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Abstract 

Image clustering is a key and challenging task in the field of machine learning and computer vision. Technically, image 

clustering is the process of grouping images without the use of any supervisory information in order to retain similar 

images within the same cluster. This paper proposes a novel image clustering method based on coupled convolutional and 

graph convolutional network. It solves the problem that the deep clustering method usually only focuses on the useful 

features extracted from the sample itself, and seldom considers the structural information behind the sample. Experimental 

results show that the proposed algorithm can effectively extract more discriminative deep features, and the model achieves 

good clustering effect due to the combination of attribute information and structure information of samples in GCN. 
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1. Introduction

Image clustering is very important in computer vision. In 

order to make full use of these unlabeled data and study 

the correlation between them, many clustering algorithms 

have been proposed and successfully applied in various 

practical applications, such as image segmentation [1-2], 

target detection [3] and image classification [4,5]. Among 

them, traditional clustering methods, such as K-means 

clustering algorithm [6], spectral clustering (SC) 

algorithm [7] and non-negative matrix factorization 

clustering (NMF) algorithm [8], capture similarity based 

on the concept of distance in the original data space, so 

they are considered as shallow models. Although the 

shallow models have been successfully applied in a 

variety of scenarios, calculating distance-based measures 

in raw data space is only suitable for describing local 

relationships in the data space and is limited in expressing 

potential dependencies between inputs, which is 

insufficient to discover semantic similarity. 

With the booming development of deep learning, many 

researchers have shifted their attention to deep 

unsupervised feature learning and clustering [9-12]. Thus, 

a new clustering strategy, called deep clustering, emerged. 

When dealing with large, high-semantic and high-

dimensional data, the multi-layer architecture based on 

deep neural network unsupervised representation learning 

has become the natural choice. In addition, deep 

clustering combines prior knowledge with clustering to 

obtain the optimal embedded subspace for clustering. 

Compared with traditional clustering methods, deep 

clustering method can effectively simulate the input 

distribution and capture the nonlinear characteristics of 

the input. Therefore, it can well solve the limitations of 

EAI Endorsed Transactions  
on Scalable Information Systems Research Article

EAI Endorsed Transactions 
Scalable Information Systems 

03 2022 - 04 2022 | Volume 9 | Issue 36 | e1

mailto:https://creativecommons.org/licenses/by/4.0/
mailto:https://creativecommons.org/licenses/by/4.0/


2 

shallow model and is more suitable for practical 

clustering scenarios. 

The deep clustering method integrates the clustering 

target into the powerful representation capability of deep 

learning. Therefore, learning the effective feature 

representation directly determines the quality of 

clustering. In order to make potential representations 

more discriminative, most existing deep clustering 

methods attempt to minimize reconstruction losses. For 

example, Xie et al. [13] used clustering loss to help auto-

encoder learn data representation with high clustering 

cohesion. Bashon et al. [14] used variational autoencoder 

to learn better data representation of clustering. 

Although deep learning has achieved great success in 

many important tasks, there are still several problems 

when using deep neural networks to perform clustering 

tasks. First, many authors try to combine mature 

clustering algorithms with deep learning. For example, 

network training is combined with k-means goals [15-17]. 

However, a simple combination of clustering and 

presentation learning methods often leads to regression 

and resolution. Secondly, auto-encoders are widely used 

in deep clustering and only consider the reconstructed 

feature representation, lacking discriminant ability. The 

ideal approach would be to train a discriminator with 

adversarial networks, but this further increases the 

difficulty of the task [18]. In order to learn more 

discriminative deep features, Chen et al. [19] mined the 

similarity information contained in image triples. Hjelm et 

al. [20] maximized the mutual information between 

features. Finally, most deep clustering only focuses on the 

characteristics of the data itself and seldom considers the 

structural information between the data, which can often 

reveal the potential similarity between samples, thus 

providing valuable guidance for learning representation. 

Abdella et al. [21] connected stack auto-encoder with 

graph convolutional neural network (GCN) through 

transfer operator, and used self-supervision mechanism to 

optimize feature extraction and clustering training 

process. Although structural information plays an 

important role in data representation learning, it is seldom 

used in deep clustering. 

