
EAI Endorsed Transactions  
on Internet of Things     Research Article 

1 

Statistical Analysis of a Distributed Queuing Random 
Access Protocol in a Massive Communication 
Environment 
 Romeo Nibitanga1, Elijah Mwangi2 and Edward Ndung’u3

1Pan African University Institute of Basic Sciences, Technology and Innovation, Kenya 
2University of Nairobi, Kenya 
3Jomo Kenyatta University of Agriculture and Technology, Kenya 

Abstract 

Most of the networks deployed for massive IoT communications use Aloha-based algorithms for channel access. However, 
those algorithms are known to be unstable and inefficient when the network size is high. Since recently, a Distributed 
Queuing (DQ) algorithm is being proposed as a solution to mitigate several of the Aloha issues in IoT networks. In this 
paper, a statistical performance analysis of the DQ algorithm without any prior consideration of any physical layer is 
presented. We evaluate the DQ algorithm in a massive communication environment and give the average values for these 
performance metrics: collision resolution time, access delay per sensor, channel throughput, number of attempts required 
by a sensor to complete the contention process, number of nodes contending per frame and the distribution of contention 
slots into idle, successful, and collided. The goal of this paper is to provide a statistical baseline performance evaluation of 
the DQ algorithm in general. 
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1. Introduction

It is predicted that 22.3 billion devices will be connected 
to the Internet of Things (IoT) by 2024 [1]. With the 
years, that number will grow as more applications are 
developed, and new services are introduced. To address 
the massive number of connections that are going to be 
required to handle these communications, several new 
technologies have emerged. Currently, Long Term 
Evolution for Machine (LTE-M), Narrowband Internet of 
Things (NB-IoT), LoRa/LoRaWAN, and Sigfox are 
among the proposed solutions for the IoT massive 
connectivity scenarios. At the media access control layer, 
all these networks use Aloha or its variants for channel 
access.  

The choice of Aloha-based algorithms is motivated by 
its easy implementation in low power, inexpensive and 
small size devices that are intended to dominate those 
networks. However, as many studies [2]–[5] pointed out, 
the Aloha-based algorithms are inefficient in terms of 
energy consumption, throughput, and access delay when 
the network size is high. Thus, there is a need for new 
access schemes to address the scalability issue of those 
networks with a potentially massive number of 
connections per session. 

Recently, as an alternative to the Aloha-based access 
schemes, several works [2]–[16] proposed a Distributed 
Queuing (DQ) algorithm as a potential candidate to many 
of the challenges posed by the massive Machine-to-
Machine (M2M) connectivity. In [6], it is predicted as one 
of the possible solutions to the majority of Media Access 
Control (MAC) issues in the IoT. In general, the DQ 

EAI Endorsed Transactions on 
Internet of Things 

07 2020 - 10 2020 | Volume 6 | Issue 23 | e4

mailto:https://creativecommons.org/licenses/by/4.0/
mailto:https://creativecommons.org/licenses/by/4.0/


Romeo Nibitanga, Elijah Mwangi and Edward Ndung’u 

2 

protocol is a tree-splitting based algorithm which tries to 
resolve an initial contention using different types of 
virtual queues before trying another one [17]. A DQ 
frame is divided into three parts: the contention period 
with a given number of contention slots, the contention-
free period with one or multiple data slots, and the 
feedback period with different parts. 

 Most of the studies reviewed have been found to put 
an emphasis on the evaluation of these four performance 
metrics: the access delay [3]–[5], [9], [10], [12]–[16], the 
throughput [2]–[6], [15], [16], the energy consumption 
[2], [3], [5], [8], [14], and the number of attempts per 
node [3], [4], [10], [11]. Besides, it is a fact that the 
algorithm outperforms the Aloha-based schemes in terms 
of those performance metrics. It has also been proven that 
the algorithm can be implemented in the existing 
networks and systems [7].  

However, most of the results presented in published 
works are bound to a specific technology because the 
evaluation of the DQ algorithm is made under the 
consideration of a given technology at the physical layer. 
Therefore, they cannot apply to other systems. Moreover, 
only these performance metrics are of interest in all the 
works: the access delay, the throughput and the energy 
consumption. Although very useful in the evaluation of 
the DQ algorithm, those metrics do not provide any 
quantitative information about the collision resolution 
process. 

In this paper, we perform a statistical transient analysis 
of the DQ algorithm in a massive M2M communication 
environment. By transient analysis, we mean that the DQ 
algorithm is evaluated from the beginning of the 
contention process, with a given number of sensors, up to 
the moment when all the sensors have left the algorithm 
queues. In contrast to other works, the evaluation is made 
without any prior consideration of any physical layer 
technology or any given number of contention slots. 
Moreover, in addition to the existing ones, we introduce 
new performance metrics needed to improve the overall 
performance of the algorithm. The goal of this work is to 
provide a statistical baseline performance evaluation of 
the DQ algorithm.  

Briefly, the contribution of this paper is two-fold: (i) 
we provide an extended evaluation of the DQ algorithm 
without any prior consideration of any physical layer and 
(ii) we introduce new performance metrics in the analysis
of the DQ algorithm.

The rest of this paper is organized as follows. In 
section II, a literature review of works related to the DQ 
algorithm in IoT networks and systems is presented. The 
description of the DQ algorithm is given in Section IV. 
We present the system model used to evaluate the DQ 
algorithm and the parameters used for numerical 
simulations in section V. Further, the simulation results 
for each of the performance metrics considered and their 
discussion are presented in section VI. Finally, section 
VII is dedicated to the conclusion and future work.  

2. Related Works

In this section, we present a literature review on works 
related to the DQ algorithm in IoT environments. 

