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ABSTRACT: In recent years, with the rapid development of the Internet of Things, smart
homes have seamlessly integrated into our daily lives. People are increasingly seeking
features such as human-computer interaction, remote control, and self-regulation as
essential components of their smart home experience. As a technology capable of
expediting the integration and advancement of emerging technologies, such as Artificial
Intelligence (AI), digital twins have emerged as a pivotal driver for digital transformation
globally. A digital twin, characterized by its multi-disciplinary, multi-physical, multi-scale,
and multi-probability simulation process, harnesses a wealth of data sources, including
physical models, sensor updates, and operational history. Notably, it has transcended its
original application in thermostatic greenhouses and has become an integral part of
intelligent temperature and humidity control systems in people's homes, providing a more
convenient and intelligent self-control experience by seamlessly integrating advanced
technology and data analysis.
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1 INTRODUCTION

The Internet of Things (IoT) represents a significant step towards revolutionizing the modern
world and stands as a notable achievement in the realm of artificial intelligence [1]. While IoT
technology is rooted in the inception of the Internet, there exist distinct differences between the
two. In contrast to traditional Internet terminal servers, the foundation for the rapid advancement
of the IoT lies in the utilization of sensors and intelligent hardware. An IoT ecosystem
encompasses web-enabled smart devices that incorporate systems comprising processors,
sensors, and communication hardware, enabling them to collect, transmit, and respond to the
data they gather [2]. The latest generation of smart home products leverages IoT technology to
immerse themselves in the IoT landscape, continually enhancing their technical capabilities
through deep learning. This evolution significantly augments the interconnectivity between
smart home devices and systems.

IoT greatly influences our daily lives [3]. With the rapid development of digital technologies,
especially in computer science, communication, networking, and control, smart city initiatives
have transformed urban lifestyles [4-6]. Smart home products, characterized as innovative
intelligent devices, have become essential in optimizing user experiences and enhancing quality
of life. These products enable users to interact via voice control, mobile apps, and more for
remote device management and energy efficiency. Design considerations should encompass

ADDT 2023, September 15-17, Xian, People's Republic of China
Copyright © 2024 EAI
DOI 10.4108/eai.15-9-2023.2340892



user needs, habits, and human-computer interactions to align with market demand. Key
technologies include intelligent sensors, wireless communication, big data analytics, and M2M
tech. The future of smart homes will involve collaboration among research groups and evolving
expertise, necessitating sustainable human-machine interaction mechanisms. A 2020 report by
Strategy Analytics projected global spending on smart home hardware, services, and installation
to reach $89 billion in 2020, rising to $120 billion by 2021, and maintaining a 14% CAGR to
reach $175 billion by 2025. It anticipates that 19% of households, equivalent to nearly 390
million homes worldwide, will feature at least one type of smart home system by 2025 [7].

The growing complexity of production in a competitive market is driving the integration of the
physical and digital realms. Simultaneously, increasing practical demands for industrial
products challenge the digital model's ability to interact with physical objects. This led to the
emergence of the digital twin, sparking a transformative industry revolution [8,9]. Digital twin
technology involves digitizing an object, simulating its real-world behavior, and virtually
modeling products, manufacturing processes, and entire factories. In the era of the Internet of
Everything, this design model plays a pivotal role. Achieving interaction between physical and
digital entities requires multiple processes, fundamental supporting technologies, and
evolutionary stages to replicate physical entities in the digital realm. When combined with
sensory data acquisition, big data analytics, AI, and machine learning, digital twins enable
monitoring, diagnostics, prognostics, and optimization [10,11]. It's important to note that digital
twin builds upon existing technologies [12].

This paper commences with an exploration of the Internet of Things, its development trajectory,
and future prospects. It proceeds to delve into the current applications of smart homes, defining
the concept of smart homes and digital twins. Additionally, it elucidates the interplay and
integration between smart homes and digital twins, elucidates various smart home use cases,
and highlights the pivotal role played by digital twins in the context of smart homes. The paper
then transitions to a detailed examination of a temperature and humidity control system, offering
insights into its specific architecture, the distinctive functions of its four modules, applicable
modeling and calculation techniques, and how to interpret and utilize the results of data analysis.
Furthermore, it presents a greenhouse case study, culminating in reflections on the system,
optimization strategies, potential refinements, and a conclusive summary.

