
The performance analysis of public key
cryptography-based authentication
Kaiqi Xiong1,∗

1University of South Florida, Tampa, Florida 33620, USA

Abstract

Several Kerberos-based authentication techniques using public-key cryptography have been proposed. Public-
key cryptography can be used to eliminate a single point failure problem in the Key Distribution Center
(KDC) and achieve better scalability. Public Key Cryptography for Cross-Realm Authentication in Kerberos
(PKCROSS) and Public Key Utilizing Tickets for Application Servers (PKTAPP, a.k.a. KX.509/KCA) are
considered two notable techniques. The latter was suggested to improve the former, but their actual
computational and communication times have been poorly understood. This paper first presents a thorough
performance evaluation of the two protocols based on analytical analysis and queueing network models. As
shown, PKTAPP does not scale better than PKCROSS. Then, this paper gives a new public key cryptography-
based group authentication technique. We show that the new technique can achieve better scalability than
PKCORSS and PKTAPP and our performance methodology is effective.

Received on 12 January 2018; accepted on 16 January 2018; published on 15 May 2018
Keywords: Security, Performance Evaluation, Complexity Analysis

Copyright © 2018 Kaiqi Xiong, licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.15-5-2018.154770

1. Introduction
There are an explosive growth in a variety of collab-
orative group services in academia and industry for
the past ten years [18]. Example applications include
video and audio conferencing, replicated servers and
databases, and in particular Web services in that
services components from several universe service
providers can be flexibly integrated into a composite
service regardless of their location, platform, and exe-
cution speed [5]. To ensure quality of services, these ser-
vice providers are required to work together. The rapid
growth in collaborative applications has heightened the
need for a reliable group communication system. With-
out group authentication, the communication system
will not be possible to be reliable.

A mature, reliable, secure network authentication
protocol, Kerberos [29], allows a client to prove its
identity to a server without sending confidential data
across the network. Partitioning of the world into
realms served by different application servers is a way
to improve the scalability of Kerberos. In each realm,

∗Corresponding author. Email: xiongk@usf.edu

Kerberos consists of a client, application servers and a
key distribution center (KDC). The client may represent
a group of business users who request services from
application servers. The KDC maintains a shared
symmetric key with every client and the application
servers in the realm. In case KDC is compromised
(i.e., a single failure), all the symmetric keys will be
divulged to the attacker and will have to be revoked.
Recovering from such a compromise requires the re-
establishment of new shared keys with the client and
the application servers in the realm. In terms of time,
effort and financial resources, it is very costly for such a
recovery.

Kerberos has been extended based on public key
cryptography since public key cryptography simplifies
the distribution of keys in Kerberos. It eliminates a
single point of failure. Integrating public key cryptog-
raphy into Kerberos represents the enhancements of
the current Kerberos standard. Several Kerberos-based
authentication techniques using public-key cryptogra-
phy have been proposed in the last decade. Among
them include Public-Key Cross Realm Authentication
in Kerberos (PKCROSS) [25] and Public-key Cryptog-
raphy for Initial Authentication in Kerberos (PKINIT)

1

Research Article
EAI Endorsed Transactions
on Security and Safety

EAI Endorsed Transactions on
Security and Safety

01 2018 - 05 2018 | Volume 4 | Issue 14 | e2

http://creativecommons.org/licenses/by/3.0/
mailto:<xiongk@usf.edu>

K. Xiong

[41]. Moreover, the scalability of network security
infrastructures is becoming a serious concern as the
explosive growth of collaborative applications such as
Web services continues unabated. Public key based
Kerberos for Distribution Authentication (PKDA) [37]
and Public Key Utilizing Tickets for Application Servers
(PKTAPP, a.k.a. KX.509/KCA) [30] and [31] have been
proposed to enhance the security and scalability of
Kerberos.

Among these Internet drafts, PKINIT is a core speci-
fication. Both PKCROSS and PKTAPP use variations of
PKINIT message types and data structures for integrat-
ing public key cryptography with Kerberos in different
authentication stages. PKTAPP was originally intro-
duced as PKDA. It implemented PKDA using the mes-
sage formats and exchanges of PKINIT. Microsoft has
adopted the Internet draft specification of PKINIT for
the support of public key cryptography in the Windows
2000 and 2003 implementations of Kerberos [17]. It has
its own protocol that is the equivalent of KX509/KCA.
There were preliminary discussions regarding an adop-
tion of a common protocol between the Kerberos WG
and Microsoft. The MIT Kerberos consortium will drive
these discussions [4]. According to Altman [3], the
standardization of PKCROSS and PKTAPP will be the
next for Kerberos and PKI integration. The Kerberos
Consortium at MIT was formed in September 2007
led by initial board members from Apple, Google,
MIT, Microsoft and Sun and sponsored by 19 leading
companies, universities and government agencies [7].
It is expected that Kerberos-based authentication and
authorization will be as ubiquitous as TCP/IP-based
networking itself. PKINIT and PKCROSS are listed
as Projects 10 and 11 in the Kerberos Consortium’s
proposal respectively [32]. As stated above, PKCROSS
and PKTAPP use variations of PKINIT message types
and data structures in the design of the authentication
protocols. We believe that PKCROSS and PKTAPP will
revive soon. Hence, this paper only considers these
two notable techniques: PKCROSS and PKTAPP. The
understanding of the variants of the two protocols can
be achieved through the performance analysis of these
two protocols.