To solve these problems, a novel image clustering 

method based on coupled convolutional and graph 

convolutional network (CCGCN) is proposed in this 

paper. The embedded mutual information estimation 

network and minimized prior distribution constraint in the 

convolutional auto-encoder. Then, the sample's own 

attribute information learned from the deep auto-coding 

network is integrated into the graph convolutional neural 

network, realizing the collaborative learning of the 

sample's own attribute information and structure 

information, and completing the end-to-end clustering 

task, which effectively improves the feature 

discrimination ability while retaining more available 

information. Finally, experiments are carried out on three 

classical image data sets to verify the effectiveness of the 

proposed algorithm. 

2. Related works

2.1. Deep clustering based on auto-encoder 

The clustering method based on a auto-encoder (AE) 

relies on a joint execution to represent a linear 

combination of learning and clustering of two objective 

functions. The joint optimization process is described as: 

cres LLL +=  (1) 

Where resL  is a function of reconstructed loss. cL is 

embedded cluster loss.   is a super-parameter, which is a 

factor that controls the degree of distortion in the 

embedded space. The general network architecture of the 

AE-based deep clustering algorithm is shown in figure 1, 

where X is the input image and the X̂  is the

reconstructed image. 

Figure 1. Architecture of AE 

2.2. Deep clustering based on variational 

auto-encoder 

The AE-based deep clustering approach has been 

improved significantly compared to traditional clustering 

methods. However, they are specifically designed for 

clustering and  do not reveal the true underlying structure 

of the sample. In addition, assumptions based on 

dimensional reduction techniques are usually independent 

of those of clustering technologies, so there is no theory to 

ensure that the network can learn viable representations. 

The variational auto-encoder (VAE) as a kind of deep 

degree generated module type, can be considered as a AE 

generated variant, it exerts a priori probability distribution 

characteristics of potential said, which will become 

bayesian approach combined with flexibility and 

scalability of the neural network, using the variational 

lower weight parameterized by a differentiable lower 

unbiased estimator. The objective function of the depth 
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clustering algorithm based on the variational auto-encoder 

is expressed as: 

 +−=
N

i

ixzpiKL zxqEzpxzpDXL
i

)]}|([log)](||)|([{);,( 2)|(  


(2) 

Where p(z) is the prior distribution of the whole potential 

feature space. )|( ixzp  is a conditional posterior 

distribution. )|( zxq i  is the likelihood function. N is 

the total number of samples. )(KLD  is the Kullback-

Leibler (k-L) divergence between the conditional 

posterior distribution )|( ixzp  and the prior 

distribution p(z) of the entire potential feature space. E() 

is the expectation of the function. The general network 

architecture based on VAE deep clustering algorithm is 

shown in figure 2, where ),( ccN   is a normal 

distribution. 

Figure 2. General network architecture of deep 

clustering algorithm based on VAE 

2.3. Deep clustering based on graph 

convolutional neural network 

These deep clustering methods generally focus only on 

data representations learned from the sample itself, while 

another important message of learning characterization, 

namely, the structural information of the data, is rarely 

taken into account. In order to manage the structural 

information behind the data, the clustering method based 

on GCN [22] has been widely used. Kipf et al. [23] 

presented the graph auto-encoder (GAE) and graph sub-

encoder (VGAE), which used graph convolution as an 

encoder to integrate the graph structure into the node 

characteristics and learned the embedding of the node. 

However, the vast majority of GCN-based clustering 

methods rely on reconstructing the adjacent matrix, which 

can only learn data representation from the graph 

structure, while ignoring the data itself characteristics. 

3. Proposed CCGCN model

We propose a CCGCN model for extracting and 

processing image-related features from different image 

blocks as shown in figure 3. This model mainly consists 

of two parts: image block level feature extraction network 

and b-GCN 
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Figure 3. The proposed CCGCN model.

