
EAI Endorsed Transactions
on Internet of Things Research Article

1

Statistical Analysis of a Distributed Queuing Random
Access Protocol in a Massive Communication
Environment
 Romeo Nibitanga1, Elijah Mwangi2 and Edward Ndung’u3

1Pan African University Institute of Basic Sciences, Technology and Innovation, Kenya
2University of Nairobi, Kenya
3Jomo Kenyatta University of Agriculture and Technology, Kenya

Abstract

Most of the networks deployed for massive IoT communications use Aloha-based algorithms for channel access. However,
those algorithms are known to be unstable and inefficient when the network size is high. Since recently, a Distributed
Queuing (DQ) algorithm is being proposed as a solution to mitigate several of the Aloha issues in IoT networks. In this
paper, a statistical performance analysis of the DQ algorithm without any prior consideration of any physical layer is
presented. We evaluate the DQ algorithm in a massive communication environment and give the average values for these
performance metrics: collision resolution time, access delay per sensor, channel throughput, number of attempts required
by a sensor to complete the contention process, number of nodes contending per frame and the distribution of contention
slots into idle, successful, and collided. The goal of this paper is to provide a statistical baseline performance evaluation of
the DQ algorithm in general.

Keywords: Aloha, distributed queuing, collision resolution, massive Machine-to-Machine (M2M) communications, random access
protocol, tree splitting

Received on 14 September 2020, accepted on 13 October 2020, published on 16 October 2020

Copyright © 2020 Romeo Nibitanga et al., licensed to EAI. This is an open access article distributed under the terms of the Creative
Commons Attribution license, which permits unlimited use, distribution and reproduction in any medium so long as the original work
is properly cited.

doi: 10.4108/eai.16-10-2020.166663

*Corresponding author. Email: nibitanga.romeo@students.jkuat.ac.ke

1. Introduction

It is predicted that 22.3 billion devices will be connected
to the Internet of Things (IoT) by 2024 [1]. With the
years, that number will grow as more applications are
developed, and new services are introduced. To address
the massive number of connections that are going to be
required to handle these communications, several new
technologies have emerged. Currently, Long Term
Evolution for Machine (LTE-M), Narrowband Internet of
Things (NB-IoT), LoRa/LoRaWAN, and Sigfox are
among the proposed solutions for the IoT massive
connectivity scenarios. At the media access control layer,
all these networks use Aloha or its variants for channel
access.

The choice of Aloha-based algorithms is motivated by
its easy implementation in low power, inexpensive and
small size devices that are intended to dominate those
networks. However, as many studies [2]–[5] pointed out,
the Aloha-based algorithms are inefficient in terms of
energy consumption, throughput, and access delay when
the network size is high. Thus, there is a need for new
access schemes to address the scalability issue of those
networks with a potentially massive number of
connections per session.

Recently, as an alternative to the Aloha-based access
schemes, several works [2]–[16] proposed a Distributed
Queuing (DQ) algorithm as a potential candidate to many
of the challenges posed by the massive Machine-to-
Machine (M2M) connectivity. In [6], it is predicted as one
of the possible solutions to the majority of Media Access
Control (MAC) issues in the IoT. In general, the DQ

EAI Endorsed Transactions on
Internet of Things

07 2020 - 10 2020 | Volume 6 | Issue 23 | e4

mailto:https://creativecommons.org/licenses/by/4.0/
mailto:https://creativecommons.org/licenses/by/4.0/

Romeo Nibitanga, Elijah Mwangi and Edward Ndung’u

2

protocol is a tree-splitting based algorithm which tries to
resolve an initial contention using different types of
virtual queues before trying another one [17]. A DQ
frame is divided into three parts: the contention period
with a given number of contention slots, the contention-
free period with one or multiple data slots, and the
feedback period with different parts.

 Most of the studies reviewed have been found to put
an emphasis on the evaluation of these four performance
metrics: the access delay [3]–[5], [9], [10], [12]–[16], the
throughput [2]–[6], [15], [16], the energy consumption
[2], [3], [5], [8], [14], and the number of attempts per
node [3], [4], [10], [11]. Besides, it is a fact that the
algorithm outperforms the Aloha-based schemes in terms
of those performance metrics. It has also been proven that
the algorithm can be implemented in the existing
networks and systems [7].

However, most of the results presented in published
works are bound to a specific technology because the
evaluation of the DQ algorithm is made under the
consideration of a given technology at the physical layer.
Therefore, they cannot apply to other systems. Moreover,
only these performance metrics are of interest in all the
works: the access delay, the throughput and the energy
consumption. Although very useful in the evaluation of
the DQ algorithm, those metrics do not provide any
quantitative information about the collision resolution
process.

In this paper, we perform a statistical transient analysis
of the DQ algorithm in a massive M2M communication
environment. By transient analysis, we mean that the DQ
algorithm is evaluated from the beginning of the
contention process, with a given number of sensors, up to
the moment when all the sensors have left the algorithm
queues. In contrast to other works, the evaluation is made
without any prior consideration of any physical layer
technology or any given number of contention slots.
Moreover, in addition to the existing ones, we introduce
new performance metrics needed to improve the overall
performance of the algorithm. The goal of this work is to
provide a statistical baseline performance evaluation of
the DQ algorithm.

Briefly, the contribution of this paper is two-fold: (i)
we provide an extended evaluation of the DQ algorithm
without any prior consideration of any physical layer and
(ii) we introduce new performance metrics in the analysis
of the DQ algorithm.

The rest of this paper is organized as follows. In
section II, a literature review of works related to the DQ
algorithm in IoT networks and systems is presented. The
description of the DQ algorithm is given in Section IV.
We present the system model used to evaluate the DQ
algorithm and the parameters used for numerical
simulations in section V. Further, the simulation results
for each of the performance metrics considered and their
discussion are presented in section VI. Finally, section
VII is dedicated to the conclusion and future work.

2. Related Works

In this section, we present a literature review on works
related to the DQ algorithm in IoT environments.

2.1. Background

In [17], the DQ algorithm was first introduced by Xu and
Campbell as the Distributed Queuing Random Access
Protocol (DQRAP). The protocol was intended to be used
in cable TV systems for the transmission of digital data.
In [17], the results showed that the algorithm could
achieve a performance level near those of an M/D/1
queuing model in terms of throughput and delay.

Before the advent of the IoT, the algorithm was
evaluated under various scenarios. Prioritized Distributed
Queuing Random Access Protocol (PDQRAP) [18] and
Extended Distributed Queuing Random Access Protocol
(XDQRAP) [19] were proposed as variations of the
DQRAP for priority-based traffic and to support variable
packet lengths respectively. Also, there have been
proposals for the adaption of the algorithm to wireless
area networks [20], third-generation cellular networks
[21], body area networks [22], mobile ad hoc networks
[23] and cooperative networks [24].