2 SMART HOME SYSTEM AND DIGITAL TWIN

A smart home entails the utilization of Internet of Things (IoT) technology to establish internet
connectivity for various smart and household devices, enabling intelligent and automated home
management and control. Through sensors, wireless communication, and intelligent control
systems, smart homes empower users to achieve intelligent control and automated operation of
household equipment, encompassing lighting, security, temperature, audio, TV, home
appliances, and more.

A digital twin is a virtual entity serving as a digital counterpart to a physical entity, be it a device,
product, process, or any other tangible object. Drawing from real-time sensor data and other
relevant sources, it replicates and represents the performance and conduct of these physical
entities, offering opportunities for testing, simulation, optimization, and monitoring. Digital
twins play a pivotal role in supporting physical entities across their entire lifecycle, facilitating



more efficient, sustainable, and intelligent operations and maintenance. The connection between
smart homes and digital twins can be chiefly attributed to four key aspects.

Data Integration and Analysis: Smart homes leverage the Internet of Things to interconnect
various devices, generating a wealth of sensor data. This data serves as a foundation for
constructing and continuously updating digital twins, facilitating simulations and optimizations
of home devices, systems, and environments.

Prediction and Optimization: The digital twin model enables the prediction and optimization of
smart home operations. Through simulations and analyses of diverse situations and scenarios,
crucial factors like energy consumption, safety, and comfort within smart homes can be
comprehensively understood and enhanced.

Remote Monitoring and Control: Digital twins facilitate remote monitoring and control of smart
homes by providing real-time data feedback. Users can employ the digital twin to gain insights
into the status, performance, and energy usage of home devices, enabling them to make
corresponding adjustments and controls.

Feedback Loop and Improvement: Actual usage data and information from smart homes can be
fed back into the digital twin for continuous model updates and enhancements. This iterative
process serves to optimize smart home performance, energy efficiency, and user experience
consistently.

In conclusion, a strong connection exists between smart homes and digital twins. Leveraging
digital twin technology, smart homes can undergo ongoing optimization and enhancements,
ultimately reaching a heightened level of intelligence, automation, and sustainable development.
The aftermath of the COVID-19 pandemic has intensified the demand for more convenient
situational experience designs, with increased interest in product self-perception and regulation.
Figure 1 illustrates a typical scenario in a smart home environment. This paper's focus lies in
the design of a temperature and humidity control system. Through the sensing of air humidity,
the humidifier autonomously determines the need for humidification and adjusts temperature
and humidity levels accordingly.



Figure. 1 A typical scenario in smart home

3 DT-BASED SMART HOME SYSTEM FRAMEWORK

Digital twin technology enables the interactive mapping of physical and digital spaces. It
encompasses a comprehensive application of information technologies, including perception,
calculation, modeling, and more. This technology is employed to describe, diagnose, predict,
and make decisions regarding physical spaces through software-defined processes, facilitating
the interactive mapping between physical and digital realms. The temperature and humidity
control system can be broadly categorized into three main components, as depicted in Figure 2.

Figure. 2 The structure of temperature and humidity control system
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Data forms the foundational layer, while the model serves as the central component, and
software acts as the facilitating platform. The physical entity dynamically adjusts itself by
transmitting principles and data to the model. Simultaneously, the model undergoes dynamic
adjustments through the modeling process. Concurrently, information is relayed to the software,
which executes the model algorithm, algorithmic code, and software coding. Once the software
processing is complete, instructions are transmitted back to the physical entity, achieving self-
regulation.

The temperature and humidity control system outlined in this paper can be segmented into five
distinct layers: the application layer, model layer, data layer, physical layer, and user interface
layer, as illustrated in Figure 3.

