𝐴1,𝐴2

𝒊,𝒌 {𝑓 ⊙ 𝑔}(𝝎) = 𝑒
−𝒊

𝑑1𝜔1
2

2𝑏1 𝑒
−𝒌

𝑑2
2𝑏2

𝜔2
2

𝐿𝐴1,𝐴2

𝒊,𝒌 {𝑓}(𝝎)𝐿𝐴1,𝐴2

𝒊,𝒌 {𝑔}(𝝎).          (16) 

This means that formally, the convolution of two reduced biquaternion signals in the TKLBT 

domain is written in the form 

{𝑓 ⊙ 𝑔}(𝒙) = 𝐿
𝐴1

−1,𝐴2
−1

𝒊,𝒌 {𝑒
−𝒊

𝑑1𝜔1
2

2𝑏1 𝑒
−𝒌

𝑑2
2𝑏2

𝜔2
2

𝐿𝐴1,𝐴2

𝒊,𝒌 {𝑓}(𝝎)𝐿𝐴1,𝐴2

𝒊,𝒌 {𝑔}(𝝎)} (𝒙).  (17) 

Proof. A simple calculation shows that 

𝐿𝐴1,𝐴2

𝒊,𝒌 {𝑓 ⊙ 𝑔}(𝝎) =
1

√2𝜋𝑏1𝒊
∫ ∫

1

√2𝜋𝑏1𝒊
𝑒

1
2

𝒊(
𝑎1
𝑏1

𝑥1
2−

2
𝑏1

𝑥1𝜔1+
𝑑1
𝑏1

𝜔1
2)

𝑒
𝒊
𝑎1
𝑏1

𝑡1(𝑡1−𝑥1)

ℝ2ℝ2

 

          𝑓(𝒕)𝑔(𝒙 − 𝒕)
1

√2𝜋𝑏2𝒌

1

√2𝜋𝑏2𝒌
 𝑒

1
2

𝒌(
𝑎2
𝑏2

𝑥2
2−

2
𝑏2

𝑥2𝜔2+
𝑑2
𝑏2

𝜔2
2)

𝑒
𝒌

𝑎2
𝑏2

𝑡2(𝑡2−𝑥2)
 𝑑𝒕 𝑑𝒙 

=
1

√2𝜋𝑏1𝒊
∫ ∫

1

√2𝜋𝑏1𝒊
𝑒

𝒊
𝑎1

2𝑏1
𝑥1

2 
𝑒

−𝒊
2

2𝑏1
𝑥1𝜔1𝑒

𝒊
𝑑1

2𝑏1
𝜔1

2

𝑒
𝒊
𝑎1
𝑏1

𝑡1(𝑡1−𝑥1)
𝑓(𝒕)𝑔(𝒙 − 𝒕)

ℝ2ℝ2

 

1

√2𝜋𝑏2𝒌

1

√2𝜋𝑏2𝒌
 𝑒

𝒌
𝑎2

2𝑏2
𝑥2

2 
𝑒

−𝒌
2

2𝑏2
𝑥2𝜔2𝑒

𝒌
𝑑2

2𝑏2
𝜔2

2

𝑒
𝑘

𝑎2
𝑏2

𝑡2(𝑡2−𝑥2)
 𝑑𝒕 𝑑𝒙.                       

=
1

√2𝜋𝑏1𝒊
∫ ∫

1

√2𝜋𝑏1𝒊
𝑒

𝒊
𝑎1
𝑏1

𝑡1(𝑡1−𝑥1)
𝑒

𝒊
𝑎1

2𝑏1
𝑥1

2 
𝑒

−𝒊
2

2𝑏1
𝑥1𝜔1𝑒

𝒊
𝑑1

2𝑏1
𝜔1

2

𝑓(𝒕)𝑔(𝒙 − 𝒕)

ℝ2ℝ2

 

1

√2𝜋𝑏2𝒌

1

√2𝜋𝑏2𝒌
 𝑒

𝒌
𝑎2
𝑏2

𝑡2(𝑡2−𝑥2)
𝑒

𝒌
𝑎2

2𝑏2
𝑥2

2 
𝑒

−𝒌
2

2𝑏2
𝑥2𝜔2𝑒

𝒌
𝑑2

2𝑏2
𝜔2

2

 𝑑𝒕 𝑑𝒙.       (18) 



 

 

 

 

 

By substituting 𝒛 = 𝒙 − 𝒕,  𝑧1 = 𝑥1 − 𝑡1, and  𝑧2 = 𝑥2 − 𝑡2, which can be written as 𝒙 = 𝒛 + 𝒕, 