Recently, the DQ algorithm has interested several IoT
researchers [2]–[16]. The protocol is seen as a solution to
many M2M communication challenges present in both
unlicensed and licensed networks.

2.2. DQ in data collection systems

The energy aspect of the algorithm was the first to be
evaluated. In [8], F. Vazquez et al. analyzed and
compared the DQ algorithm to other protocols like the
Contention Tree Algorithm (CTA) and the Frame Slotted
Aloha (FSA) in terms of energy consumption in M2M
area networks. The authors observed that the DQ
algorithm could reduce energy consumption by 35% and
80% compared to CTA and FSA, respectively, for
networks with 802.15.4 devices.

Additionally, the same researchers designed two
protocols based on the DQ algorithm: these were the Low
Power Distributed Queuing (LPDQ) [7], and the Energy
Harvesting Distributed queuing (EHDQ) [2]. The first
protocol was developed for low power wireless networks
with bursty traffic, whereas the second was designed for
data collection networks with devices equipped with
energy harvester. Both protocols were evaluated for Radio
Frequency Identification (RFID) networks. Apart from
being energy efficient, the results also showed that the
two algorithms could achieve better performance in terms
of success probability (99%) and time efficiency (EHDQ
only) compared to Aloha-based algorithms.

EAI Endorsed Transactions on
Internet of Things

07 2020 - 10 2020 | Volume 6 | Issue 23 | e4

Statistical Analysis of a Distributed Queuing Random Access Protocol in a Massive Communication Environment

3

2.3. DQ in LTE networks

Laya et al. in [3] proposed the DQ algorithm as an
alternative to the Aloha-based access mechanism used in
LTE networks for M2M communications. Their results
showed that applying the DQ algorithm in the media
access layer of the LTE networks would achieve, under
specific network configuration, a reduction of 85% and
40% with respect to the delay and the energy
consumption. Here again, the algorithm was found to
have better performance in terms of success probability
compared to the legacy access method.

The authors in [9] developed the Distributed Queuing
Algorithm Access for LTE (DQAL). Compared to the DQ
variant for LTE from Laya [3], in DQAL, different groups
with a collision can re-transmit their preambles in the
same random access slot. The results showed that under
certain success probability constraints, the DQAL access
delay was superior to the standard Extended Baring
Access (EAB). Moreover, in [10], the authors gave two
analytical models of the Laya DQ protocol for LTE: the
maximum number of attempts before a device can get
access to the channel and the access delay.

The conventional (sequential) DQ algorithm applied to
LTE networks for M2M communications have been found
to cause significant access delay [11]–[13]. In [11],
instead of resolving each contention in each group
sequentially, the author proposed to resolve those
contention groups in parallel. Compared to the sequential
method, the proposed scheme was shown to reduce the
average number of random access slots with the average
number of preambles slightly increasing.

Bui et al. proposed the Free Access Distributed
Protocol (FADQ) in [12]. First, the algorithm divides the
number of colliding devices into a subset of smaller
groups and then applies the conventional DQ algorithm to
each group. Secondly, the free access method is applied
for each newly arrived device. According to the free
access method, new devices can participate in the next
random access opportunity without waiting for the
collision resolution to end. The results showed that the
access delay was significantly reduced compared to the
3GPP Access Class Barring (ACB) mode while still
maintaining a high access success probability.

A traffic prioritization method in LTE networks with
the DQ protocol is introduced in [14]. The authors
showed that the length of the CRQ could be used to
retrieve relevant information about network congestion.
Thus, based on the length of the CRQ, news arrivals can
be delayed according to their priority classes. Compared
to both the baseline and dynamic ACB, the proposed
method was observed to offer excellent performance in
terms of access delay and energy consumption
independent of the traffic prioritization.

In [13], the authors also proposed to divide the
contending devices into a given number of groups and to
apply the conventional DQ algorithm to each group in
parallel. However, the newly arrived devices were only
allowed to contend in the groups without collisions. The

method proposed showed a reduction in the overall access
delay and a significant optimization in the use of
preamble resources compared to the baseline EAB and the
DQ variants proposed separately by Laya and Yoon in [3]
and [11] respectively.

2.4. DQ in low power wide area networks

Currently, the DQ algorithm is also being proposed as a
candidate for the media channel access for Low Power
Wide Area Networks (LPWAN).

In [4], Xing et al. brought the DQ algorithm to NB-IoT
networks. The authors proposed the Resource Grouping
Distributed Queuing algorithm (RGDQ) to resolve the
massive connectivity issue in NB-IoT. Aware of the
inherent significant delay caused by the conventional DQ
scheme, a suggestion of grouping devices from each
coverage enhancement was adopted. Thus, devices were
divided into three different groups, with different sub-
carriers shared evenly between groups. Then, the DQ was
applied separately to each group. Each group has its CRQ.
It was observed that the RGDQ scheme, compared to the
standard ACB mechanism, presented a significant
improvement in terms of the access probability, the access
delay, and the average number of random access attempts.

In [5], the authors proposed to replace the pure Aloha
algorithm used in LoRA networks by the DQ algorithm.
They introduced the DQ-LoRA, where the Distributed
Queuing protocol was used at the media access layer, and
the LoRa technology was applied at the physical layer.
Their results showed that DQ-LoRA could achieve better
performance compared to the current LoRaWAN Aloha-
based scheme. A 2.6-fold gain for throughput was
obtained, while the energy consumption and the latency
were reduced by 48% and 54%, respectively. Besides, it
was observed that for better throughput performance, the
number of contention slots should be four, while 28
contention slots were needed for minimum energy
consumption. Thus, in a LoRa network with the DQ
scheme used for channel access, a trade-off has to be
made between energy consumption and throughput.

In [15], the authors presented DQ-N for crowd-sourced
low power wide area networks. Unlike the conventional
DQ algorithm, DQ-N divides the contention-free period
into multiple data slots instead of one to support a
massive number of nodes with a low data rate. The results
showed that the DQ-N outperforms the LPDQ protocol in
terms of channel utility and latency.

2.5. DQ and MIMO technology

Finally, the DQ algorithm has also been exploited
together with the Massive Input Massive Output (MIMO)
technology.

