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Abstract 

Learning to navigate in 3D environments from raw sensory input is an important step towards bridging the gap between 

human players and artificial intelligence in digital games. Recent advances in deep reinforcement learning have seen 

success in teaching agents to play Atari 2600 games from raw pixel information where the environment is always fully 

observable by the agent. This is not true for first-person 3D navigation tasks. Instead, the agent is limited by its field of 

view which limits its ability to make optimal decisions in the environment. This paper explores using a Deep Recurrent Q-

Network implementation with a long short-term memory layer for dealing with such tasks by allowing an agent to process 

recent frames and gain a memory of the environment. An agent was trained in a 3D first-person labyrinth-like environment 

for 2 million frames. Informal observations indicate that the trained agent navigated in the right direction but was unable to 

find the target of the environment. 
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1. Introduction

Teaching an agent to navigate in a 3D digital game 

environment using only raw sensory input rather than search 

algorithms is a stepping stone towards bridging the gap 

between human players and artificial intelligence in digital 

games. Artificial intelligence in commercial games is often 

programmed using state machines, search algorithms, and 

hand-crafted features, whereas recent research in artificial 

game intelligence is more focused on machine learning 

techniques like evolutionary strategies and reinforcement 

learning [1]. Using these machine learning techniques can 

lead to more advanced and diverse behaviour for game 

agents, making them more believable. Learning behaviour 

through raw sensory input makes it easier for development 

teams to implement a general AI while players might find 

playing against less predictable agents more engaging. 

Reinforcement Learning has initially made it possible to 

solve a large variety of tasks through hand-crafted features 

and state representations, often limited by small state or 

action spaces [2, 3], with Q-learning being the dominating 

Reinforcement Learning technique [4, 5]. Recent advances 

in deep learning have led to Deep Q-Networks (DQN) 

which have been successful in playing Atari 2600 games [6, 

7] and playing simple 3D first-person shooter (FPS)

scenarios [8] from raw sensory input. This is known as end-

to-end Reinforcement Learning. 

A limitation of DQN, however, is that it assumes that the 

environment is fully observable, meaning that the agent has 

full knowledge about the state of the game at any moment. 
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This assumption is not true for most first-person games, in 

which both players and agents observe the environment 

from a limited first-person perspective. 

To overcome the problem of partial observability, the 

agent needs to gain a memory and remember previous 

states. One approach is to stack the last k frames and feed 

them into the network at the same time [7]. A technique that 

has been used to handle longer temporal context in time 

series is to introduce recurrent connections in the network. 

This was done by [9], who used a Deep Recurrent Q-

Network (DRQN) with a Long Short-Term Memory 

(LSTM) layer to estimate the Q-function and play Atari 

2600 games with partial observability. A DQN for 

navigating and a DRQN for action selection was used by 

[10] to achieve human-level play in a 3D FPS deathmatch 

scenario. The Asynchronous Advantage Actor-Critic (A3C) 

algorithm together with an LSTM was used by [11] to train 

an agent to navigate in randomly generated 3D maze 

environments only from raw visual input. A stacked LSTM 

network with an adaptation of the A3C algorithm was used 

by [12] to teach an agent to navigate in complex 3D maze 

environments with dynamic elements. 

In the present effort, we explore using a DRQN with an 

LSTM layer for navigating in 3D environments where single 

observations can be very similar at different points of the 

environment if not supported by a memory of previous 

observations. The agent was implemented and tested in a 3D 

FPS navigation task with partial observability. The model 

was tested in the ViZDoom scenario My Way Home, using 

the API developed by [8].  

In this paper, the background for DRQN will first be 

presented. Then the model and implementation of the 

present approach will be presented. We will conclude with 

some observations of the agent’s behaviour in the ViZDoom 

scenario. 

2. Background

Reinforcement Learning [5] is a Machine Learning 

technique in which an agent deals with learning a policy for 

behaving in an environment through trial-and-error 

interaction with the environment. At each interaction, the 

agent observes a state s from the environment, performs an 

action a according to its policy π, and receives a reward r 

from the environment and observes a new state s’. The goal 

of the agent is to find a policy that maximizes its expected 

return. Q(s,a) 

Q-Learning [4] is a model-free off-policy algorithm that 

estimates the action-value function, the value of action a 

given state s, by iteratively updating the Q-values towards 

the observed reward r plus the maximum Q-value of the 

resulting state s’. The tabular Q-Learning update is then: 
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where 𝛼 is the learning rate of the update and γ the discount 

factor weighting future rewards. 