𝑥1 = 𝑧1 + 𝑡1, and 𝑥2 = 𝑧2 + 𝑡2, in equation (18) we get 

𝐿𝐴1,𝐴2

𝒊,𝒌 {𝑓 ⊙ 𝑔}(𝝎) =
1

√2𝜋𝑏1𝒊
∫ ∫

1

√2𝜋𝑏1𝒊
ℝ2

 𝑒
−𝒊

𝑎1
𝑏1

𝑡1𝑧1

ℝ2

 

        𝑒
𝒊
𝟏
𝟐

 (
𝑎1
𝑏1

(𝑧1+𝑡1)2−
2

𝑏1
(𝑧1+𝑡1)𝜔1+

𝑑1
𝑏1

𝜔1
2) 

𝑓(𝒕)𝑔(𝒛)
1

√2𝜋𝑏2𝒌
𝑒

−𝒌
𝑎2
𝑏2

𝑡2𝑧2
 

 𝑒
𝒌

𝟏
𝟐

 (
𝑎2
𝑏2

(𝑧2+𝑡2)2−
2

𝑏2
(𝑧2+𝑡2)𝜔2+

𝑑2
𝑏2

𝜔2
2) 

𝑑𝒕 𝑑𝒛.                                                           (19) 

 

By simplification of equation (19) we get 

𝐿𝐴1,𝐴2

𝒊,𝒌 {𝑓 ⊙ 𝑔}(𝝎) =
1

√2𝜋𝑏1𝒊
∫

1

√2𝜋𝑏1𝒊
ℝ2

𝑒
𝒊
𝑎1𝑡1

2

2𝑏1 𝑒
−𝒊

𝑡1𝜔1
𝑏1 𝑒

𝒊
𝑑1𝜔1

2

2𝑏1 𝑒
𝒊
𝑎1𝑧1

2

2𝑏1 𝑒
−𝒊

𝑧1𝜔1
𝑏1 𝑓(𝒕) 

𝑔(𝒛) ∫
1

√2𝜋𝑏2𝒌
 

1

√2𝜋𝑏2𝒌
ℝ2

𝑒
𝒌

𝑎2𝑡2
2

2𝑏2 𝑒
−𝒌

𝑡2𝜔2
𝑏2 𝑒

𝒌
𝑑2𝜔2

2

2𝑏2 𝑒
𝒌

𝑎2𝑧2
2

2𝑏2 𝑒
−𝒌

𝑧2𝜔2
𝑏2  𝑑𝒕 𝑑𝒛     

=
1

√2𝜋𝑏1𝒊
∫

1

√2𝜋𝑏1𝒊
ℝ2

𝑒
𝒊
𝑎1𝑡1

2

2𝑏1 𝑒
−𝒊

𝑡1𝜔1
𝑏1 𝑒

𝒊
𝑑1𝜔1

2

2𝑏1  𝑓(𝒕)
1

√2𝜋𝑏2𝒌
 

1

√2𝜋𝑏2𝒌
𝑒

𝒌
𝑎2𝑡2

2

2𝑏2 𝑒
−𝒌

𝑡2𝜔2
𝑏2   

       𝑒
𝒌

𝑑2𝜔2
2

2𝑏2  𝑑𝒕 ∫ 𝑒
𝒊
𝑎1𝑧1

2

2𝑏1 𝑒
−𝒊

𝑧1𝜔1
𝑏1  𝑔(𝒛)

ℝ2

𝑒
𝒌

𝑎2𝑧2
2

2𝑏2 𝑒
−𝒌

𝑧2𝜔2
𝑏2  𝑑𝒛 

= 𝐿𝐴1,𝐴2

𝒊,𝒌 {𝑓}(𝝎) ∫
1

√2𝜋𝑏1𝒊
ℝ2

𝑒
𝒊
𝑎1𝑧1

2

2𝑏1  𝑒
−𝒊

𝑧1𝜔1
𝑏1  𝑔(𝒛)𝑒

𝒌
𝑎2𝑧2

2

2𝑏2 𝑒
−𝒌

𝑧2𝜔2
𝑏2  

1

√2𝜋𝑏2𝒌
 𝑑𝒛. 