In [16], Yuan et al. proposed a Distributed Queuing
Random Access Massive Input Massive Output (DQRA
MIMO) system to obtain higher throughput under delay
constraint and limited time-frequency resources. The

EAI Endorsed Transactions on
Internet of Things

07 2020 - 10 2020 | Volume 6 | Issue 23 | e4

Romeo Nibitanga, Elijah Mwangi and Edward Ndung’u

4

basic principle of the system is to send a maximum
number of packets, as there are available antennas at the
base station during each frame. It was assumed that each
device could only transmit one packet per frame. Once
optimized and given specific requirements of average
delay, the system was found to provide a better
throughput performance compared to that of a Hybrid
Random Access and Data Transmission Protocol
(HRADTP) and the conventional DQ algorithm.

2.5. Research gaps

Despite many existing works on the DQ algorithm in a
massive connectivity environment, all the proposed
performance metrics (throughput, energy consumption,
access delay, number of attempts) were evaluated based
on a given physical layer. This situation makes the results
biased in favour of specific physical technology
considered. Moreover, an analysis of the behaviour of the
different queues and other performance metrics that may
be used to improve the performance of the algorithm was
absent. We have also observed that most of the works
have only evaluated the DQ algorithm considering only a
given number of contention slots.

In this paper, we propose a statistical analysis of the
DQ algorithm without any prior consideration of any
physical layer. Furthermore, we introduce new
performance metrics in addition to the existing ones for an
extended analysis of the DQ algorithm. These are the
collision resolution and the data transmission times, the
interval of time the contention resolution queue reaches
the maximum, the number of contending sensors per
frame, and the distribution of contention slots into
collided, successful and empty.

3. Description of the DQ Algorithm

Xu and Campbell first introduced the DQ algorithm in
1992 for use in broadcast channels shared by an infinite
number of bursty devices [17]. The algorithm is a tree-
splitting based protocol that iteratively resolves one initial
collision by dividing a large group of contenders into
multiple smaller groups to reduce the collisions.

Sensors are placed in two virtual queues depending on
whether they succeeded in placing an access request or
they are still contending for channel access. The first
queue is the collision resolution queue (CRQ) containing
the groups of sensors that have not succeeded in sending
their access requests. The second queue is the data
transmission queue (DTQ) containing sensors that have
successfully resolved their contention and are waiting for
their turn for the transmission of their data.

The DQ algorithm operates in a star network topology
with a given number of sensors all around a network
coordinator. The role of the network coordinator is to
broadcast beacon messages containing information about
the status of the queues and other DQ operational

information. Based on the information received from the
network coordinator, the sensors can decide and update
the information needed for the DQ operation.

The DQ frame is structured in a manner that the
contention period is much less than the data transmission
period to optimize the throughput characteristics of the
algorithm. The frame is composed of three parts:

(i) The contention period with m contention slots; these
contention slots are used by sensors to send their
access request signals to the network coordinator
(uplink channel)

(ii) The data transmission period, which may be divided
into one or multiple data slots used to send data to
the network coordinator (uplink channel)

(iii) The feedback period, which may be divide also into
one or multiple slots and is used by the coordinator
to send all the DQ related information and other data
from the coordinator to the sensors (downlink
channel).

The DQ algorithm can be implemented in time, as well
as in the frequency domain [6]. In the time domain, the
one considered in this paper, the operation of the DQ
algorithm assumes a perfect frame and a contention slot
synchronization.

At the beginning of each DQ frame, sensors with data
to send and not engaged in any contention process send an
access request signal in one of the m contention slots. The
choice of a given contention slot by a device is random.
After the contention period, the status of each of the
contention slots may be:

(i) Empty, if no sensors have chosen the contention
slot;

(ii) Successfully, if only one sensor has placed an
access request signal in the contention slot;

(iii) Collision, if more than one sensor has chosen the
same contention slot.

At the end of the transmission period, the coordinator
broadcasts the status of each of the contention slots during
the feedback period. Based on the received information
from the coordinator, sensors that contended in the
previous frame can execute the DQ algorithm rules and
decide whether to enter the CRQ or the DTQ. Sensors that
registered a collision in their chosen contention slots enter
the CRQ, while those with successful requests enter the
DTQ. Then, sensors in the CRQ execute a tree-splitting
algorithm to resolve their collisions. For the devices in the
DTQ, as there is no priority policy applied to their data, a
First-In First-Out (FIFO) model is the one adopted, and
their frames are sent during the data transmission period
of the subsequent DQ frames.

At each sensor, four integer numbers are used to
monitor the status of the queues and the position of the
sensor in them. These integer numbers are:

(i) RQ representing the length of the CRQ; it
indicates the number of groups of sensors with

EAI Endorsed Transactions on
Internet of Things

07 2020 - 10 2020 | Volume 6 | Issue 23 | e4

Statistical Analysis of a Distributed Queuing Random Access Protocol in a Massive Communication Environment

5

collisions waiting to re-transmit their access
requests;

(ii) TQ representing the length of the DTQ; it indicates
the number of sensors waiting for data
transmission in the DTQ;

(iii) pRQ indicates the position of a given sensor in the
CRQ;

(iv) pTQ indicates the position of a given sensor in the
DTQ.

The network coordinator updates the first two integer
numbers after each frame and broadcasts them during the
feedback period. In contrast, each sensor, at the end of a
contention process during which it was involved,
individually updates the remaining integer numbers.

Three sets of rules are defined and executed at each
sensor after the feedback period. Here, they are presented
in order of their execution:

(i) The Data Transmission Rules (DTRs), indicating
which sensor can transmit data in the following
frame;

(ii) The Request Transmission Rules (RTRs),
implementing the collision resolution algorithm;

(iii) The Queuing Discipline Rules (QDRs), managing
the updates of the queues.

The DTRs are:

(i) If there are no sensors scheduled either for
transmission (TQ = 0) or for collision resolution
(RQ = 0), any sensor with data ready to be sent
transmits an access request in any randomly
selected contention slots and its payload in the data
slot as it is empty. It is the only possible occasion
when the DQ algorithm may register a collision
during the data transmission period.

(ii) The sensor at the head of the DTQ (pTQ = 1) is the
only one allowed to transmit in the next frame.

The RTRs are:

(i) If there are no sensors scheduled for collision
resolution (RQ = 0) and the DTQ is not empty (TQ
> 0), any sensor with data ready to be sent chooses
randomly one of the contention slots and transmits
a channel access request in the next frame.

(ii) If a sensor is at the head of the CRQ (pRQ = 1), it
is allowed to select any of the m contention slots
and send an access request in it in the next frame.

The QDRs are as follows:

(i) Each sensor increments by one the value of TQ for
each successful contention slot.

(ii) Each sensor decrements by one the value of TQ for
each payload successfully transmitted in the data
slot.

(iii) The value of RQ is decremented by one every
time the CRQ (RQ > 0) is not empty.

(iv) Each sensor increments by one the value of RQ for
each contention slot with collisions.