Figure. 3 Five parts of the control system

Physical Layer: The sensor layer serves as the system's foundation, continuously monitoring
real-time greenhouse temperature and humidity. It encompasses multiple temperature and
humidity sensors strategically placed throughout the greenhouse. These sensors gather
environmental data and transmit it to the upper-level system for further processing.

Model Layer: The digital twin model layer stands as the system's core component, constructing
a virtual greenhouse model based on sensor data and historical records. This model utilizes
principles of physics and machine learning algorithms to meticulously simulate a greenhouse's
structure, materials, heat conduction, and humidity distribution within a digital environment.
The digital twin model possesses the capability to learn from and predict changes in the
greenhouse environment, offering real-time forecasts and optimization strategies for
temperature and humidity control.

Data Layer: Responsible for data collection, processing, and organization, this layer compiles
information from sensors. The data acquisition and processing layer employ cutting-edge
technologies and algorithms to dissect sensor data, performing operations such as pre-



processing, filtering, and calibration to ensure data precision and reliability.

Application Layer: The control layer formulates temperature and humidity control strategies
based on the digital twin model's predictions and predefined targets. It employs control
algorithms and logic to adjust greenhouse actuators—such as heaters, coolers, humidifiers, or
dehumidifiers—according to forecasted data, ultimately achieving the desired temperature and
humidity conditions. This layer also remains receptive to real-time data, enabling continuous
adjustments and feedback control to maintain the environment within the target range.

User Interface Layer: Offering a user-friendly interface, this layer facilitates interaction with the
system. Users can monitor and control the temperature and humidity control system via a
graphical user interface (GUI) or a mobile application. This interface empowers users to view
temperature and humidity data, set target values, monitor system status, and execute manual
adjustments and operations.

By seamlessly integrating these layers, the digital twin-based temperature and humidity control
system excels in precise prediction and optimal control of temperature and humidity. It provides
an ideal environment for plant growth and yield enhancement. Furthermore, the system exhibits
flexibility and scalability, capable of customization and expansion according to specific
requirements.

Compared with the traditional temperature and humidity control system, the temperature and
humidity control system based on digital twin has its own advantages and characteristics in
controlling temperature and humidity, reducing energy consumption and strengthening user
experience. The digital twin system collects the temperature and humidity data in the
greenhouse in real time, and analyzes and predicts it with the virtual model. This allows the
system to control temperature and humidity parameters more precisely to meet the growth needs
of crops. In addition, the digital twin system can optimize the energy consumption of
greenhouses based on temperature and humidity data, crop growth models and energy efficiency
algorithms. For example, in temperature control, the system can be intelligently adjusted based
on predictive models and real-time data, reducing unnecessary heating or cooling operations
and thus reducing energy consumption. Moreover, the digital twin system can infer the patterns
and trends of temperature and humidity changes and the response of crops to temperature and
humidity through algorithms and models. Based on this information, the system can
automatically adjust the temperature and humidity control parameters, such as ventilation speed,
heating intensity, humidity control, etc., to maintain the best growing environment. This can not
only reduce the need for manual intervention, but also maintain stable temperature and humidity
conditions, reducing the risk of human error. Finally, the digital twin is also more user-friendly,
and users can remotely access the system through mobile devices or computers to monitor the
temperature and humidity data in the greenhouse and adjust it as needed. This provides a
convenient operation and management mode, and improves the user's experience and decision-
making efficiency.

In general, the temperature and humidity control system based on the digital twin has the
advantages of higher accuracy, real-time, intelligent control, visual management and energy
efficiency, which can provide a more reliable, efficient and intelligent temperature and humidity
control solution, which helps to improve the yield and quality of crops, reduce energy
consumption and improve user experience.



3.1 Modeling

Digital twins employ diverse modeling methods for creating and representing digital
counterparts of physical entities. Several common modeling techniques include:

Geometric Modeling: Geometric modeling, one of the fundamental and prevalent methods in
digital twins, employs geometric shapes and structures to portray the appearance and form of
physical entities. It may utilize computer-aided design (CAD) techniques or parametric
modeling tools to craft detailed three-dimensional models, ensuring highly precise geometric
representations.