1) Image block hierarchical feature extraction network. Its

function is to extract features from corresponding image 

blocks. The input of the network is two image blocks of 

the same size and different scales, and the output is tag 

related feature vector. In order to generate tag-related 

features, the network uses seven convolutional layers to 

extract features from the input image blocks, and batch 

standardized operation and linear rectification unit 

(ReLU) are added after each convolutional layer [24]. In 

order to promote feature communication between layers, 

avoid gradient disappearance in the process of 

optimization, and enhance feature extraction capability of 

the network, residual connection and dense connection are 

adopted in the inter-layer connection of the network. The 

last feature image output from the convolutional layer is 

compressed into a vector by the global average pooling 

layer, and then features are further integrated by the full 

connection layer. Finally, feature vectors related to 

disease labels are output (the dimension of feature vectors 

extracted from each image block in this experiment is 

defined as 128 dimensions). 

2) b-GCN: Graph structure G(V,E) can be constructed by

using the spatial structure of feature points mentioned

above.

Where V is the node set of graph structure. E is the set of

edges between nodes in the graph structure. The feature

points are defined as the nodes of the graph. The

Euclidean distance between nodes is defined as the edge

of the graph.  -dimensional feature vectors (  =128)

extracted from image blocks at each feature point

(denoted as K, and there are 30 feature points in total,

K=30) are defined as feature vectors at corresponding

nodes.

Thus, we can construct the node characteristic matrix 
 KRH . 
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Meanwhile, in order to describe the edge in the graph 

structure, namely, the adjacency state of the node, jid , is 

defined as the Euclidean distance between the i-th and j-th 

feature points. Then the adjacent short matrix 
KKRA 

can be expressed as: 
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By using the feature matrix and adjacency matrix of 

nodes, we can describe the topological structure of the 

image by the distribution of feature points in the image, 

and process it by b-GCN. For graph convolution layer of 

layer l , the feature matrix 
1+lH  output by graph 

convolution operation can be expressed as: 

)(Re1 llll WHALUH =+
 (5) 

Where 
 RW l

 represents the coefficient matrix 

of graph convolution, including    learnable

parameters (  =32 in this experiment). ReLU() is the

linear rectification unit and provides nonlinear operation 

for graph convolution operation. In addition, in order to 

further carry out adaptive modeling of topology space, we 

add a graph pooling layer for b-GCN by referring to the 

work of Ying et al. [25]. The graph pooling operation is 

realized by pooling matrix 
KKRS
 , where K=15. For 

the l -th pooling layer, the adjacency matrix 
1+l

poolA  and 

the feature matrix 
1+l

poolH  after pooling can be expressed 

as: 

SASA lTl

pool =
+1

 (6) 

lTl

pool HSH =+1
   (7) 

The feature matrix output by b-GCN is stretched into a 

1-dimensional vector, and the prediction results of image

labels are obtained after a fully connection layer

processing.

The auto-coding network can learn useful 

representations from the sample, such as 

)()2()1( ,,, LZZZ  . But the structural information 

between samples is ignored. In order to obtain the 

structural information of the input sample, a K-nearest 

Neighbor (KNN) graph is constructed for the original 

sample, and then the transfer operator   is used to 

integrate the feature representation of each layer learned 

by the GCN module into each layer corresponding to the 

GCN module. At this point, GCN module can 

simultaneously learn the attribute information of the 

sample itself and the structural information between the 

samples. For the weight matrix W, the representation 

learning 
)(lH  of the l-th layer of GCN module can be 

obtained through convolution operation. The standard 

graph convolution layer propagation formula is defined as: 

)
~~~

( )1()1(5.05.0)( −−−−= lll WHDADH   (8) 

Where IAA +=
~

, = j ijii AD
~~

. I is the unit 

diagonal matrix of the adjacency matrix A of each node. 

5.05.0 ~~~ −− DAD is the normalized adjacency matrix. 

In order to simultaneously learn the structural 

information and samples in the GCN module. For the 

attribute information of the sample itself, the transfer 

operator   is used to weighted sum the two 

representations, i.e., 

)1()1()1( )1(
~ −−− +−= lll ZHH   (9) 

In this way, b-GCN module and GCN module are 

connected layer by layer. By combining equations (8) and 

(9), we can get: 

)
~~~

( )1()1(5.05.0)( −−−−= lll WHDADH         (10) 

In this way, the representations learned by the first 

layer of the deep auto-coding network will be integrated 

into the corresponding layer of the GCN module for 

dissemination. In the last layer of GCN module, the multi-

classification layer with Softmax function is used to 

output Y, so as to predict the distribution of samples. 