2.1. Background 

In [17], the DQ algorithm was first introduced by Xu and 
Campbell as the Distributed Queuing Random Access 
Protocol (DQRAP). The protocol was intended to be used 
in cable TV systems for the transmission of digital data. 
In [17], the results showed that the algorithm could 
achieve a performance level near those of an M/D/1 
queuing model in terms of throughput and delay.  

Before the advent of the IoT, the algorithm was 
evaluated under various scenarios. Prioritized Distributed 
Queuing Random Access Protocol (PDQRAP) [18] and 
Extended Distributed Queuing Random Access Protocol 
(XDQRAP) [19] were proposed as variations of the 
DQRAP for priority-based traffic and to support variable 
packet lengths respectively. Also, there have been 
proposals for the adaption of the algorithm to wireless 
area networks [20], third-generation cellular networks 
[21], body area networks [22], mobile ad hoc networks 
[23] and cooperative networks [24].

Recently, the DQ algorithm has interested several IoT
researchers [2]–[16]. The protocol is seen as a solution to 
many M2M communication challenges present in both 
unlicensed and licensed networks. 

2.2. DQ in data collection systems 

The energy aspect of the algorithm was the first to be 
evaluated. In [8], F. Vazquez et al. analyzed and 
compared the DQ algorithm to other protocols like the 
Contention Tree Algorithm (CTA) and the Frame Slotted 
Aloha (FSA) in terms of energy consumption in M2M 
area networks. The authors observed that the DQ 
algorithm could reduce energy consumption by 35% and 
80% compared to CTA and FSA, respectively, for 
networks with 802.15.4 devices.  

Additionally, the same researchers designed two 
protocols based on the DQ algorithm: these were the Low 
Power Distributed Queuing (LPDQ) [7], and the Energy 
Harvesting Distributed queuing (EHDQ) [2]. The first 
protocol was developed for low power wireless networks 
with bursty traffic, whereas the second was designed for 
data collection networks with devices equipped with 
energy harvester. Both protocols were evaluated for Radio 
Frequency Identification (RFID) networks. Apart from 
being energy efficient, the results also showed that the 
two algorithms could achieve better performance in terms 
of success probability (99%) and time efficiency (EHDQ 
only) compared to Aloha-based algorithms. 
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2.3. DQ in LTE networks 

Laya et al. in [3] proposed the DQ algorithm as an 
alternative to the Aloha-based access mechanism used in 
LTE networks for M2M communications. Their results 
showed that applying the DQ algorithm in the media 
access layer of the LTE networks would achieve, under 
specific network configuration, a reduction of 85% and 
40% with respect to the delay and the energy 
consumption. Here again, the algorithm was found to 
have better performance in terms of success probability 
compared to the legacy access method.  

The authors in [9] developed the Distributed Queuing 
Algorithm Access for LTE (DQAL). Compared to the DQ 
variant for LTE from Laya [3], in DQAL, different groups 
with a collision can re-transmit their preambles in the 
same random access slot. The results showed that under 
certain success probability constraints, the DQAL access 
delay was superior to the standard Extended Baring 
Access (EAB). Moreover, in [10], the authors gave two 
analytical models of the Laya DQ protocol for LTE: the 
maximum number of attempts before a device can get 
access to the channel and the access delay. 

The conventional (sequential) DQ algorithm applied to 
LTE networks for M2M communications have been found 
to cause significant access delay [11]–[13]. In [11], 
instead of resolving each contention in each group 
sequentially, the author proposed to resolve those 
contention groups in parallel. Compared to the sequential 
method, the proposed scheme was shown to reduce the 
average number of random access slots with the average 
number of preambles slightly increasing.  

Bui et al. proposed the Free Access Distributed 
Protocol (FADQ) in [12]. First, the algorithm divides the 
number of colliding devices into a subset of smaller 
groups and then applies the conventional DQ algorithm to 
each group. Secondly, the free access method is applied 
for each newly arrived device. According to the free 
access method, new devices can participate in the next 
random access opportunity without waiting for the 
collision resolution to end. The results showed that the 
access delay was significantly reduced compared to the 
3GPP Access Class Barring (ACB) mode while still 
maintaining a high access success probability. 

A traffic prioritization method in LTE networks with 
the DQ protocol is introduced in [14]. The authors 
showed that the length of the CRQ could be used to 
retrieve relevant information about network congestion. 
Thus, based on the length of the CRQ, news arrivals can 
be delayed according to their priority classes. Compared 
to both the baseline and dynamic ACB, the proposed 
method was observed to offer excellent performance in 
terms of access delay and energy consumption 
independent of the traffic prioritization.  

In [13], the authors also proposed to divide the 
contending devices into a given number of groups and to 
apply the conventional DQ algorithm to each group in 
parallel. However, the newly arrived devices were only 
allowed to contend in the groups without collisions. The 

method proposed showed a reduction in the overall access 
delay and a significant optimization in the use of 
preamble resources compared to the baseline EAB and the 
DQ variants proposed separately by Laya and Yoon in [3] 
and [11] respectively. 

2.4. DQ in low power wide area networks 

Currently, the DQ algorithm is also being proposed as a 
candidate for the media channel access for Low Power 
Wide Area Networks (LPWAN).  

In [4], Xing et al. brought the DQ algorithm to NB-IoT 
networks. The authors proposed the Resource Grouping 
Distributed Queuing algorithm (RGDQ) to resolve the 
massive connectivity issue in NB-IoT. Aware of the 
inherent significant delay caused by the conventional DQ 
scheme, a suggestion of grouping devices from each 
coverage enhancement was adopted. Thus, devices were 
divided into three different groups, with different sub-
carriers shared evenly between groups. Then, the DQ was 
applied separately to each group. Each group has its CRQ. 
It was observed that the RGDQ scheme, compared to the 
standard ACB mechanism, presented a significant 
improvement in terms of the access probability, the access 
delay, and the average number of random access attempts. 