(v) Each sensor updates its position in the queues
(values for pTQ and pRQ). If the chosen
contention slot is successful, then the sensor sets
its pTQ to the corresponding value at the end of
the TQ. If a collision occurs in the chosen
contention slot, the sensor updates its position in
the CRQ and sets its pRQ to the corresponding
value at the end of RQ. If a node has not sent an
access request, pTQ and pRQ follows the same
update rules as TQ and RQ respectively, as long as
their initial values are non-zero. It should be noted
that the sensors enter the queues following a time
arrival criterion.

The DQ algorithm operation flow chart for a node is
illustrated in Fig. 1.

Figure 1. Distributed Queuing algorithm flow
chart[20]

4. System model

To analyze and evaluate the performance metrics of the
DQ algorithm, a discrete-event based simulation model
was developed and executed in Matlab.

The system model is composed of a network
coordinator and n sensors trying to get access to the
wireless channel using the DQ algorithm. All the n
sensors are in the range of the network coordinator. As the
downlink channel, only dedicated to the gateway, is
collision-free, the channel from the sensors to the gateway
(uplink channel) is the one considered. Thereby, the DQ
frame is composed of two parts: the contention period

EAI Endorsed Transactions on
Internet of Things

07 2020 - 10 2020 | Volume 6 | Issue 23 | e4

Romeo Nibitanga, Elijah Mwangi and Edward Ndung’u

6

subdivided into m equal contention slots and the data
transmission period of one data slot with a fixed size.

Before the operation of the DQ algorithm, we assumed
that all the queues are empty (CRQ = 0 and DTQ = 0), and
no sensors are scheduled to contend (pRQ = 0) or to
transmit its data (pTQ = 0). Moreover, sensors have a
perfect frame and contention slot synchronization.

In the beginning, every sensor chooses a contention
slot randomly among the m available slots in a DQ frame
and sends an access request signal to the chosen
contention slot. However, at the same time, as the data
slot is empty, sensors that generate the same random
number as the network coordinator, are allowed to
contend for transmission in the data slot. It is supposed
that at the beginning of every empty frame, the network
coordinator generates a random number. Every sensor
knows the random number from the previous feedback
period, and it has to generate its random number. This
mechanism is the one adopted every time the data slot is
empty.

If two or more sensors choose the same contention slot,
a collision will occur. Thus, the sensors with a collision
are sent in the collision resolution queue. Sensors that
collided in the same contention slot are put in the same
CRQ contention group. Groups of sensors in the CRQ are
formed following the number of the contention slots in
which the collisions occurred. Then, each group is
scheduled to re-enter the channel access following its
position in the CRQ in the subsequent frames. A sensor
with a successful access request is put in the DTQ
following the number of successes in the previous
contention slots. If a sensor has successfully sent its
payload in the data slot as it was empty, it leaves both
queues. At the end of every frame and after every
contention process, a sensor updates its integer numbers
following the rules of the DQ algorithm.

The simulation time equals the time it requires for all
the n sensors to secure a data slot and send their payload
according to the DQ algorithm. It is a transient simulation
model. A sensor needs only one data slot to send its
payload.

In Table I, we present the simulation parameters. It is
assumed that the sensors choose the contention slot to
send in their access request signal following a discrete
uniform distribution U(a;b) with the parameters a and b
equal to 1 and m respectively. Moreover, the random
number, chosen by both the network coordinator and the
sensors at the beginning of an empty data slot, also
follows a discrete uniform distribution U(c;d) with the
parameters c and d equal to 1 and 5000 respectively. The
parameters c and d are chosen arbitrarily.

To evaluate the performance of the DQ algorithm, we
used the following metrics:

(i) the collision resolution time;
(ii) the data transmission time;

(iii) the time it takes the CRQ to reach the maximum;
(iv) the collision resolution time per sensor;
(v) the data transmission time per sensor;

(vi) the distribution of data slots into successful, empty
and collided;

(vii) the number of random access attempts per sensor;
(viii) the number of sensors contending per frame;

(ix) the distribution of the contention slots into
successful, empty and collided during the collision
resolution time.

Table I. Simulation parameters

Parameter Description
Number of sensors N=250,750,…,5000
Number of contention slots m=2,3,4,8,12,16
Number of data slot 1
Distribution of the chosen
contention slot by each sensor

Discrete uniform with
parameters 1 and m

Distribution of the random
number at the gateway and sensor
level

Discrete uniform with
parameters 1 and 5000

Simulation runs R =100

5. Performance evaluation and
discussion

In this section, we present the simulation results obtained
for each performance metric evaluated.

Matlab was used to perform all the simulations. It is
launched in a Virtual Private Server (VPS) with eight
cores and 12 GB of Random Access Memory (RAM).
Due to the time constraints and the limited computing
power available, the DQ algorithm is evaluated in a
network with up to 5,000 nodes which are trying to get
access to the channel simultaneously. Moreover, the
number of contention slots in the DQ frame is limited to
16.

5.1. Evolution in the time of both CRQ and
DTQ

From Fig. 2, a description of the evolution in the time of
each of the queues of the DQ algorithm is given. It can be
seen that based on the moments tcrqmax, tcrq and tdtq the
duration of each queue can be divided into three intervals
of time:

• The first interval goes from the beginning of the
collision resolution time up to the moment tcrqmax
when the CRQ reaches its maximum. The increasing
number of groups of contenders in the CRQ can be
explained by a high number of contention slots with
collisions occurring during this period. The collisions
are due to a high number of contending sensors in
each CRQ group at the beginning of the contention
process. Besides, during this interval of time, the

EAI Endorsed Transactions on
Internet of Things

07 2020 - 10 2020 | Volume 6 | Issue 23 | e4

Statistical Analysis of a Distributed Queuing Random Access Protocol in a Massive Communication Environment

7

DTQ is “nearly” empty most of the time as a small
number of sensors is being successful in accessing
the channel.

• The second interval goes from the moment tcrqmax up
to the end of the collision resolution time at tcrq. A
medium to a low number of contention slots with
collisions characterizes this interval of time. In the
beginning, the CRQ may grow slightly compared to
its value at tcrqmax, and then it would decrease linearly
over time. At the end, the CRQ is empty, as all the
sensors have secured access to the channel. At the
same time, the DTQ begins to grow linearly until it
reaches its maximum value at the end of the interval
at tcrq.

• Lastly, the third interval begins at tcrq to end at the
moment tdtq when the DTQ is empty. During this
interval of time, the CRQ is empty as no sensors are
trying to get access to the channel. However, the
DTQ is characterized by a linearly decreasing
number of sensors leaving it.