By multiplying both sides of the identity above by 𝑒
𝒊

𝑑1
2𝑏1

𝜔1
2

 and 𝑒
𝒌

𝑑2
2𝑏2

𝜔2
2

 and using the definition 

of TKLBT (1), it is easy to get 

𝑒
𝒊

𝑑1
2𝑏1

𝜔1
2

𝐿𝐴1,𝐴2

𝒊,𝒌 {𝑓 ⊙ 𝑔}(𝝎)𝑒
𝒌

𝑑2
2𝑏2

𝜔2
2

= 𝐿𝐴1,𝐴2

𝒊,𝒌 {𝑓}(𝝎)𝐿𝐴1,𝐴2

𝒊,𝒌 {𝑔}(𝝎).        (20) 

This completes the proof of the TKLBT convolution theorem. 

If observed, this result is in accordance with the convolution theorem for TKLBT as 

given in equation (12). 

4. Conclusion 

 
Based on the discussion, the reduced biquaternion linear canonical transformation (TKLBT) of 

the reduced biquaternion signal f is defined by 

𝑳𝐴1,𝐴2

𝒊,𝒌 {𝑓}(𝝎) 

=  {
∫ 𝐾𝐴1

(𝑥1 , 𝜔1)𝑓(𝒙)𝐾𝐴2
(𝑥2,, 𝜔2)  𝑑𝒙,

𝑅2
  𝑏𝑛 ≠ 0, 𝑛 = 1,2

√𝑑1𝑑2𝑒𝒊(
𝑐1𝑑1

2
)𝜔1

2

𝑓(𝑑1𝜔1, 𝑑2𝜔2)𝑒𝒌(
𝑐2𝑑2

2
)𝜔2

2

, 𝑏1 = 0 atau 𝑏2 = 0

   

where 



 

 

 

 

 

            𝐾𝐴1
(𝑥1, 𝜔1) =  

1

√2𝜋𝑏1𝒊
𝑒

𝒊
1
2

 (
𝑎1
𝑏1

 𝑥1
2− 

2
𝑏1

 𝑥1 𝜔1+ 
𝑑1
𝑏1

𝜔1
2)

,                                    

and 

𝐾𝐴2
(𝑥2, 𝜔2) =  

1

√2𝜋𝑏2𝒌
𝑒

𝒌
1
2

 (
𝑎2
𝑏2

 𝑥2
2− 

2
𝑏2

 𝑥2 𝜔2+ 
𝑑2
𝑏2

𝜔2
2)

.   

The inverse of the reduced biquaternion linear canonical transformation is given by𝑓(𝒙) =

{
∫ 𝐾𝐴1

−1(𝑥1 , 𝜔1)𝐿𝐴1,𝐴2

𝒊,𝒌 𝑓(𝝎)𝐾𝐴2
−1(𝑥2,, 𝜔2)  𝑑𝝎,

𝑅2   𝑏𝑛 ≠ 0, 𝑛 = 1,2

√𝑎1𝑎2𝑒−𝒊(
𝑐1𝑎1

2
)𝑥1

2

𝑓(𝑎1𝑥1, 𝑎2𝑥2)𝑒−𝒌(
𝑐2𝑎2

2
)𝑥2

2

, 𝑏1 = 0 atau 𝑏2 = 0
, 

where  𝐴1
−1 = (𝑑1, −𝑏1, −𝑐1, 𝑎1) dan 𝐴2

−1 = (𝑑2, −𝑏2, −𝑐2, 𝑎2)   

 The Plancherel and Parseval properties of the two reduced biquaternion functions f 

and g from TKLBT are as follows. 

a) Plancherel properties 

∫   
ℝ2

𝑓(𝒙)𝑔(𝒙)̅̅ ̅̅ ̅̅ 𝑑𝒙 = ∫ 𝐿𝐴1,𝐴2

𝑖,k {𝑓}(𝜔)𝐿𝐴1,𝐴2

𝑖,k {𝑔}(𝜔) 𝑑𝝎.
ℝ2

                                

b) Parseval Proprties  

∫ |𝑓(𝒙)|2 𝑑𝒙 = 
ℝ2

∫ |𝐿𝐴1,𝐴2

𝑖,k {𝑓}(𝝎)|
2

 𝑑𝝎.  
ℝ2

                                                        

The convolution for each function f and g in the reduced biquaternion linear canonical 

transformation, defined by 

𝐿𝐴1,𝐴2

𝒊,𝒌 {𝑓 ⊙ 𝑔}(𝝎) = 𝑒
−𝒊

𝑑1𝜔1
2

2𝑏1 𝑒
−𝒌

𝑑2
2𝑏2

𝜔2
2

𝐿𝐴1,𝐴2

𝒊,𝒌 {𝑓}(𝝎)𝐿𝐴1,𝐴2

𝒊,𝒌 {𝑔}(𝝎). 
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