In [5], the authors proposed to replace the pure Aloha 
algorithm used in LoRA networks by the DQ algorithm. 
They introduced the DQ-LoRA, where the Distributed 
Queuing protocol was used at the media access layer, and 
the LoRa technology was applied at the physical layer. 
Their results showed that DQ-LoRA could achieve better 
performance compared to the current LoRaWAN Aloha-
based scheme. A 2.6-fold gain for throughput was 
obtained, while the energy consumption and the latency 
were reduced by 48% and 54%, respectively. Besides, it 
was observed that for better throughput performance, the 
number of contention slots should be four, while 28 
contention slots were needed for minimum energy 
consumption. Thus, in a LoRa network with the DQ 
scheme used for channel access, a trade-off has to be 
made between energy consumption and throughput. 

In [15], the authors presented DQ-N for crowd-sourced 
low power wide area networks. Unlike the conventional 
DQ algorithm, DQ-N divides the contention-free period 
into multiple data slots instead of one to support a 
massive number of nodes with a low data rate. The results 
showed that the DQ-N outperforms the LPDQ protocol in 
terms of channel utility and latency. 

2.5. DQ and MIMO technology 

Finally, the DQ algorithm has also been exploited 
together with the Massive Input Massive Output (MIMO) 
technology.  

In [16], Yuan et al. proposed a Distributed Queuing 
Random Access Massive Input Massive Output (DQRA 
MIMO) system to obtain higher throughput under delay 
constraint and limited time-frequency resources. The 
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basic principle of the system is to send a maximum 
number of packets, as there are available antennas at the 
base station during each frame. It was assumed that each 
device could only transmit one packet per frame. Once 
optimized and given specific requirements of average 
delay, the system was found to provide a better 
throughput performance compared to that of a Hybrid 
Random Access and Data Transmission Protocol 
(HRADTP) and the conventional DQ algorithm. 

2.5. Research gaps 

Despite many existing works on the DQ algorithm in a 
massive connectivity environment, all the proposed 
performance metrics (throughput, energy consumption, 
access delay, number of attempts) were evaluated based 
on a given physical layer. This situation makes the results 
biased in favour of specific physical technology 
considered. Moreover, an analysis of the behaviour of the 
different queues and other performance metrics that may 
be used to improve the performance of the algorithm was 
absent. We have also observed that most of the works 
have only evaluated the DQ algorithm considering only a 
given number of contention slots.  

In this paper, we propose a statistical analysis of the 
DQ algorithm without any prior consideration of any 
physical layer. Furthermore, we introduce new 
performance metrics in addition to the existing ones for an 
extended analysis of the DQ algorithm. These are the 
collision resolution and the data transmission times, the 
interval of time the contention resolution queue reaches 
the maximum, the number of contending sensors per 
frame, and the distribution of contention slots into 
collided, successful and empty. 

3. Description of the DQ Algorithm

Xu and Campbell first introduced the DQ algorithm in 
1992 for use in broadcast channels shared by an infinite 
number of bursty devices [17]. The algorithm is a tree-
splitting based protocol that iteratively resolves one initial 
collision by dividing a large group of contenders into 
multiple smaller groups to reduce the collisions.  

Sensors are placed in two virtual queues depending on 
whether they succeeded in placing an access request or 
they are still contending for channel access. The first 
queue is the collision resolution queue (CRQ) containing 
the groups of sensors that have not succeeded in sending 
their access requests. The second queue is the data 
transmission queue (DTQ) containing sensors that have 
successfully resolved their contention and are waiting for 
their turn for the transmission of their data. 

The DQ algorithm operates in a star network topology 
with a given number of sensors all around a network 
coordinator. The role of the network coordinator is to 
broadcast beacon messages containing information about 
the status of the queues and other DQ operational 

information. Based on the information received from the 
network coordinator, the sensors can decide and update 
the information needed for the DQ operation. 

The DQ frame is structured in a manner that the 
contention period is much less than the data transmission 
period to optimize the throughput characteristics of the 
algorithm. The frame is composed of three parts: 

(i) The contention period with m contention slots; these
contention slots are used by sensors to send their
access request signals to the network coordinator
(uplink channel)

(ii) The data transmission period, which may be divided
into one or multiple data slots used to send data to
the network coordinator (uplink channel)

(iii) The feedback period, which may be divide also into
one or multiple slots and is used by the coordinator
to send all the DQ related information and other data
from the coordinator to the sensors (downlink
channel).

The DQ algorithm can be implemented in time, as well 
as in the frequency domain [6]. In the time domain, the 
one considered in this paper, the operation of the DQ 
algorithm assumes a perfect frame and a contention slot 
synchronization. 

At the beginning of each DQ frame, sensors with data 
to send and not engaged in any contention process send an 
access request signal in one of the m contention slots. The 
choice of a given contention slot by a device is random. 
After the contention period, the status of each of the 
contention slots may be: 

(i) Empty, if no sensors have chosen the contention
slot;

(ii) Successfully, if only one sensor has placed an
access request signal in the contention slot;

(iii) Collision, if more than one sensor has chosen the
same contention slot.

At the end of the transmission period, the coordinator 
broadcasts the status of each of the contention slots during 
the feedback period. Based on the received information 
from the coordinator, sensors that contended in the 
previous frame can execute the DQ algorithm rules and 
decide whether to enter the CRQ or the DTQ. Sensors that 
registered a collision in their chosen contention slots enter 
the CRQ, while those with successful requests enter the 
DTQ. Then, sensors in the CRQ execute a tree-splitting 
algorithm to resolve their collisions. For the devices in the 
DTQ, as there is no priority policy applied to their data, a 
First-In First-Out (FIFO) model is the one adopted, and 
their frames are sent during the data transmission period 
of the subsequent DQ frames. 