Physical Modeling: Physical models encompass the physical properties and behaviors of a
physical entity, adhering to physical laws, material properties, and equations of motion. These
models leverage mathematical equations, physical simulations, and simulation tools to express
and simulate the actions and responses of physical entities.

Statistical Models: Statistical models utilize statistical analysis methods and machine learning
techniques to deduce the characteristics and behavior of physical entities. By analyzing
extensive data and historical records, these models identify and model relationships and
regularities among entities. Statistical models are instrumental in simulating and predicting the
performance, failure risk, and optimization potential of physical entities.

Rule-Based Models: Rule-based models employ rules and logical expressions to describe and
govern the behavior of physical entities. Rooted in expert knowledge and experience, these
models utilize rules and conditional statements to guide entity operations and decisions,
facilitating the development of automatic control policies and fault-handling rules.

Neural Network Models: Neural network models, inspired by the structure and functioning of
the human brain, constitute an artificial intelligence technique. These models can be trained and
learn to automatically identify features and patterns from data, subsequently applying them to
model and predict complex nonlinear systems.

These modeling methods can be employed individually or in tandem, depending on specific
application requirements and entity characteristics. Digital twin systems typically integrate a
variety of modeling methods to achieve comprehensive digital modeling and simulation of
physical entities.

3.2 Intelligent Computation

In the realm of digital twins, numerous intelligent computing and data analysis methods are
available for processing and analyzing data to facilitate model construction, optimization, and
prediction. Here are some common methods in this domain:

Machine learning is a method capable of learning from data and automatically extracting
patterns and regularities. In digital twins, machine learning algorithms can be used to train
models for recognizing and predicting the behavior of physical systems. For example,
supervised learning can be employed to build predictive models, while unsupervised learning is
suitable for data clustering and anomaly detection. Deep learning, a branch of machine learning,
focuses on using deep neural networks for pattern recognition and analysis. In digital twins,
deep learning can be applied to process complex data on a large scale, such as images and sounds.
It is utilized for tasks like feature extraction, image recognition, speech recognition, and others.



Data mining is the process of automatically discovering valuable information and patterns in
large data sets. In digital twins, data mining methods can be used to analyze and uncover hidden
relationships and trends in data, supporting system optimization and decision-making processes.
It can be applied to tasks including clustering, classification, and association rule mining. Time
series analysis is an analytical method designed to process data arranged in chronological order.
Within digital twins, time series analysis is employed to model and predict historical data for
physical systems. It can be applied to tasks like seasonal analysis, trend analysis, cyclical pattern
recognition, and more. Multimodal data analysis involves the fusion and analysis of different
types of data, such as structured data, images, and text. In digital twins, multimodal data analysis
can synthesize data from multiple sources to obtain comprehensive and accurate insights into
the characteristics and behavior of physical entities.  Optimization methods are employed to
identify the best or optimal solutions. In digital twins, these methods are used to optimize the
design and operating parameters of the physical system to achieve optimal performance,
efficiency, and safety.

In digital twins, data preprocessing is a very important step in processing data, which can clean,
filter, and repair errors and outliers in the data. Common data preprocessing methods include
smoothing, interpolation, denoising and normalization. These methods can improve the quality
and accuracy of data and provide a reliable basis for subsequent data analysis and control. The
other is statistical analysis, one of the commonly used methods in digital twins, which can infer
the distribution and correlation of data through statistical description of data, probability model
fitting and hypothesis testing. Statistical analysis can be used to analyze the distribution
characteristics, correlation and possible anomalies of temperature and humidity data to provide
a basis for subsequent control decisions.

These intelligent computing and data analysis methods can be selectively combined based on
specific problem requirements and data characteristics. By applying these methods, digital twins
can detect patterns within large data sets, predict future trends, and provide insights and
recommendations that support decision-making and optimization processes.