Sirbu and Chuang [37] argued that PKCROSS would
not scale well in a large network. PKTAPP was proposed
to improve the scalability of PKCROSS. However, the
actual costs associated with these techniques have been
poorly understood so far. Although PKTAPP is shown to
poorly perform when there are two or more application
servers in one remote realm in Harbitter and Menasce
[24], it remains unknown which technique performs
better in a large network where application servers are
within multiple KDC remote realms that are typical in
many applications.

In the design of protocols, performance evalua-
tion is a fundamental consideration. Two conventional

approaches have been proposed to analyze the per-
formance of a security protocol. The first one is to
implement under study protocols and then take their
measurements in real systems (for example, see Amir
et al. [1]). This approach seems very good but it
is time-consuming. Whenever the under-study proto-
col is changed, the updated protocol has to be re-
implemented and the measurement data of the protocol
implementation has been re-collected. This approach
cannot be applied to our study of PKCROSS and
PKTAPP. The implementation of original PKCROSS and
PKTAPP is not available due to lack of resource and
funding [4]. (Note: the implementation of PKTAPP’s
variant KX.509) was just released last year [30].) The
second one is to count the number of operations and
then compute their corresponding costs within a under
study protocol (for example, see Amir et al. [2] and
Steiner et al. [38]). This approach is straightforward. It
has widely used by researchers but it is not very easy to
be used when the protocol becomes complicated such as
the case of multiple KDC remote realms. Furthermore,
in this case, an authentication request cannot often be
processed fast enough, so it should wait in a queue.
However, the second approach does not consider the
waiting time of an authentication request in a queue.
Hence, in order to efficiently and effectively analyze the
performance of a protocol, we use a queueing network
model as our protocol evaluation tool.

In this paper, we first presents a thorough perfor-
mance evaluation of PKCROSS and PKTAPP in terms
of computational and communication costs. Although
the complexity of message exchanges in multiple KDC
remote realms, we figure out the number of secret,
private and public key operations required in PKCROSS
and PKTAPP. Then, we demonstrate their performance
difference using open queueing networks in which we
gain a better understanding of these two techniques
compared to the approach of only counting the num-
ber of operations in the two techniques. An in-depth
analysis of these two techniques shows that PKTAPP
does not scale better than PKCROSS. This is a contrary
result as expected by PKTAPP protocol designers. Thus,
this paper further gives a new public key cryptography-
based group authentication technique. While giving the
design and security of the new authentication tech-
nique, we mainly focus on the study of its performance
compared to PKCROSS and PKTAPP in this paper. Our
performance analysis indicates that the new technique
achieves better scalability as compared to PKCORSS
and PKTAPP. It should be pointed out that our pro-
posed performance methodology is an effective way to
analyze these authentication techniques which can be
thus extended to analyze other security protocols as
well. The preliminary results of this research appeared
in [40]. The proposed performance methodology can be

2
EAI Endorsed Transactions on

Security and Safety
01 2018 - 05 2018 | Volume 4 | Issue 14 | e2

The performance analysis of PKI-based authentication

applied to understand other security protocols (see [26]
and [36]).

The rest of this paper is organized as follows. In
Section 2, we begin by giving an in-depth discussion
of PKCROSS and PKTAPP and then presents their
performance evaluation using queueing theory. Section
3 gives a definition of the new public key cryptography-
based group authentication technique along with the
details of messages. We present performance analysis
of the proposed technique compared to PKCROSS and
PKTAPP in Section 4. The related work is discussed in
Section 6. We finally conclude our discussion in Section
7.

2. PKCROSS and PKTAPP
Kerberos [29] is a network authentication protocol
for providing a secure communication between a user
workstation (or called a client) and application servers
that was developed at the Massachusetts Institute of
Technology in 1988. The latest version of Kerberos
is Version 5. It divides the world into realms, each
with user workstations, a single primary KDC, back-up
KDCs, and application servers in which the KDC is a
trusted intermediary.