)
~~~

max( )()(5.05.0 Ll WHDADSoftY −−=      (11) 

Where Y is a probability distribution. 

4. Experimental results and analysis

The experiment is divided into three parts. The 

proposed algorithms and six other clustering algorithms 

are first compared on three classic data sets including 

USPS, MNIST, and Fashion-MNIST. The clustering 

performance of the  CCGCN algorithm is evaluated on 

two quantitative measures, Cluster Accuracy (ACC) and 

Normalization Mutual Information (NMI).  Then, by 

controlling several influencing factors, a series of ablation 

experiments are carried out to verify the validity of the 

proposed algorithm.  Finally, the effect of different values 
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1 and 2 onof CCGCN algorithm parameters 

clustering performance is also discussed. 

4.1. Dataset 

To demonstrate that the CCGCN algorithm is better able 

to handle a variety of types of data sets, three classic 

image datasets (USPS, MNIST, and Fashion-MNIST) are 

selected for experimentation [26]. Because the clustering 

task is completely unsupervised, the training samples are 

stitched together with the test samples in the experiment. 

Statistics for these datasets are shown in table 1. 

Table 1. Dataset explanation 

Dataset Sample number Class number Dimension 

USPS 9298 10 1×16×16 

MNIST 70000 10 1×28×28 

Fashion-MNIST 70000 10 1×28×28 

The USPS (U.S. Postal Service's handwritten digital) 

dataset consists of grayscale digital handwritten images 

(16×16 pixels), including 9298 images, 10 categories. 

4649 are as training samples and 4649 images are as 

testing samples. The MNIST handwriting dataset consists 

of  28×28 pixel grayscale digital handwritten images, 

consisting of 70000 images in 10 categories. 60000 

images are as training set, 10000 images are as testing set. 

The Fashion-MNIST dataset covers a total of 70000 

fashion products of all types from 10 categories with 

60000 images as training set and 10000 images as test set. 

Figure 4 (a) and (b) give some sample examples of the 

MNIST and Fashion-MNIST datasets, respectively. 

4.2. Experiment settings 

The experiment uses two standard unsupervised 

evaluation indicators to evaluate the clustering 

performance of the algorithm, namely ACC and NMI 

[27]. The two metrics have different characteristics in 

clustering tasks, and a higher value indicates better 

clustering performance. The experiment software 

environment is the Ubuntu16.04 system and the hardware 

environment is i7-6700 processor and NVIDIA 

GeForceGTX1060 graphics card, Python language, and 

the deep learning framework Pytorch [28,29]. In the 

experiment, the image is machine-disrupted within each 

batch, and a negative sample is selected in randomly 

disturbed order. In order to reduce the number of hyper-

parameter searches, the nearest neighbor is set to k=3, and 

the transfer operator δ is 0.5. To reduce random errors, 10 

experiments are performed under the same conditions, 

with an average of 10 experimental results. The number of 

channels and core size settings for the auto-encoding 

network are shown in table 2. 

Table 2. Number of channels and core size of auto-encoder network 

Dataset Encoder-1/ Encoder-2/ Encoder-3/ Encoder-4/ 

Rangjun Li 
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(a) MNIST dataset; (b) Fashion-MNIST dataset
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Decoder-4 Decoder-3 Decoder-2 Decoder-1 

USPS 3×3×16 3×3×32 

MNIST 3×3×16 3×3×16 3×3×32 3×3×32 

Fashion-

MNIST 
3×3×16 3×3×16 3×3×32 3×3×32 

4.3. Experiment results 

The ACC and NMI on the three data sets of MNIST, 

USPS, and Fashion-MNIST are shown in Table 3. As can 

be seen from Table 3, compared with other comparison 

algorithms, the proposed CCGCN algorithm has achieved 

the highest ACC and NMI values on all three classical 

image data sets. The proposed method can improve the 

clustering energy to achieve better experimental results. 

Especially, on the complex Fashion-MNIST dataset, the 

proposed algorithm still produces the best results. On the 

three graph sets of USPS, MNIST, and Fashion-MNIST, 

the CCGCN method is 1.97%, 2.16%, and 3.18% higher 