At each sensor, four integer numbers are used to 
monitor the status of the queues and the position of the 
sensor in them. These integer numbers are: 

(i) RQ representing the length of the CRQ; it
indicates the number of groups of sensors with
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collisions waiting to re-transmit their access 
requests; 

(ii) TQ representing the length of the DTQ; it indicates
the number of sensors waiting for data
transmission in the DTQ;

(iii) pRQ indicates the position of a given sensor in the
CRQ;

(iv) pTQ indicates the position of a given sensor in the
DTQ.

The network coordinator updates the first two integer 
numbers after each frame and broadcasts them during the 
feedback period. In contrast, each sensor, at the end of a 
contention process during which it was involved, 
individually updates the remaining integer numbers. 

Three sets of rules are defined and executed at each 
sensor after the feedback period. Here, they are presented 
in order of their execution: 

(i) The Data Transmission Rules (DTRs), indicating
which sensor can transmit data in the following
frame;

(ii) The Request Transmission Rules (RTRs),
implementing the collision resolution algorithm;

(iii) The Queuing Discipline Rules (QDRs), managing
the updates of the queues.

The DTRs are: 

(i) If there are no sensors scheduled either for
transmission (TQ = 0) or for collision resolution
(RQ = 0), any sensor with data ready to be sent
transmits an access request in any randomly
selected contention slots and its payload in the data
slot as it is empty. It is the only possible occasion
when the DQ algorithm may register a collision
during the data transmission period.

(ii) The sensor at the head of the DTQ (pTQ = 1) is the
only one allowed to transmit in the next frame.

The RTRs are: 

(i) If there are no sensors scheduled for collision
resolution (RQ = 0) and the DTQ is not empty (TQ
> 0), any sensor with data ready to be sent chooses
randomly one of the contention slots and transmits
a channel access request in the next frame.

(ii) If a sensor is at the head of the CRQ (pRQ = 1), it
is allowed to select any of the m contention slots
and send an access request in it in the next frame.

The QDRs are as follows: 

(i) Each sensor increments by one the value of TQ for
each successful contention slot.

(ii) Each sensor decrements by one the value of TQ for
each payload successfully transmitted in the data
slot.

(iii) The value of RQ is decremented by one every
time the CRQ (RQ > 0) is not empty.

(iv) Each sensor increments by one the value of RQ for
each contention slot with collisions.

(v) Each sensor updates its position in the queues
(values for pTQ and pRQ). If the chosen
contention slot is successful, then the sensor sets
its pTQ to the corresponding value at the end of
the TQ. If a collision occurs in the chosen
contention slot, the sensor updates its position in
the CRQ and sets its pRQ to the corresponding
value at the end of RQ. If a node has not sent an
access request, pTQ and pRQ follows the same
update rules as TQ and RQ respectively, as long as
their initial values are non-zero. It should be noted
that the sensors enter the queues following a time
arrival criterion.

The DQ algorithm operation flow chart for a node is 
illustrated in Fig. 1. 

Figure 1. Distributed Queuing algorithm flow 
chart[20] 

4. System model

To analyze and evaluate the performance metrics of the 
DQ algorithm, a discrete-event based simulation model 
was developed and executed in Matlab.  

The system model is composed of a network 
coordinator and n sensors trying to get access to the 
wireless channel using the DQ algorithm. All the n 
sensors are in the range of the network coordinator. As the 
downlink channel, only dedicated to the gateway, is 
collision-free, the channel from the sensors to the gateway 
(uplink channel) is the one considered. Thereby, the DQ 
frame is composed of two parts: the contention period 
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subdivided into m equal contention slots and the data 
transmission period of one data slot with a fixed size.  

Before the operation of the DQ algorithm, we assumed 
that all the queues are empty (CRQ = 0 and DTQ = 0), and 
no sensors are scheduled to contend (pRQ = 0) or to 
transmit its data (pTQ = 0). Moreover, sensors have a 
perfect frame and contention slot synchronization. 

In the beginning, every sensor chooses a contention 
slot randomly among the m available slots in a DQ frame 
and sends an access request signal to the chosen 
contention slot. However, at the same time, as the data 
slot is empty, sensors that generate the same random 
number as the network coordinator, are allowed to 
contend for transmission in the data slot. It is supposed 
that at the beginning of every empty frame, the network 
coordinator generates a random number. Every sensor 
knows the random number from the previous feedback 
period, and it has to generate its random number. This 
mechanism is the one adopted every time the data slot is 
empty.  

If two or more sensors choose the same contention slot, 
a collision will occur. Thus, the sensors with a collision 
are sent in the collision resolution queue. Sensors that 
collided in the same contention slot are put in the same 
CRQ contention group. Groups of sensors in the CRQ are 
formed following the number of the contention slots in 
which the collisions occurred. Then, each group is 
scheduled to re-enter the channel access following its 
position in the CRQ in the subsequent frames. A sensor 
with a successful access request is put in the DTQ 
following the number of successes in the previous 
contention slots. If a sensor has successfully sent its 
payload in the data slot as it was empty, it leaves both 
queues. At the end of every frame and after every 
contention process, a sensor updates its integer numbers 
following the rules of the DQ algorithm.  

The simulation time equals the time it requires for all 
the n sensors to secure a data slot and send their payload 
according to the DQ algorithm. It is a transient simulation 
model. A sensor needs only one data slot to send its 
payload.  