Figure 2. Evolution in time of the collision resolution
queue (blue) and data transmission queue (red)

when n =1500 sensors and m = 3

It should be noted that those three intervals of time are
only distinguishable for the cases when the number of
contention slots in the frame is more than two. For the
case when there are two contention slots, the DTQ never
reaches a moment when it grows linearly in a monotonous
way except at the end of the collision resolution time. It is
“nearly” empty most of the time. Due to a small number
of contention slots (m < 3), a high number of contention
slots with collisions is registered up to near the end of the
collision resolution time.

In Fig. 3, the simulation results of the performance
evaluation of these three metrics are presented:

(i) The average collision resolution time (Eq. 1), i.e.,
tcrq, represents the average time it takes all the
contending sensors to get access to the wireless
channel and secure a frame for the data
transmission.

(ii) The average data transmission time (Eq. 2), i.e.,
tdtq, is the average time from the beginning of the
collision resolution time up to the moment when
the DTQ is empty.

(iii) The average time it takes the CRQ to reach its
maximum (Eq. 3), i.e., tcrqmax, represents the
average interval of time from the beginning of the
contention process up to the moment when the
CRQ is at its maximum. It should be noted that the
maximum considered here corresponds to the
number of groups of sensors in the CRQ. At the
same time, the data transmission subsystem has a
“near-zero” registration in its queue. The “near-
zero” means that the DTQ is observed until the
time it begins to grow linearly.

Figure 3. Average collision resolution time (blue).
Average data transmission time (green). Average

time for the CRQ to reach the maximum (red)

The performance metrics tcrq, tdtq and tcrqmax are
measured as ratios in percentages and are defined as
follows:

 (1)

 (2)

 (3)

where

• tcrqi is the duration of the collision resolution time
for an ith observation;

• tdtqi is the duration of the data transmission for an ith
observation;

• tcrqmaxi is the interval of time it takes the CRQ to
reach the maximum for an ith observation;

• R is the total number of observations;
• N is the number of frames required to send data from

n sensors with a perfect scheduling algorithm.

EAI Endorsed Transactions on
Internet of Things

07 2020 - 10 2020 | Volume 6 | Issue 23 | e4

Romeo Nibitanga, Elijah Mwangi and Edward Ndung’u

8

In (1), (2) and (3), the absolute values of the
performance metrics tcrq, tcrq and tcrqmax are compared to N,
respectively. By a perfect scheduling algorithm, it is
assumed that each sensor requires only one frame to be
sent. If n sensors are present at the beginning of the
collision resolution time, n frames will be required to send
all the data from the sensors.

From Fig. 3, it can be observed that both tcrq and tdtq do
not vary with the number n of sensors present in the
network, whereas they decrease logarithmically with the
number m of contention slots. For m = 2, the average
collision resolution time is 143%, meaning that it requires
a number of frames greater than the number n of sensors
to resolve all the collisions. On the other hand, for m ≥ 3,
the algorithm needs less than n frames to resolve all the
contentions. As for the tdtq, it is always found to be over
100%, confirming that n sensors cannot send their data in
less than n frames. Except for m=2, where tdtq is
considerably high (144%), it is found to vary between
112% and 101%, respectively, for m varying from three to
16.

Same as for tcrq and tdtq, the performance metric tcrqmax
does not change with the number of sensors, but it
decreases considerably with the number of contention
slots. A value of 129% for tcrqmax is observed for m=2,
whereas it varies from 19% to 0,4% when the number of
contention slots changes from three to 16, respectively.

The results obtained for tcrq and tdtq show that,
irrespective of the number of the contention slots, tdtq is
always greater than tcrq. Thus, confirming the results
presented earlier in [17], that the speed of the contention
resolution is faster than the speed of data transmission.
For better performance metrics in terms of tcrq and tdtq, it is
preferable to have a frame with more than two contention
slots. When the number of contention slots is equal to
two, the values of tcrq and tdtq are relatively high compared
to their respective values when the number of contention
slots is three or more. We observed that a further increase
in the number of contention slots improves the values of
tcrq and tdtq. However, such an increase implies a more
precise synchronization technique. That may result in an
issue in terms of the cost and the size of the sensors. A
better synchronization system implies a more complex
sensor.

In general, we realized that CRQ reaches the maximum
very quickly as the number of contention slots increases.
As m grows, the number of contention slots with
collisions diminishes, leading to a small over-division of
the CRQ. The performance metric tcrqmax can be used to
improve the access delay characteristics of the algorithm.
Sensors from the previous contention process can be
allowed to send their data during the tcrqmax interval of time
of the current contention process.

5.2. Average access delay per sensor

To assess the access delay introduced by the algorithm for
each sensor, two performance metrics were estimated.

These are the average collision resolution time per sensor
and the average data transmission time per sensor:

(i) The average collision resolution time per sensor
(Eq. 4), i.e., tcrqsensor, is the average time it takes a
sensor to get access to the wireless channel and to
secure a data slot before leaving the CRQ.

(ii) The average data transmission time per sensor (Eq.
5), i.e., tdtqsensor, is the average time that a sensor
spends in the DTQ while waiting to transmit its
data after it has secured a frame.

Both metric metrics are measured as ratios in
percentages and are defined as follows:

 (4)

 (5)

where

• tcrqsensorij is the duration of the collision resolution
time for a given i sensor during a jth observation;

• tdtqsensorij is the duration of the data transmission time
for a given i sensor during a jth observation;

• n is the total number of contending sensors;
• R is the total number of observations;
• N is the number of frames required to send data from

n sensors with a perfect scheduling mechanism.

Here again, in (4) and (5), the performance metrics
tcrqsensor and tdtqsensor are compared to N, respectively.

From Fig. 4, it can be noticed that both tcrqsensor and
tdtqsensor are invariant to the number of sensors. However,
they vary logarithmically with the number of the
contention slots in opposite directions: tcrqsensor decreases
while tdtqsensor is growing. Except for m = 2, on average it
takes nearly a half or less of n frames for a sensor to get
access to the channel.

Figure 4. Access delay per sensor. Average
collision resolution time (blue). Average data

transmission time (red).

EAI Endorsed Transactions on
Internet of Things

07 2020 - 10 2020 | Volume 6 | Issue 23 | e4

Statistical Analysis of a Distributed Queuing Random Access Protocol in a Massive Communication Environment

9

As for the data transmission, each sensor requires from
8% to 35%, when m varies from three to 16, respectively,
while tdtqsensor is 0.3% when m = 2.