than the sub-optimal clustering method. 

Table 3. Clustering results of different clustering algorithms on three datasets 

Method 
USPS MNIST Fashion-MNIST 

ACC NMI ACC NMI ACC NMI 

K-means 0.6793 0.6381 0.5433 0.5115 0.4853 0.5231 

AE+K-means 0.7042 0.6731 0.8187 0.7414 0.5964 0.6253 

DEC 0.7519 0.7640 0.8766 0.8483 0.5291 0.5573 

IDEC 0.7716 0.7957 0.8917 0.8783 0.5402 0.5681 

Deepcluster 0.5734 0.5514 0.8082 0.6726 0.5533 0.5211 

SDCN 0.7900 0.8037 0.8641 0.8538 0.5891 0.6158 

Proposed 0.8097 0.8253 0.9133 0.9069 0.6282 0.6417 

Depth-based clustering is generally better than 

traditional clustering methods, such as K-means

algorithms. This is mainly because compared with the 

shallow clustering method, the deep neural network has 

the ability of dimensional reduction, which can effectively 

simulate the distribution of inputs, capture the nonlinear 

characteristics of inputs and learn well-learned  deep-layer 

characteristics. Therefore, when dealing with high-

dimensional nonlinear data, the clustering performance 

based on the depth clustering model is mostly better than 

that of the shallow clustering model. Compared with other 

methods based on depth clustering, such as AE, DEC, 

IDEC, and Deep-cluster, the SDCN algorithm achieves a 

better predictive effect by combining the sample's own 

attribute information and structure information to achieve 

a collaborative study of the sample's own attribute 

information and structural information. Compared with 

the SDCN algorithm, the proposed algorithm embeds the 

mutual information estimation network and minimizes the 

a priori distribution constraint in the multi-layer 

convolutional encoder, effectively excavates the deep 

characteristics of more identifiable samples, and makes 

the coding space more regular, and improves the coding 

quality of unsupervised feature extraction, which in turn 

improves clustering performance. Experimental results 

show that the new method achieves better clustering 

results than current advanced algorithms on three classical 

data sets. 

4.4. Ablation experiment 

A series of experiments are conducted on four different 

training strategies for the proposed model to verify the 

effectiveness of the CCGCN algorithm. 1) Train only one 

multi-layer convolutional encoder (ConvAE); 2) 

Embedding mutual information estimation network 

(ConvAE+MI) training model in convolutional encoder; 

3) Convolution auto-coder and graph convolutional neural
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network (ConvAE+GCN) to participate in model training; 

4) Join the above three strategies (ConvAE+MI+GCN) to

participate in model training [30-34].  These four training

strategies have a slight effect on clustering, as shown in 

table 4. 

Table 4. Impact of different strategies on clustering performance 

Method 
USPS MNIST Fashion-MNIST 

ACC NMI ACC NMI ACC NMI 

ConvAE 0.7092 0.6630 0.7873 0.7561 0.5573 0.5674 

ConvAE+MI 0.7964 0.7553 0.8461 0.8134 0.6033 0.6202 

ConvAE+GCN 0.7933 0.7986 0.8685 0.8560 0.5954 0.6278 

ConvAE+MI+GCN 0.8097 0.8253 0.9133 0.9069 0.6282 0.6417 

Table 4 clearly shows that each training strategy can 

effectively improve the clustering performance on the 

basis of multi-layer convolutional auto-encoder, 

especially after adding the mutual information estimation 

network and the structure information of fused samples 

into ConvAE, the clustering effect is significantly 

improved. Since multi-layer convolution encoder in 

strategy (2) embedded in the mutual information to 

estimate the network. Since the global mutual information 

between input and potential feature representation and the 

local mutual information between mid-layer feature and 

potential feature representation are considered at the same 

time, especially the local mutual information is equivalent 

to treating each small part as a sample, so that the original 

sample becomes 1+M×M samples. It greatly increases the 

sample size and improves the coding quality of 

unsupervised feature extraction. In the USPS data set, 

ACC and NMI of strategy (2) are improved by 0.087 and 

0.092 respectively compared with strategy (1). In MNIST 

data set, ACC and NMI are improved by 0.059 and 0.057, 