In Table I, we present the simulation parameters. It is 
assumed that the sensors choose the contention slot to 
send in their access request signal following a discrete 
uniform distribution U(a;b) with the parameters a and b 
equal to 1 and m respectively. Moreover, the random 
number, chosen by both the network coordinator and the 
sensors at the beginning of an empty data slot, also 
follows a discrete uniform distribution U(c;d) with the 
parameters c and d equal to 1 and 5000 respectively. The 
parameters c and d are chosen arbitrarily.  

To evaluate the performance of the DQ algorithm, we 
used the following metrics: 

(i) the collision resolution time;
(ii) the data transmission time;

(iii) the time it takes the CRQ to reach the maximum;
(iv) the collision resolution time per sensor;
(v) the data transmission time per sensor;

(vi) the distribution of data slots into successful, empty
and collided;

(vii) the number of random access attempts per sensor;
(viii) the number of sensors contending per frame;

(ix) the distribution of the contention slots into
successful, empty and collided during the collision
resolution time.

Table I. Simulation parameters 

Parameter Description 
Number of sensors N=250,750,…,5000 
Number of contention slots m=2,3,4,8,12,16 
Number of data slot 1 
Distribution of the chosen 
contention slot by each sensor 

Discrete uniform with 
parameters 1 and m 

Distribution of the random 
number at the gateway and sensor 
level 
 

Discrete uniform with 
parameters 1 and 5000 

Simulation runs R =100 

5. Performance evaluation and
discussion

In this section, we present the simulation results obtained 
for each performance metric evaluated.  

Matlab was used to perform all the simulations. It is 
launched in a Virtual Private Server (VPS) with eight 
cores and 12 GB of Random Access Memory (RAM). 
Due to the time constraints and the limited computing 
power available, the DQ algorithm is evaluated in a 
network with up to 5,000 nodes which are trying to get 
access to the channel simultaneously. Moreover, the 
number of contention slots in the DQ frame is limited to 
16. 

5.1. Evolution in the time of both CRQ and 
DTQ 

From Fig. 2, a description of the evolution in the time of 
each of the queues of the DQ algorithm is given. It can be 
seen that based on the moments tcrqmax, tcrq and tdtq the 
duration of each queue can be divided into three intervals 
of time: 

• The first interval goes from the beginning of the
collision resolution time up to the moment tcrqmax
when the CRQ reaches its maximum. The increasing
number of groups of contenders in the CRQ can be
explained by a high number of contention slots with
collisions occurring during this period. The collisions
are due to a high number of contending sensors in
each CRQ group at the beginning of the contention
process. Besides, during this interval of time, the
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DTQ is “nearly” empty most of the time as a small 
number of sensors is being successful in accessing 
the channel. 

• The second interval goes from the moment tcrqmax up
to the end of the collision resolution time at tcrq. A
medium to a low number of contention slots with
collisions characterizes this interval of time. In the
beginning, the CRQ may grow slightly compared to
its value at tcrqmax, and then it would decrease linearly
over time. At the end, the CRQ is empty, as all the
sensors have secured access to the channel. At the
same time, the DTQ begins to grow linearly until it
reaches its maximum value at the end of the interval
at tcrq.

• Lastly, the third interval begins at tcrq to end at the
moment tdtq when the DTQ is empty. During this
interval of time, the CRQ is empty as no sensors are
trying to get access to the channel. However, the
DTQ is characterized by a linearly decreasing
number of sensors leaving it.

Figure 2. Evolution in time of the collision resolution 
queue (blue) and data transmission queue (red) 

when n =1500 sensors and m = 3 

It should be noted that those three intervals of time are 
only distinguishable for the cases when the number of 
contention slots in the frame is more than two. For the 
case when there are two contention slots, the DTQ never 
reaches a moment when it grows linearly in a monotonous 
way except at the end of the collision resolution time. It is 
“nearly” empty most of the time. Due to a small number 
of contention slots (m < 3), a high number of contention 
slots with collisions is registered up to near the end of the 
collision resolution time. 

In Fig. 3, the simulation results of the performance 
evaluation of these three metrics are presented: 

(i) The average collision resolution time (Eq. 1), i.e.,
tcrq, represents the average time it takes all the
contending sensors to get access to the wireless
channel and secure a frame for the data
transmission.

(ii) The average data transmission time (Eq. 2), i.e.,
tdtq, is the average time from the beginning of the
collision resolution time up to the moment when
the DTQ is empty.

(iii) The average time it takes the CRQ to reach its
maximum (Eq. 3), i.e., tcrqmax, represents the
average interval of time from the beginning of the
contention process up to the moment when the
CRQ is at its maximum. It should be noted that the
maximum considered here corresponds to the
number of groups of sensors in the CRQ. At the
same time, the data transmission subsystem has a
“near-zero” registration in its queue. The “near-
zero” means that the DTQ is observed until the
time it begins to grow linearly.

Figure 3. Average collision resolution time (blue). 
Average data transmission time (green). Average 

time for the CRQ to reach the maximum (red) 

The performance metrics tcrq, tdtq and tcrqmax are 
measured as ratios in percentages and are defined as 
follows: 

 (1) 

 (2) 

 (3) 

where 

• tcrqi  is the duration of the collision resolution time
for an ith observation;

• tdtqi is the duration of the data transmission for an ith
observation;

• tcrqmaxi is the interval of time it takes the CRQ to
reach the maximum for an ith observation;

• R is the total number of observations;
• N is the number of frames required to send data from

n sensors with a perfect scheduling algorithm.
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In (1), (2) and (3), the absolute values of the 
performance metrics tcrq, tcrq and tcrqmax are compared to N, 
respectively. By a perfect scheduling algorithm, it is 
assumed that each sensor requires only one frame to be 
sent. If n sensors are present at the beginning of the 
collision resolution time, n frames will be required to send 
all the data from the sensors.  