Storing an estimate for each state-action pair is not 

efficient for domains with large or continuous state spaces, 

such as FPS games. DQN [6] deals with this problem by 

using a neural network as a non-linear function 

approximator parameterized by weights and biases θ. Now 

the parameters θ are updated instead of the individual 

Q(s,a)-values. The goal is to minimize the average of the 

loss: 
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where t is the current time-step and y is the update target 
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The network parameters are updated by following the 

gradient of the loss function: 
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Using a neural network as a function approximator for the 

Q-values has shown unstable behaviour and might lead to 

divergence [13]. One step for overcoming this problem is to 

use experience replay [14] in which the agent stores 

transitions in a replay memory and then samples them 

uniformly during training. This breaks correlation between 

successive samples. Another step is to use a target network, 

identical in structure to the main network, to estimate the Q-

values. The parameters of the target network can either be 

updated gradually towards the parameters of the main 

network, or frozen in time and updated only every ith 

iteration. The update target then becomes 
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  where θ’t are the biases and 

weights of the frozen network at timestep t. A final step for 

stabilization is to use an adaptive learning rate method such 

as RMSProp [15]. These steps were all used by [7] and 

proved to stabilize training of a DQN. 

Reinforcement Learning is often considered as a Markov 

Decision Process (MDP) in which the agent acts in the 

environment based on states that hold the Markov property 

[5]. This assumption does not hold in many tasks. This is 

especially true in a limited first-person view in a 3D world. 

In this case, the agent partially observes the environment 

and the problem is then considered a Partially Observable 

Markov Decision Process (POMDP). A Deep Recurrent Q-

Network (DRQN) was introduced by [9] to deal with the 

problem of partial observability. They showed that 

introducing recurrence to the network was better at 

approximating the actual Q-values based on an observation 

o. It was shown by [10] that a DRQN could be used to play

3D FPS games at a high level by using an LSTM layer. The 

LSTM is a recurrent neural network that is built on memory 

cells that are able to process time series with the help of an 

input, output, and forget gate [16]. LSTMs are especially 

effective at modeling long term dependencies. This applies 

in games specifically when information was present in 

previous frames but not in the current frame.  
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Figure 1. The architecture of the neural network. The network takes a down-sampled RGB image as input and 
propagates it forward through three convolutional layers and an LSTM layer with 768 hidden units to output 32 

action values. Layer 3’ is the neurons from layer 3 flattened into one vector of length 768.

3. Experiment

3.1 Model 

The model presented in this paper is a DRQN and is based 

on the DQN model by [7]. The main difference is that the 

first fully connected layer following the convolutional layers 

[17] of the DQN model is replaced by an LSTM layer, and 

the network is only fed one input image at a time, rather 

than four.  

The complete network architecture is shown in Figure 1. 

From the game, a frame with the original 400x225x3 

resolution is downsampled to a 45x80x3 RGB image that 

serves as the input to the neural network. The input is 

propagated forward through three hidden convolutional 

layers, and the third convolutional layer is then flattened and 

propagated through one LSTM layer before being passed to 

the output layer in which each unit assigns a Q-value to a 

different action. 

The first convolutional layer has a kernel of size 8x8, a 

stride of size 4x4, no padding, and 32 feature maps and 

applies a ReLU [18] activation function. The second 

convolutional layer has a kernel of size 4x4, a stride of size 

2x2, no padding, and 64 feature maps and applies a ReLU 

activation function. The third convolutional layer has a 

kernel of size 3x3, a stride of size 1x1, no padding, and 64 

feature maps and applies a ReLU activation function. The 

third convolutional layer is then flattened and fed into an 

LSTM layer with 768 hidden units. The output of the LSTM 

layer is finally fed into the output layer, which maps one 

value to each possible action.  

3.2 Training 

The agent was interacting with the environment following 

an ε-greedy policy. With ε probability, pick a random 

action, otherwise, pick the action with the highest associated 

Q-value. The ε-greedy policy is popular policy for dealing 

with the exploration-exploitation trade-off in reinforcement 

learning [7, 10]. The ε value used in this study was linearly 

decayed from 1 to 0.1 over 200k actions and then frozen at 

0.1. 