In the Kerberos protocol, the client engages in a
multiple-step authentication to obtain access to the
application server whereby the client first obtains
a relatively short lived credential: a Ticket-Granting
Ticket (TGT) from the Authentication Service running
on a (KDC), and then obtain a session ticket for a
particular application server by presenting the TGT to
a centralized Ticket-Granting Service (TGS) running on
the KDC. The client presents the session ticket to the
application server for authenticating herself/himself
by showing knowledge of a secret session key. The
secret session key was securely passed to the client
by the KDC. Kerberos is stateless. It is extremely
valuable from the scalability point of view. Cross-
realm authentication is necessary when a client and an
application server with different network domains fall
into different Kerberos realms.

It is well-known that a public key security system
is easier to administer, more secure, less trustful,
and more scalable than a symmetric key security
system. Public key security doesn’t use a trusted key
management infrastructure since the burden of key
management falls to public key clients [12]. In a public
key infrastructure, public key clients need constantly
and vigorously check the validity of the public keys that
they use. Public key cryptography shifts the burden on
key management from the KDC/TGS in Kerberos to its
Certificate Authority (CA) who may be considered as a
trusted intermediary. CA issues a public key certificate
that is relatively long lived credential. The burden is
determined by the number of times that clients want

Application

Servers

Client Local KDC

Remote

KDC

1, 1’

4, 4’

3

2

Local

Realm

Remote

Realm 1
5

6

1 and 1’. Traditional cross-realm request for TGT to access a remote realm

2 and 2’. AS_REQ with PKCROSS flag set

3 and 3’. AS_REP with PKCROSS ticket encrypted using local KDC’s public key

4 and 4’. Traditional reply with cross-realm TGT using SKC

5 and 5’. Ticket-Granting Service Request (TGS-REQ)

6 and 6’. Ticket-Granting Service Reply (TGS-REP)

Application

Servers

Remote

KDC

Remote

Realm m

5’

6’

2’

3’

Figure 1. The PKCROSS Message Flow

to authenticate to application servers in Kerberos. It
might not be affordable in time-sensitive applications
if one large-scale PKI deployment is needed for group
authentication in a large network.

2.1. Protocol Analysis
PKCROSS [25] is one notable protocol of integrating
public key cryptography with Kerberos to address the
problem of network authentication among the client
and the application servers in a large number of
realms. Figure 1 illustrates the authentication steps of
PKCROSS. The cross realm KDC to KDC authentication
is achieved by using public key cryptography.

First, just like Kerberos the KDC in PKCROSS is
burdened by the need to constantly renew short-lived
TGTs, and TGS must be involved whenever a client
wants to request a service from an application server.
Thus, if a large number of users in a single realm
request services that may be a typical case in Web
services, the KDC in the realm becomes a serious
single point of failure due to a KDC compromise and
possibly a performance bottleneck. Recovering such
a compromise requires the re-establishment of secret
keys for all users within this realm. When a number
of users is large, such a recovery is very costly. PKINIT
facilitates public-key based authentication between
users and their local KDC. Hence, one possible solution
to eliminating the single point of failure is to combine
PKCROSS with PKINIT, and thus public-key based
authentication is integrated with the entire Kerberos
environment. However, it is easy to see that this solution
is not feasible for time-sensitive applications, since
the users might suffer from a long delay or even
denial of services due to a high computational cost
for the calculation of a public key used in the entire
environment.

Second, in PKCROSS the local KDC of the client
issues all short-lived TGTs and all session tickets in its

3
EAI Endorsed Transactions on

Security and Safety
01 2018 - 05 2018 | Volume 4 | Issue 14 | e2

K. Xiong

Application

Server

Client

1

2

3

4

1. A standard Kerberos version 5 message that includes PA-PK-AS-REQ
pre-authentication field

2. A standard Kerberos version 5 message that includes PA-PK-AS-REP
pre-authentication field

3. AS_REQ in which the client requests a service from the application
server, using the traditional secret-key procedure defined in RFC1510

4. AS_REQ in which the client receives a reply from the application server,
using the traditional secret-key procedure defined in RFC1510

Figure 2. The PKTAPP Message Flow

Table 1. The Operations of Encryption and Decryption When n
Application Servers are in m Remote Realms

Protocols Entities # Secret Key # Private Key # Public Key

PKTAPP Client 2n+1 n+1 3n
Application server 3n+1 n 4n
Total 5n+2 2n+1 7n

PKCROSS

Client m+6 0 0
Local KDC 5 m+1 3m
Remote KDC 3m+n m 4m
Application server 3n 0 0
Total 4(n+m)+11 2m+1 7m

realm, and communicates with a remote KDC. Hence,
it can easily become a performance bottleneck since
all these authentication transactions have to transit the
KDC. Thus, PKTAPP [31] has been proposed to address
the issue. Figure 2 shows the message exchange of
PKTAPP. The PKTAPP technique allows the client to
communicate directly with the application servers so
that the number of messages between them is reduced
in an authentication process. But, as is seen in [24], even
though PKTAPP requires fewer message exchanges than
PKCROSS during client authentication with remote
application servers, PKCROSS outperforms PKTAPP
when two or more application servers are in a single
remote realm. This is because PKTAPP requires more
public-key message exchanges than PKCROSS that only
requires one pair of public-key message exchanges.
Below, we are going to study their performance in
multiple remote realms.