From Fig. 3, it can be observed that both tcrq and tdtq do 
not vary with the number n of sensors present in the 
network, whereas they decrease logarithmically with the 
number m of contention slots. For m = 2, the average 
collision resolution time is 143%, meaning that it requires 
a number of frames greater than the number n of sensors 
to resolve all the collisions. On the other hand, for m ≥ 3, 
the algorithm needs less than n frames to resolve all the 
contentions. As for the tdtq, it is always found to be over 
100%, confirming that n sensors cannot send their data in 
less than n frames. Except for m=2, where tdtq is 
considerably high (144%), it is found to vary between 
112% and 101%, respectively, for m varying from three to 
16. 

Same as for tcrq and tdtq, the performance metric tcrqmax 
does not change with the number of sensors, but it 
decreases considerably with the number of contention 
slots. A value of 129% for tcrqmax is observed for m=2, 
whereas it varies from 19% to 0,4% when the number of 
contention slots changes from three to 16, respectively. 

The results obtained for tcrq and tdtq show that, 
irrespective of the number of the contention slots, tdtq is 
always greater than tcrq. Thus, confirming the results 
presented earlier in [17], that the speed of the contention 
resolution is faster than the speed of data transmission. 
For better performance metrics in terms of tcrq and tdtq, it is 
preferable to have a frame with more than two contention 
slots. When the number of contention slots is equal to 
two, the values of tcrq and tdtq are relatively high compared 
to their respective values when the number of contention 
slots is three or more. We observed that a further increase 
in the number of contention slots improves the values of 
tcrq and tdtq. However, such an increase implies a more 
precise synchronization technique. That may result in an 
issue in terms of the cost and the size of the sensors. A 
better synchronization system implies a more complex 
sensor. 

In general, we realized that CRQ reaches the maximum 
very quickly as the number of contention slots increases. 
As m grows, the number of contention slots with 
collisions diminishes, leading to a small over-division of 
the CRQ. The performance metric tcrqmax can be used to 
improve the access delay characteristics of the algorithm. 
Sensors from the previous contention process can be 
allowed to send their data during the tcrqmax interval of time 
of the current contention process. 

5.2. Average access delay per sensor 

To assess the access delay introduced by the algorithm for 
each sensor, two performance metrics were estimated. 

These are the average collision resolution time per sensor 
and the average data transmission time per sensor: 

(i) The average collision resolution time per sensor
(Eq. 4), i.e., tcrqsensor, is the average time it takes a
sensor to get access to the wireless channel and to
secure a data slot before leaving the CRQ.

(ii) The average data transmission time per sensor (Eq.
5), i.e., tdtqsensor, is the average time that a sensor
spends in the DTQ while waiting to transmit its
data after it has secured a frame.

Both metric metrics are measured as ratios in 
percentages and are defined as follows: 

 (4) 

 (5) 

where 

• tcrqsensorij is the duration of the collision resolution
time for a given i sensor during a jth observation;

• tdtqsensorij is the duration of the data transmission time
for a given i sensor during a jth observation;

• n is the total number of contending sensors;
• R is the total number of observations;
• N is the number of frames required to send data from

n sensors with a perfect scheduling mechanism.

Here again, in (4) and (5), the performance metrics 
tcrqsensor and tdtqsensor are compared to N, respectively.  

From Fig. 4, it can be noticed that both tcrqsensor and 
tdtqsensor are invariant to the number of sensors. However, 
they vary logarithmically with the number of the 
contention slots in opposite directions: tcrqsensor decreases 
while tdtqsensor is growing. Except for m = 2, on average it 
takes nearly a half or less of n frames for a sensor to get 
access to the channel. 

Figure 4. Access delay per sensor. Average 
collision resolution time (blue). Average data 

transmission time (red). 
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As for the data transmission, each sensor requires from 
8% to 35%, when m varies from three to 16, respectively, 
while tdtqsensor is 0.3% when m = 2. 

In general, except for the case when m =2, it takes a 
sensor on average from 60% to 50% of n frames to get 
access to the channel and to transmit its data. That is if n 
sensors are considered at the beginning of the contention 
process, and the number of contention slots varies from 
three to 16, respectively. When the number of contention 
slots is two, it requires on average 80% of n frames for a 
sensor to leave both queues. A small number of 
contention slots implies an over-division of the CRQ, 
leading to a high number of groups of contenders in it. 
Consequently, this causes a significant delay in the CRQ. 
At the same, as no sensors or only a small number of them 
enter the DTQ, the time a sensor spends in the DTQ is 
negligible compared to the time it spent in the CRQ. 
Thus, it is efficient to work with a DQ frame with more 
than two contention slots for higher performance in terms 
of delay access per sensor. 

5.3. Average distribution of data slots into 
successful, empty, and collided  

The throughput analysis is carried out from the beginning 
of the collision resolution process up to the time when all 
the sensors have sent their data. For the throughput 
evaluation, the contention period and the contention-free 
period are analyzed separately.  

A data slot may register a success, a collision or may 
be empty. Based on those three situations, three 
performance metrics were used to evaluate the 
throughput. These are the average percentage of 
successful data slots SD (Eq. 6), the average percentage of 
empty data slots ED (Eq. 7) and the average percentage of 
data slots with collisions CD (Eq. 8): 

 (6) 

 (7) 

 (8) 

where 

• SDi  is the number of successful data slots registered
in an ith observation;

• EDi  is the number of empty data slots registered in
an ith observation;

• CDi  is the number of data slots with collisions
registered in an ith observation;

• tdtqi is the number of data slots required  by the DQ
algorithm to clear the CRQ and DTQ queues for an
ith observation;

• R is the total number of observations.