In general, except for the case when m =2, it takes a
sensor on average from 60% to 50% of n frames to get
access to the channel and to transmit its data. That is if n
sensors are considered at the beginning of the contention
process, and the number of contention slots varies from
three to 16, respectively. When the number of contention
slots is two, it requires on average 80% of n frames for a
sensor to leave both queues. A small number of
contention slots implies an over-division of the CRQ,
leading to a high number of groups of contenders in it.
Consequently, this causes a significant delay in the CRQ.
At the same, as no sensors or only a small number of them
enter the DTQ, the time a sensor spends in the DTQ is
negligible compared to the time it spent in the CRQ.
Thus, it is efficient to work with a DQ frame with more
than two contention slots for higher performance in terms
of delay access per sensor.

5.3. Average distribution of data slots into
successful, empty, and collided

The throughput analysis is carried out from the beginning
of the collision resolution process up to the time when all
the sensors have sent their data. For the throughput
evaluation, the contention period and the contention-free
period are analyzed separately.

A data slot may register a success, a collision or may
be empty. Based on those three situations, three
performance metrics were used to evaluate the
throughput. These are the average percentage of
successful data slots SD (Eq. 6), the average percentage of
empty data slots ED (Eq. 7) and the average percentage of
data slots with collisions CD (Eq. 8):

 (6)

 (7)

 (8)

where

• SDi is the number of successful data slots registered
in an ith observation;

• EDi is the number of empty data slots registered in
an ith observation;

• CDi is the number of data slots with collisions
registered in an ith observation;

• tdtqi is the number of data slots required by the DQ
algorithm to clear the CRQ and DTQ queues for an
ith observation;

• R is the total number of observations.

From Table II, it is shown that SD, ED and CD are all
invariant to the number n of sensors present at the
beginning of the contention process. As the number of
contention slots increases, the metrics SD and ED change
logarithmically in opposite directions. SD increases from
69.3% to 99.4%, while ED decreases from 30.5% to
0.5%. Except for m=2, SD is always above 90.16%,
whereas ED is below 9.75%. As for the CD, it is always
less than 0.15% for all the scenarios.

Table II. Average distribution of data slots into
successful, empty, and collided

Number of
contention slots

SD, % ED, % CD, %

m =2 69.32 30.55 0.13
m =3 90.16 9.75 0.09
m =4 94.65 5.28 0.07
m =8 98.45 1.51 0.04
m =12 99.44 0.53 0.03
m =16 99.49 0.48 0.03

In general, for m ≥ 3, all the empty data slots are
registered during the moment when the CRQ has not
reached its maximum tcrqmax. Therefore, that interval of
time can be used to send data from the previous
contention process. As for m=2, the observed high
percentage of empty data slots (30.5%) can be explained
by the low probability of a sensor to secure a data slot
when there is a high number of sensors present in each
CRQ group. Consequently, several data slots are empty
because collisions are occurring more often.

In line with the previous works [2]–[6], [15], the
results obtained confirm that the DQ algorithm can offer
better performance in terms of throughput. We found that
the percentage of successful data slots was over 90% for
m≥3. It should also be noted that as m grows, tcrqmax
decreases, leading to a high number of successful data
slots as more sensors are succeeding in their attempts to
access the channel.

Although collisions can still occur in the DQ
algorithm, with respect to the first data transmission rule,
their impact on the throughput of the algorithm is
minimal. The percentage of data slots with collisions is
negligible compared to both the percentages of successful
and empty data slots. For a better throughput
performance, a frame with more than two contention slots
is necessary.

5.4. Average number of random access
attempts per sensor

During the collision resolution time, each sensor tries to
access the wireless media channel by sending access
request signals to the network coordinator. As long as a

EAI Endorsed Transactions on
Internet of Things

07 2020 - 10 2020 | Volume 6 | Issue 23 | e4

Romeo Nibitanga, Elijah Mwangi and Edward Ndung’u

10

sensor fails to secure a position in the DTQ for data
transmission, it sends access request signals every time its
CRQ is scheduled to retry the access. The number of
random access attempts that a sensor needs to send before
it is granted access to the channel is evaluated through the
average number RAattempts of random access attempts per
sensor and is determined as follows:

 (9)

where RAattemptsij is the number of random access attempts
required by a sensor i during a jth observation to leave the
CRQ, n is the total number of sensors and R is the total
number of observations.

From Fig. 5, it can be observed that the average
number of attempts per sensor increases logarithmically
with the number of sensors. At the same time, it also
decreases logarithmically with the number of contention
slots. For m = 2, a high number of attempts that vary from
ten to 14 attempts per sensor is registered. However, that
number decreases to change from three to four attempts
per sensor when the number of contention slots is 16.

Figure 5. Average number of attempts per sensor
during the collision resolution time

The high average number of attempts per sensor
obtained in the case with two contention slots is related to
the value of tcrq. A more significant value of tcrq implies
that sensors have to make several attempts before getting
access to the channel. As m increases, the number of
attempts per sensor quickly decreases, following the same
trend as tcrq.

A small number of attempts per sensor is better
because each new attempt would require additional
energy spending. Thus, for a better energy consumption
performance, a frame with more than two contention slots
needs to be considered. The average number of attempts
per sensor varies from three to five attempts per sensor for
m ≥ 8. However, an increase in the number of contention
slots would imply a more sophisticated sensor in terms of
synchronization, leading to an expensive and large in size

sensor. Therefore, a trade-off has to be made depending
on the importance of the performance metric considered.

5.5. Average number of sensors contending per
frame

Another important metric for the characterization of the
DQ algorithm is the number of sensors contending in each
frame during the collision resolution time. This
performance metric is evaluated through the average
number S of sensors contending per frame and is defined
as follows:

 (10)

where Sij is the number of contending sensors during an ith
frame of the jth observation, tcrqj is the duration of the
collision resolution time for the jth observation and R is
the total number of observations.

From Fig. 6, the results show that the average number
of sensors contending per frame increases logarithmically
with the number of sensors. At the same time, it changes
very slightly with the number of contention slots. It grows
from seven sensors contending per frame for n = 250
sensors to reach ten sensors contending per frame for n =
5000 sensors.

Figure 6. Average number of contending sensors
per frame during the collision resolution time

At the beginning of the collision resolution time, a high
number of contending sensors per frame characterizes the
algorithm. However, as time progresses, due to the over-
division of the CRQ into multiple groups with a small
number of sensors, the number of contending sensors per
frame decreases. The over-division of the CRQ into
smaller groups decreases with the number m of
contention. As m increases, the sensors in the CRQ groups
have more opportunity to succeed in channel access.
Therefore, a high number of sensors contending per frame
is obtained when m is high because the collisions are
resolved quickly. However, for small values of m, it takes

EAI Endorsed Transactions on
Internet of Things

07 2020 - 10 2020 | Volume 6 | Issue 23 | e4

Statistical Analysis of a Distributed Queuing Random Access Protocol in a Massive Communication Environment

11

more time to resolve all the contentions. Consequently,
the CRQ is composed of multiple groups with a small
number of sensors in them. In general, it can be observed
from Fig. 6 that the average number of sensors contending
per frame depends slightly on the number of contention
slots.