respectively. In the Fashion MNIST data set, ACC and 

NMI is improved by 0.046 and 0.053, respectively. In 

strategy (3), the features learned by different layers in 

ConvAE are integrated into the corresponding layers of 

GCN module, so that the model can simultaneously learn 

the attribute information of the sample itself and the 

structural information between the samples. So the 

strategy of combining ConvAE with GCN also produces 

better results than using ConvAE alone. In USPS data set, 

ACC and NMI is increased by 0.084 and 0.136 

respectively compared with strategy (1). In MNIST data 

set, ACC and NMI increases by 0.081 and 0.100, 

respectively. In the Fashion MNIST data set, ACC and 

NMI increase by 0.038 and 0.060, respectively. In 

strategy (4), the above three strategies are combined to 

jointly optimize feature extraction and clustering 

allocation process end-to-end, and finally the model 

produces a stronger prediction effect. In the USPS data set, 

ACC and NMI of strategy (4) increase by 0.013 and 0.016 

and 0.07 and 0.027, respectively, compared with strategy 

(2) and strategy (3). In MNIST data set, ACC and NMI

are increased by 0.094 and 0.051, respectively. In the

Fashion MNIST data set, ACC increases by 0.025 and 0.

033, and NMI increases by 0.022 and 0.014, respectively.

By using the t-SNE visualization method, clustering 

results for different training strategies are visualized in the 

MNIST dataset, as shown in figure 5.  Figure 5(a) shows 

the distribution of data points in convAE's potential 

subspace, and Figure 5(b)~(d) shows the distribution of 

data points in subspace for the different strategies of the 

proposed model. From the distribution of potential space 

in figure 5, the data points in the embedded subspace 

obtained by model training that are jointly involved in the 

three strategies have a clearer distribution structure. 
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Figure 5. Distribution visualization of embedded subspaces of different strategies on the MNIST dataset. (a) 

ConvAE; (b) ConvAE+MI; (c) ConvAE+GCN; (d) ConvAE+ MI+GCN

4.5. Algorithm parameter evaluation 

experiment 

To study the sensitivity of the CCGCN algorithm to 

parameters 1  and 2 ,  ACC and NMI are used to assess 

the effects of different parameters on clustering energy. 

Figure 6 shows how the parameter 1 changes when

searching in spaces {0.001,0.005,0.05,0.05,0.1}, and 2

in space {1,1.25,1.5,1.75,2}. As can be seen, the 

parameters 1  and 2 have varying degrees of impact on

ACC and NMI in different combinations. But in most 

parameter combinations, ACC and NMI maintain 

relatively stable results. 

Figure 6. Effect of different combinations of 

parameters 1 , and 2 on the ACC and NMI on the

Fashion-MNIST dataset.(a) Effect on ACC; (b) Effect 

on NMI 

5. Conclusion

In order to effectively improve the ability of deep feature 

identification, make full use of the structural information 

between unlabeled  samples, jointly optimize the feature 

extraction and clustering process of samples, this paper 

proposes a CCGCN clustering algorithm. The algorithm 

embeds the mutual information estimation network and 

minimizes the a priori distribution constraint in the 

convolutional auto-coding network, and considers the 

property information of the imported sample itself and the 

structural information between the  samples, which 

effectively improves the ability of feature discrimination 

while retaining more available structural information. On 

image clustering tasks, the CCGCN algorithm uses K-L 

diffuse joint to produce the potential feature distribution. 

Experimental results show that the clustering accuracy of 

CCGCN algorithm on three classical image data sets has 

been significantly improved. Especially on the complex 

Fashion-MNIST dataset, the accuracy of the proposed 

method is improved by 3.18% compared to the sub-

optimal clustering algorithm. However, the  effectiveness 

of the CCGCN algorithm is only validated on smaller 

image datasets, and how to effectively improve clustering 

performance on more large data sets is the focus of the 

next study. 
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