From Table II, it is shown that SD, ED and CD are all 
invariant to the number n of sensors present at the 
beginning of the contention process. As the number of 
contention slots increases, the metrics SD and ED change 
logarithmically in opposite directions. SD increases from 
69.3% to 99.4%, while ED decreases from 30.5% to 
0.5%. Except for m=2, SD is always above 90.16%, 
whereas ED is below 9.75%. As for the CD, it is always 
less than 0.15% for all the scenarios. 

Table II. Average distribution of data slots into 
successful, empty, and collided  

Number of 
contention slots 

SD, % ED, % CD, % 

m =2 69.32 30.55 0.13 
m =3 90.16 9.75 0.09 
m =4 94.65 5.28 0.07 
m =8 98.45 1.51 0.04 
m =12 99.44 0.53 0.03 
m =16 99.49 0.48 0.03 

In general, for m ≥ 3, all the empty data slots are 
registered during the moment when the CRQ has not 
reached its maximum tcrqmax. Therefore, that interval of 
time can be used to send data from the previous 
contention process. As for m=2, the observed high 
percentage of empty data slots (30.5%) can be explained 
by the low probability of a sensor to secure a data slot 
when there is a high number of sensors present in each 
CRQ group. Consequently, several data slots are empty 
because collisions are occurring more often.  

In line with the previous works [2]–[6], [15], the 
results obtained confirm that the DQ algorithm can offer 
better performance in terms of throughput. We found that 
the percentage of successful data slots was over 90% for 
m≥3. It should also be noted that as m grows, tcrqmax
decreases, leading to a high number of successful data 
slots as more sensors are succeeding in their attempts to 
access the channel.  

Although collisions can still occur in the DQ 
algorithm, with respect to the first data transmission rule, 
their impact on the throughput of the algorithm is 
minimal. The percentage of data slots with collisions is 
negligible compared to both the percentages of successful 
and empty data slots. For a better throughput 
performance, a frame with more than two contention slots 
is necessary. 

5.4. Average number of random access 
attempts per sensor 

During the collision resolution time, each sensor tries to 
access the wireless media channel by sending access 
request signals to the network coordinator. As long as a 
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sensor fails to secure a position in the DTQ for data 
transmission, it sends access request signals every time its 
CRQ is scheduled to retry the access. The number of 
random access attempts that a sensor needs to send before 
it is granted access to the channel is evaluated through the 
average number RAattempts of random access attempts per 
sensor and is determined as follows: 

 (9) 

where RAattemptsij is the number of random access attempts 
required by a sensor i during a jth observation to leave the 
CRQ, n is the total number of sensors and R is the total 
number of observations. 

From Fig. 5, it can be observed that the average 
number of attempts per sensor increases logarithmically 
with the number of sensors. At the same time, it also 
decreases logarithmically with the number of contention 
slots. For m = 2, a high number of attempts that vary from 
ten to 14 attempts per sensor is registered. However, that 
number decreases to change from three to four attempts 
per sensor when the number of contention slots is 16. 

Figure 5. Average number of attempts per sensor 
during the collision resolution time 

The high average number of attempts per sensor 
obtained in the case with two contention slots is related to 
the value of tcrq. A more significant value of tcrq implies 
that sensors have to make several attempts before getting 
access to the channel. As m increases, the number of 
attempts per sensor quickly decreases, following the same 
trend as tcrq.  

A small number of attempts per sensor is better 
because each new attempt would require additional 
energy spending. Thus, for a better energy consumption 
performance, a frame with more than two contention slots 
needs to be considered. The average number of attempts 
per sensor varies from three to five attempts per sensor for 
m ≥ 8. However, an increase in the number of contention 
slots would imply a more sophisticated sensor in terms of 
synchronization, leading to an expensive and large in size 

sensor. Therefore, a trade-off has to be made depending 
on the importance of the performance metric considered. 

5.5. Average number of sensors contending per 
frame 

Another important metric for the characterization of the 
DQ algorithm is the number of sensors contending in each 
frame during the collision resolution time. This 
performance metric is evaluated through the average 
number S of sensors contending per frame and is defined 
as follows: 

 (10) 

where Sij is the number of contending sensors during an ith 
frame of the jth observation, tcrqj is the duration of the 
collision resolution time for the jth observation and R is 
the total number of observations. 

From Fig. 6, the results show that the average number 
of sensors contending per frame increases logarithmically 
with the number of sensors. At the same time, it changes 
very slightly with the number of contention slots. It grows 
from seven sensors contending per frame for n = 250 
sensors to reach ten sensors contending per frame for n = 
5000 sensors. 

Figure 6. Average number of contending sensors 
per frame during the collision resolution time 

At the beginning of the collision resolution time, a high 
number of contending sensors per frame characterizes the 
algorithm. However, as time progresses, due to the over-
division of the CRQ into multiple groups with a small 
number of sensors, the number of contending sensors per 
frame decreases. The over-division of the CRQ into 
smaller groups decreases with the number m of 
contention. As m increases, the sensors in the CRQ groups 
have more opportunity to succeed in channel access. 
Therefore, a high number of sensors contending per frame 
is obtained when m is high because the collisions are 
resolved quickly. However, for small values of m, it takes 

EAI Endorsed Transactions on 
Internet of Things 

07 2020 - 10 2020 | Volume 6 | Issue 23 | e4



Statistical Analysis of a Distributed Queuing Random Access Protocol in a Massive Communication Environment 

11 

more time to resolve all the contentions. Consequently, 
the CRQ is composed of multiple groups with a small 
number of sensors in them. In general, it can be observed 
from Fig. 6 that the average number of sensors contending 
per frame depends slightly on the number of contention 
slots. 