The increase of the number n of sensors in the network
leads to an augmentation of the number of contention
groups in the CRQ for a given m. Therefore, the number
of sensors contending per frame is also increased. The
number of sensors contending per frame is essential as the
status of each of the contention slots depends on it. The
number of sensors contending per frame needs to be
optimized to maximize the number of successful
contention slots.

5.5. Average distribution of contention slots
into successful, empty and collided

An analysis of the metrics related to the contention period
of the DQ frame was also conducted. Those metrics are
evaluated only during the collision resolution time as no
sensors are contending after the CRQ is empty. Three
performance metrics related to the number of contention
slots were of interest. These are the average number of
empty contention slots per frame EC (Eq. 11), the average
number of successful contention slots per frame SC (Eq.
12) and the average number of empty contention slots per
frame CC (Eq. 13):

 (11)

 (12)

 (13)

where
- ECij is the number of empty contention slots

during an ith frame of the jth observation;
- SCij is the number of successful contention slots

during an ith frame of the jth observation;
- CCij is the number of contention slots with

collisions during an ith frame of the jth
observation;

- m is the total number of contention slots
available in a DQ frame;

- R is the total number of observations.

From Fig. 7, it can be noted that EC, SC, and CC do
not vary with the number of sensors. The average number
of empty contention slots per frame EC increases
logarithmically from 15% to 76% as the number of
contention slots grows from two to 16. At the same time,
CC decreases logarithmically from 49% to 6%. As for SC,
it varies from 34% to 17% with a maximum of 37% when
m equals three.

Figure 7. Average number of empty (blue),
successful (green) and collided (red) contention slots

during the collision resolution time

The DQ algorithm is characterized by a high number of
contention slots with collisions from the beginning of the
contention process up to the moment tcrqmax. During that
interval of time, the CRQ groups contain a high number
of sensors that are trying to access the channel. Therefore,
the average numbers of successful and empty contention
slots are considerably small or zero compared to the
average number of contention slots with collisions.

However, as time progresses, the groups of contending
sensors become less populated, and the average number of
contention slots with collisions begins to decrease while
the average numbers of empty and successful contention
slots respectively are increasing.

Finally, at the end of the collision resolution time, the
average number of empty contention slots always tends to
be larger than the remaining two other performance
metrics. The average number of successful contention
slots turns out to be larger than the average number of
contention slots with collisions. This trend is emphasized
as the number of contention slots increases.

As time progresses, the number of sensors contending
per frame becomes smaller than the number of available
contention slots. The performance metric EC is found to
be always more significant than the remaining two
performance metrics for m ≥ 4. However, an optimal ratio
among those three metrics is only observed in the case
when the number of contention slots is three. A rise in the
number of contention slots (over three) leads to inefficient
use of the contention slots, as a large percentage of them
are empty. Thus, for better performance in terms of
efficient use of the contention slots, a frame with three
contention slots is preferable.

5. Conclusion, recommendations and
future works

In this paper, we presented a statistical performance
analysis of the DQ algorithm. To accomplish that goal, we

EAI Endorsed Transactions on
Internet of Things

07 2020 - 10 2020 | Volume 6 | Issue 23 | e4

Romeo Nibitanga, Elijah Mwangi and Edward Ndung’u

12

used different performance metrics to evaluate the
algorithm.

First, the collision resolution time and the data
transmission time were analyzed, and we found that their
averages were decreasing with the number of contentions
slots. Then, based on the moments when the CRQ was
reaching the maximum and when it was empty, the DQ
algorithm queues were subdivided into three different
intervals of time.

Secondly, we also evaluated the waiting times of each
sensor in both the collision resolution and data
transmission queues. We observed that the average access
delay per sensor was varying from 60% to 50% of n
frames as m increased from three to 16 and if n sensors
were present in the network at the beginning of the
contention process. Also, the throughput of the algorithm
was investigated through the number of successful,
empty, and collided data slots. We had found that the
algorithm could achieve a performance of over 90% in
terms of the number of successful data slots when m was
greater or equal to three contention slots.

Another metric analyzed was the number of random
access attempts needed by a sensor to leave the CRQ. On
average, six to nine attempts were necessary for a sensor
to leave the queue when m was three, and we observed
that it was decreasing to vary from three to four attempts
per sensor when m was 16. Additionally, we also realized
an evaluation of the average number of sensors
contending per frame, and we noticed that it was
increasing with the number of sensors from seven to ten
sensors contending per frame when n varied from 250 to
5000 sensors respectively.

Lastly, we found that the average number of empty
contention slots was always more significant than both the
average number of successful and collided contentions
slots when they were compared separately for m ≥4.

In general, we observed that a DQ frame with more
than two contention slots was preferable for better
network performance. Moreover, an optimal ratio
between the average numbers of collided, empty, and
successful contention slots was observed only for m=3.
Apart from the number of random access attempts per
sensor and the number of sensors contending per frame,
all the other evaluated performance metrics were invariant
to the initial number of sensors in the network when m
was constant. We have also established that the first
interval of time of the DQ algorithm could be used to send
data from the previous contention process. It is during that
interval of time that all the empty frames were registered.

Another crucial finding was that an increase in the
number of contention slots was reducing the number of
attempts per sensor, but at the same time, it was leading to
inefficient use of the contention slots. Thus, a trade-off
was needed, or the number of the sensors contending per
frame should be optimized to avoid a waste of the
contention slots. However, an increase in the number of
contention slots should be carefully considered as it may
result in a more complex, expensive, and large in size
sensor.

In the future, we plan to perform a steady-state analysis
to evaluate the stability criteria of the algorithm in a
massive communication environment.

Acknowledgement
The Pan African University funded this research

Data Availability
The data used to support the findings of this study are available
from the corresponding author upon request.

References
[1] Ericsson, “Ericsson Mobility Report (June 2019),”

Ericsson White Paper, p. 36, Jun. 2019. [Online].
Available: www.ericsson.com/mobilityreport

[2] F. Vazquez-Gallego, P. Tuset-Peiro, L. Alonso, and J.
Alonso-Zarate,´ “Combining distributed queuing with
energy harvesting to enable perpetual distributed data
collection applications,” Transactions on Emerging
Telecommunications Technologies, vol. 29, no. 7, p.
e3195, 2018.