Combining artificial intelligence and machine learning techniques to optimize temperature and
humidity regulation is mainly achieved through the following steps. First, data related to
temperature and humidity regulation is collected, including sensor data, environmental
parameters, and operational data of the regulation system. The second step is feature engineering,
which selects the appropriate features to describe the state of the temperature and humidity
regulation system based on domain knowledge and experience. Features may include current
temperature and humidity values, time information, statistical characteristics of historical data,
and other relevant sensor data. Then, according to the nature of the problem and the
characteristics of the data, the appropriate machine learning algorithm or model is selected. Then
there is the training and evaluation of the model. The selected machine learning model is trained
using historical data and the performance of the model is evaluated using evaluation metrics.
Common evaluation indicators include mean square error (MSE), mean absolute error (MAE)
and correlation coefficient (R-squared). By iterating and tuning the model, the prediction
accuracy and generalization ability of the model are improved. Finally, a trained machine
learning model is combined with real-time sensor data to predict future trends in temperature
and humidity. And continuous monitoring and feedback adjustment system.



3.3 System Optimization

To enhance the efficiency and performance of a digital twin-based temperature and humidity
control system, consider the following recommendations:

Data Accuracy and Quality: Ensuring the accuracy and consistency of sensor data is crucial.
Employ high-quality sensors, regularly perform calibration and maintenance, and implement
data quality control algorithms to eliminate abnormal data. Additionally, explore redundant
monitoring using multiple sensors to enhance data reliability.

Model Improvement and Calibration: Continuous improvement and calibration of the digital
twin model are essential. Utilize actual monitoring data and historical records to regularly
update and enhance the model, ensuring it accurately represents the greenhouse's performance
and changes. Leverage machine learning and optimization algorithms to boost model accuracy
and predictive capabilities.

Optimization of Prediction and Control Algorithms: Tailor prediction and control algorithms to
the specific temperature and humidity control requirements. Consider incorporating machine
learning algorithms, fuzzy control, PID control, or other methods that offer flexibility to adapt
to varying conditions and targets.

Energy Efficiency Optimization: Aim for environmental protection and energy conservation by
optimizing energy consumption within the system. Analyze historical data and model
predictions to determine the most effective energy supply strategy and operational parameters.
This may involve adjusting heating and cooling systems' timing and intensity in response to
external meteorological conditions.

Real-Time Monitoring and Remote Control: Enhance system flexibility and responsiveness by
implementing real-time monitoring and remote control capabilities. Employ Internet of Things
(IoT) technology and remote communication interfaces to monitor and control temperature and
humidity systems, even when not physically present in the greenhouse. This enables real-time
adjustments and management.

Fault Detection and Maintenance: Early detection and handling of faults within the temperature
and humidity control system are critical. Regularly monitor system performance indicators and
key parameters to identify potential issues promptly. Implement appropriate maintenance and
repair measures to ensure system reliability and stability.

These recommendations collectively contribute to optimizing the digital twin-based temperature
and humidity control system's efficiency and performance. Depending on your specific
circumstances and requirements, additional tailored optimization measures may also be
necessary to address unique challenges and objectives.

4 AN EXAMPLE ABOUT GREENHOUSE VEGETABLE

Suppose a vast greenhouse dedicated to cultivating vegetables and plants, as depicted in Figure
4. To optimize the ideal growth conditions within this greenhouse, we've implemented a cutting-
edge temperature and humidity control system powered by digital twin technology.

Our temperature and humidity control system is equipped with an array of sensors strategically



positioned throughout the greenhouse, enabling real-time monitoring of environmental variables
such as temperature and humidity. Leveraging the capabilities of digital twin technology, the
system generates a virtual replica of the greenhouse. This digital model intricately simulates the
greenhouse's architectural layout, material composition, heat conduction mechanisms, and
humidity dispersion patterns. It accomplishes this by meticulously aligning and calibrating
current sensor data with historical data gleaned from these sensors.

At the heart of this system lies the controller, intricately linked to the digital twin. This pivotal
component processes the sensor-derived data and, upon meticulous comparison with the digital
twin, leverages the model's predictive prowess to make informed decisions. The controller
interfaces with an array of actuators, each serving as a mechanism directly controlled by the
controller to manage temperature and humidity within the greenhouse. These actuators may
include devices such as heaters, coolers, humidifiers, or dehumidifiers, each contributing to the
system's comprehensive control capabilities.