The increase of the number n of sensors in the network 
leads to an augmentation of the number of contention 
groups in the CRQ for a given m. Therefore, the number 
of sensors contending per frame is also increased. The 
number of sensors contending per frame is essential as the 
status of each of the contention slots depends on it. The 
number of sensors contending per frame needs to be 
optimized to maximize the number of successful 
contention slots. 

5.5. Average distribution of contention slots 
into successful, empty and collided 

An analysis of the metrics related to the contention period 
of the DQ frame was also conducted. Those metrics are 
evaluated only during the collision resolution time as no 
sensors are contending after the CRQ is empty. Three 
performance metrics related to the number of contention 
slots were of interest. These are the average number of 
empty contention slots per frame EC (Eq. 11), the average 
number of successful contention slots per frame SC (Eq. 
12) and the average number of empty contention slots per
frame CC (Eq. 13):

 (11) 

 (12) 

 (13) 

where 
- ECij  is the number of empty contention slots

during an ith frame of the jth observation;
- SCij is the number of successful contention slots

during an ith frame of the jth observation;
- CCij is the number of contention slots with

collisions during an ith frame of the jth
observation;

- m is the total number of contention slots
available in a DQ frame;

- R is the total number of observations.

From Fig. 7, it can be noted that EC, SC, and CC do 
not vary with the number of sensors. The average number 
of empty contention slots per frame EC increases 
logarithmically from 15% to 76% as the number of 
contention slots grows from two to 16. At the same time, 
CC decreases logarithmically from 49% to 6%. As for SC, 
it varies from 34% to 17% with a maximum of 37% when 
m equals three. 

Figure 7. Average number of empty (blue), 
successful (green) and collided (red) contention slots 

during the collision resolution time 

The DQ algorithm is characterized by a high number of 
contention slots with collisions from the beginning of the 
contention process up to the moment tcrqmax. During that 
interval of time, the CRQ groups contain a high number 
of sensors that are trying to access the channel. Therefore, 
the average numbers of successful and empty contention 
slots are considerably small or zero compared to the 
average number of contention slots with collisions.  

However, as time progresses, the groups of contending 
sensors become less populated, and the average number of 
contention slots with collisions begins to decrease while 
the average numbers of empty and successful contention 
slots respectively are increasing.  

Finally, at the end of the collision resolution time, the 
average number of empty contention slots always tends to 
be larger than the remaining two other performance 
metrics. The average number of successful contention 
slots turns out to be larger than the average number of 
contention slots with collisions. This trend is emphasized 
as the number of contention slots increases. 

As time progresses, the number of sensors contending 
per frame becomes smaller than the number of available 
contention slots. The performance metric EC is found to 
be always more significant than the remaining two 
performance metrics for m ≥ 4. However, an optimal ratio 
among those three metrics is only observed in the case 
when the number of contention slots is three. A rise in the 
number of contention slots (over three) leads to inefficient 
use of the contention slots, as a large percentage of them 
are empty. Thus, for better performance in terms of 
efficient use of the contention slots, a frame with three 
contention slots is preferable. 

5. Conclusion, recommendations and
future works

In this paper, we presented a statistical performance 
analysis of the DQ algorithm. To accomplish that goal, we 
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used different performance metrics to evaluate the 
algorithm. 

First, the collision resolution time and the data 
transmission time were analyzed, and we found that their 
averages were decreasing with the number of contentions 
slots. Then, based on the moments when the CRQ was 
reaching the maximum and when it was empty, the DQ 
algorithm queues were subdivided into three different 
intervals of time. 

Secondly, we also evaluated the waiting times of each 
sensor in both the collision resolution and data 
transmission queues. We observed that the average access 
delay per sensor was varying from 60% to 50% of n 
frames as m increased from three to 16 and if n sensors 
were present in the network at the beginning of the 
contention process. Also, the throughput of the algorithm 
was investigated through the number of successful, 
empty, and collided data slots. We had found that the 
algorithm could achieve a performance of over 90% in 
terms of the number of successful data slots when m was 
greater or equal to three contention slots. 

Another metric analyzed was the number of random 
access attempts needed by a sensor to leave the CRQ. On 
average, six to nine attempts were necessary for a sensor 
to leave the queue when m was three, and we observed 
that it was decreasing to vary from three to four attempts 
per sensor when m was 16. Additionally, we also realized 
an evaluation of the average number of sensors 
contending per frame, and we noticed that it was 
increasing with the number of sensors from seven to ten 
sensors contending per frame when n varied from 250 to 
5000 sensors respectively. 

Lastly, we found that the average number of empty 
contention slots was always more significant than both the 
average number of successful and collided contentions 
slots when they were compared separately for m ≥4. 

In general, we observed that a DQ frame with more 
than two contention slots was preferable for better 
network performance. Moreover, an optimal ratio 
between the average numbers of collided, empty, and 
successful contention slots was observed only for m=3. 
Apart from the number of random access attempts per 
sensor and the number of sensors contending per frame, 
all the other evaluated performance metrics were invariant 
to the initial number of sensors in the network when m 
was constant. We have also established that the first 
interval of time of the DQ algorithm could be used to send 
data from the previous contention process. It is during that 
interval of time that all the empty frames were registered.  

Another crucial finding was that an increase in the 
number of contention slots was reducing the number of 
attempts per sensor, but at the same time, it was leading to 
inefficient use of the contention slots. Thus, a trade-off 
was needed, or the number of the sensors contending per 
frame should be optimized to avoid a waste of the 
contention slots. However, an increase in the number of 
contention slots should be carefully considered as it may 
result in a more complex, expensive, and large in size 
sensor. 

In the future, we plan to perform a steady-state analysis 
to evaluate the stability criteria of the algorithm in a 
massive communication environment. 
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