The agent used a frame-skip technique in which a chosen 

action was repeated for k frames and, as a result, 

observations were received and rewards computed every 

k+1 frames from the environment. The present study used a 

frame skip of 4 as in [7, 8, 10]. 

The hidden state of the LSTM was initialized by zero at 

the beginning of every episode and updated after each 

selected action by the agent. Transitions by the agent 

(s,a,r,s’) were stored in a replay memory. The replay 

memory stored the last 1 million transitions by the agent. 

The parameters of the main network were updated once 

for every four selected actions. The parameters were 

updated using the RMSProp [15] optimization algorithm 

with a learning rate of 0.0025. The update followed the 

Bootstrapped Random Updates method [9], where a 

minibatch of size 32 of experiences, each experience 

consisting of 8 timesteps, were selected uniformly from the 

experience replay. The target values were computed by the 

target network. The parameters of the target network were 

gradually updated towards the parameters of the main 

network by a factor 0010.  after each network update: 

ttt ')('   1   (4) 

3.3 Scenario 

The model was trained and tested in the ViZDoom 

environment My Way Home [8]. The goal of the agent was 

to learn to navigate a labyrinth-like environment and find a 

green vest in one of the rooms. The map was a series of 

interconnected rooms and one corridor with a dead end. 

Each room had a different colour. The agent was spawned in 

a random room facing a random direction and the vest was 

always in the same room. The agent had five available 

binary buttons: turn left, turn right, move forward, move left, 

move right. The agent thus had 32 different actions – one for 

each possible combination of buttons. The agent received a 

reward of 1 for reaching the vest, and otherwise a reward of 

-0.0001 for every timestep. Each episode ended after 2100 

environment steps or when the agent reached the vest. 

OpenAI Gym [19] has a wrapper for the My Way Home 
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environment2 and they define the scenario as solved if the 

agent reaches an average reward of 0.5 or more over 100 

consecutive episodes. 

The agent of the present study was trained and evaluated 

for 200 epochs. Each epoch consisted of 10k training steps. 

A training step was defined as a step where the agent picked 

an action. The agent was evaluated for 10 episodes after 

each ended epoch. The agent followed a greedy policy for 

testing in which the perceived best action was always 

chosen. The training and testing was completed in 15 hours 

on three NVIDIA Titan X Pascal GPUs. 

4. Results and discussion

Informal observations in the video of the gameplay3.

indicate that the agent learned how to find doors and 

navigate through the corridors. It also indicates that the 

agent had an implicit goal of finding a corner in the corridor 

next to the life vest, rather than the explicit goal of finding 

the life vest. This indicates that the agent had a general idea 

of where to go to get a good reward, but did not know the 

exact location of the reward. 

A reason for why the agent did not find the vest is likely 

that the environment is rather complex, and that the agent 

did not get to explore it enough. Indeed, the exploration rate 

ε of the present study was decayed very fast compared to 

[7], leading to the agent not discovering the reward of the 

life vest enough to learn to go there. The exploration rate 

was set low to account for the few training steps to promote 

the agent exploiting its knowledge of the environment for 

most of training. 

A big limitation of the present study was that the agent 

was trained for very few steps compared to [7, 10, 12]. The 

video of the agent suggesting that the agent learned to 

navigate the environment indicates that the agent did 

improve and may have found a better policy given more 

training time and possibly complete the goal. It would 

therefore be interesting to train the agent for longer to see if 

this assumption is indeed correct. 

Another future direction of research would be to evaluate 

the DRQN model against a standard DQN model used by 

[10], as well as an A3C model used by [12].  

5. Conclusion

In this work, we proposed a Deep Reinforcement Learning 

model based on a Deep Recurrent Q-Network for teaching 

an autonomous agent to navigate in a 3D environment from 

a first-person perspective with partial observability of the 

environment. Our experiment indicates that the agent might 

not have been trained long enough to solve the complex 

challenge, but that it was able to learn how to find doors and 

pass through corridors. Our work supports literature [7, 12] 

2 https://gym.openai.com/envs/DoomMyWayHome-v0 
3 https://youtu.be/GUsnVaL4Y54 

in end-to-end reinforcement learning, indicating that agents 

can learn to act in an environment from raw sensory input. 

We see a promising future for using reinforcement learning 

to model agent behaviour in commercial games but also 

acknowledge with our results that there is still some more 

research to be done within the field. 
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