The workflow of the entire system encompasses five crucial steps, each seamlessly following
the other. The first step entails data acquisition, followed by digital twin model training,
proceeding to control decision-making, then actuator operation, and culminating with
monitoring and adjustment.

In the initial phase, temperature sensors and humidity sensors diligently capture real-time
environmental data within the greenhouse. This data is then diligently transmitted to the
controller. Utilizing both the current sensor data and historical data, we forge a digital twin
model, meticulously training and calibrating it to perfection. This model is primed to acquire an
intricate understanding of the greenhouse's distinct characteristics, the intricacies of heat
conduction pathways, humidity distribution patterns, and more. Subsequently, this knowledge
empowers the model to proficiently predict forthcoming temperature and humidity fluctuations.

Once equipped with these predictive insights, the controller receives real-time data and
seamlessly cross-references it with the digital twin model. Leveraging the model's forecasts and
the predefined temperature and humidity thresholds, the controller adeptly formulates precise
decisions aimed at regulating the greenhouse's temperature and humidity levels. The controller
then seamlessly communicates these instructions to the actuator, which promptly activates or
deactivates the relevant devices. For instance, in the event of soaring temperatures, the controller
can deploy a cooling mechanism or an automated ventilation system to rectify the situation.
Likewise, if humidity levels dip below the desired range, the controller can swiftly initiate a
humidifier to restore optimal humidity levels.

Additionally, the temperature and humidity control system diligently conduct periodic checks
on the greenhouse's temperature and humidity. Subsequently, the digital twin model is flexibly
adjusted based on current data. This perpetual cycle of model updates and calibration serves to
continually enhance prediction precision and fine-tune control strategies to seamlessly adapt to
ever-evolving environmental conditions.

In greenhouses, temperature and humidity are key environmental parameters for the healthy
growth of cultivated crops. The traditional control method may have some problems such as
low precision and slow reaction speed, but the temperature and humidity control system based
on digital twin can provide more accurate and real-time monitoring and control. Digital twins
can provide intelligent temperature and humidity control strategies by establishing virtual



models of greenhouses, combining real-time data and algorithms. For example, parameters such
as ventilation, heating, cooling and humidity control can be automatically adjusted according to
the needs of the crop and changes in the growing environment to maintain optimal growing
conditions.

In conclusion, the digital twin-based temperature and humidity control system harnesses the
power of cutting-edge modeling and predictive technologies to deliver precise regulation of
temperature and humidity within the greenhouse. Through real-time monitoring and adaptive
adjustments, the system masterfully optimizes the growth environment for crops, subsequently
boosting yield and quality while simultaneously curbing energy consumption.

Figure. 4 A greenhouse example for growing vegetables and plants

5 CONCLUSIONS AND FUTURE WORK

The intelligent humidifier system, powered by digital twin technology, employs virtual
modeling, sensor data, and machine learning algorithms to automate and enhance the
humidification process. This system boasts several key advantages over conventional
humidification systems. Firstly, it significantly improves humidification efficiency by
leveraging digital twin technology to precisely model both the indoor environment and the
humidifier's operational state. Real-time data monitoring and analysis enable intelligent
adjustments to the humidifier's parameters, ensuring optimal humidity levels indoors. Secondly,
digital twins forecast indoor humidity and temperature fluctuations, enabling personalized and
environmentally responsive control of humidifier systems. This feature results in a more
comfortable indoor environment, alleviating dryness and discomfort. Thirdly, the system
promotes energy conservation and environmental sustainability by monitoring real-time energy
consumption and performance metrics. It optimizes energy use, reducing carbon emissions and
contributing positively to sustainable development. Finally, the abundant real-time data made
available by digital twin technology facilitates data-driven decision-making through machine
learning algorithms. By continuously improving and adapting its algorithms, the system
autonomously adjusts the humidifier's operation mode to meet specific requirements, ultimately
enhancing system performance and adaptability.
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