[3] A. Laya, L. Alonso, and J. Alonso-Zarate, “Contention
resolution queues for massive machine type
communications in LTE,” IEEE 26th annual international
symposium on personal, indoor, and mobile radio
communications (PIMRC), Hong Kong, China, pp. 2314–
2318, 2015.

[4] S. Xing, X. Wen, Z. Lu, Q. Pan, and W. Jing, “A novel
distributed queuing-based random access protocol for
Narrowband-IoT,” IEEE International Conference on
Communications (ICC), Shanghai, China, pp. 1–7, 2019.

[5] W. Wu, Y. Li, Y. Zhang, B. Wang, and W. Wang,
“Distributed Queueing Based Random Access Protocol for
LoRa Networks,” IEEE Internet of Things Journal, vol. 7,
no. 1, pp. 763–772, 2020.

[6] A. Laya, C. Kalalas, F. Vazquez-Gallego, L. Alonso, and J.
AlonsoZarate, “Goodbye, aloha!” IEEE access, vol. 4, pp.
2029–2044, 2016.

[7] P. Tuset-Peiro, F. Vazquez-Gallego, J. Alonso-Zarate, L.
Alonso, and X. Vilajosana, “LPDQ: A self-scheduled
TDMA MAC protocol for one-hop dynamic low-power
wireless networks,” Pervasive and Mobile Computing, vol.
20, pp. 84–99, 2015.

[8] F. Vazquez-Gallego, J. Alonso-Zarate, P. Tuset-Peiro, and
L. Alonso, “Energy analysis of a contention tree-based
access protocol for machine-to-machine networks with
idle-to-saturation traffic transitions,” IEEE International
Conference on Communications (ICC) 2014, Sydney,
Australia, pp. 1094–1099, 2014.

[9] A. Samir, M. M. Elmesalawy, A. S. Ali, and I. Ali, “An
Improved LTE RACH Protocol for M2M Applications,”
Mobile Information Systems, vol. 2016, 2016.

[10] R. G. Cheng, Z. Becvar, and P. H. Yang, “Modeling of
Distributed Queueing-Based Random Access for Machine
Type Communications in Mobile Networks,” IEEE
Communications Letters, vol. 22, no. 1, pp. 129–132,
2018.

[11] C. Yoon, “Distributed queuing with preamble grouping for
massive IoT devices in LTE random access,” International
Conference on Information and Communication

EAI Endorsed Transactions on
Internet of Things

07 2020 - 10 2020 | Volume 6 | Issue 23 | e4

Statistical Analysis of a Distributed Queuing Random Access Protocol in a Massive Communication Environment

13

Technology Convergence (ICTC), Jeju Island, South
Korea, pp. 103–105, 2016.

[12] A.-T. H. Bui, C. T. Nguyen, T. C. Thang, and A. T. Pham,
“Free Access Distributed Queue Protocol for Massive
Cellular-based M2M Communications with Bursty
Traffic,” IEEE 88th Vehicular Technology Conference
(VTC-Fall), Chicago, USA, pp. 1–5, 2018.

[13] K. Lee and J. U. W. Jang, “An Efficient Contention
Resolution Scheme for Massive IoT Devices in Random
Access to LTE-A Networks,” IEEE Access, vol. 6, pp.
67118–67130, 2018.

[14] H. A. T. Bui, C. T. Nguyen, T. C. Thang, and A. T. Pham,
“A Comprehensive Distributed Queue-based Random
Access Framework for mMTC in LTE/LTE-A Networks
with Mixed-Type Traffic,” IEEE Transactions on
Vehicular Technology, vol. 68, no. 12, pp. 12107– 12120,
2019.

[15] A. Marchiori, “Maximizing coverage in low-power wide-
area IoT networks,” IEEE International Conference on
Pervasive Computing and Communications Workshops
(PerCom Workshops), Kona, Big Island, HI, USA, pp.
467–472, 2017.

[16] J. Yuan, H. Shan, A. Huang, T. Q. Quek, and Y. D. Yao,
“Massive machine-to-machine communications in cellular
network: Distributed queueing random access meets
MIMO,” IEEE Access, vol. 5, pp. 2981– 2993, 2017.

[17] W. Xu and G. Campbell, “A near perfect stable random
access protocol for a broadcast channel,” IEEE
International Conference on Communications, Chicago,
IL, USA, 1992. ICC’92, Conference record,
SUPERCOMM/ICC’92, Discovering a New World of
Communications., pp. 370–374, 1992.

[18] H.-J. Lin and G. Campbell, “PDQRAP-Prioritized
Distributed Queueing Random Access Protocol.”
Proceedings of 19th Conference on Local Computer
Networks, Minneapolis, MN, USA, pp. 82–91, 1994.

[19] C.-T. Wu and G. Campbell, “Extended DQRAP
(XDQRAP) A cable TV protocol functioning as a
distributed switch,” Proc.1st International Workshop on
Community Networking, San Fransisco, USA. Computer
Communication Review, vol. 23, no. 4, pp. 270–278, 1994.

[20] J. Alonso-Zarate, C. Verikoukis, E. Kartsakli, A. Cateura,
and L. Alonso, “A near-optimum cross-layered distributed
queuing protocol for wireless LAN,” IEEE Wireless
Communications, vol. 15, no. 1, pp. 48–55, 2008.

[21] L. Alonso, R. Agust´ı, and O. Sallent, “A near-optimum
MAC protocol based on the distributed queueing random
access protocol (DQRAP) for a CDMA mobile
communication system,” IEEE Journal on Selected Areas
in Communications, vol. 18, no. 9, pp. 1701–1718, 2000.

[22] B. Otal, L. Alonso, and C. Verikoukis, “Towards energy
saving wireless body sensor networks in health care
systems,” IEEE International Conference on
Communications Workshops (ICC), Cape Town, South
Africa, pp. 1–5, 2010.

[23] J. Alonso-Zarate, C. Verikoukis, E. Kartsakli, A. Cateura,
and L. Alonso, “Saturation throughput analysis of a
passive cluster-based medium access control protocol for
ad hoc wireless networks,” IEEE International Conference
on Communications, Beijing China, pp. 2348–2352, 2008.

[24] J. Alonso-Zarate, C. Verikoukis, E. Kartsakli, and L.
Alonso, “A novel near-optimum medium access control
protocol for a distributed cooperative ARQ scheme in
wireless networks,” IEEE 19th International Symposium
on Personal, Indoor and Mobile Radio Communications,
Cannes, France, pp. 1–5, 2008.

EAI Endorsed Transactions on
Internet of Things

07 2020 - 10 2020 | Volume 6 | Issue 23 | e4