We employ the first approach to analyzing the
performance of the two techniques in which we are
required to carefully compute the number of secret,
private and public operations used in PKCROSS and
PKTAPP in the case of a multiple remote realm. Table 1
summarizes the encryption and decryption operations
performed in these two techniques where m and n
are the number of remote realms and the number of
applications servers within these realms respectively.
Denote by cj the computational times per secret,
private, or public key operation respectively where j =
1, 2, 3. Then, c1 < c2 < c3. Let fj (n,m), j = 1, 2, be the
total computational times of encryption and decryption
operations in PKTAPP and PKCROSS. Thus, from Table
1 we have that

f1(n,m) = (5c1 + 2c2 + 7c3)n + 2c1 + c2

f2(n,m) = 4c1n + (4c1 + 3c2 + 7c3)m + 11c1 + c2

Note that f1(n,m) does not depend on m, which can be
hence abbreviated as f1(n). Then, we have the following
proposition.

Proposition 2.1. For each authentication, PKCROSS
requires less computational time than PKTAPP if and
only if the number of application servers n is more than
dm + 3(m+3)c1

c1+2c2+7c3
e, or the number of remote realms m is

less than bn − 3(n+3)c1
4c1+2c2+7c3

c.

Proof. According to f1(n,m) and f2(n,m), their differ-
ence is given by f1(n,m) − f2(n,m) = −9c1 + (c1 + 2c2 +
7c3)n − (4c1 + 2c2 + 7c3)m. Hence, f1(n,m) − f2(n,m) ≥
0 if and only if −9c1 + (c1 + 2c2 + 7c3)n − (4c1 + 2c2 +
7c3)m ≥ 0, which implies Proposition 2.1.

It is anticipated that the client is connected to
the local KDC by a LAN, the client and the local
KDC are connected to a remote KDC by a WAN,
and a remote KDC and its application servers are
connected by a WAN. Assume that all WANs have
an identical communication time and a local area
network (LAN) has a neglected communication time
compared to a WAN. From Figures 1 and 2, we note
that the number of WAN communications are 4n for
PKTAPP and 4m + 2n for PKCROSS. Let gj (n,m), j =
1, 2, be the transaction times of PKTAPP and PKCROSS.
The transaction time is defined as the computational
time of the total encryption and decryption operations
plus the communication time per authentication in a
technique. Also, denote by d the time spent in a WAN
communication. Then, the following conclusion holds.

Proposition 2.2. For each authentication, PKCROSS uses
less transaction time than PKTAPP if and only if the
number of application servers n is more than m +
d (3c1+2d)m+9c1
c1+2c2+7c3+2d e.

Proof. For j = 1, 2, gj (n,m) can be computed by
g1(n,m) = f1(n) + 4n and g2(n,m) = f2(n,m) + 4m + 2n
and thus their difference is given by g1(n,m) −
g2(n,m) = (c1 + 2c2 + 7c3 + 2d)n − (4c1 + 2c2 + 7c3 +
4d)m − 9c1 which easily derives Proposition 2.2.

Note that if n = 1 (so, m = 1), m + d (3c1+2d)m+9c1
c1+2c2+7c3+2d e >

1 = n, and if m = 1, m + d (3c1+2d)m+9c1
c1+2c2+7c3+2d e = 1 +

12c1+2d
c1+2c2+7c3+2d < 2 since c1 is significantly smaller
than c3. This means that

Corollary 1. When m = 1, we have that PKTAPP requires
less transaction time than PKCROSS if n = 1 but more
transaction time than PKCROSS if n ≥ 2.

4
EAI Endorsed Transactions on

Security and Safety
01 2018 - 05 2018 | Volume 4 | Issue 14 | e2

The performance analysis of PKI-based authentication

Remote

KDC 1

Remote

KDC m

WAN

Local

KDC

LAN
Exit

Application Servers

Client

WAN

WAN

Application Servers

Figure 3. A Queueing Network with m Remote Realms for
PKCROSS

In Proposition 2.2 we have shown that the number of
application servers should be d (3c1+2d)m+9c1

c1+2c2+7c3+2d e more than
the number of remote KDC realms so as to ensure that
PKCROSS uses less transaction time than PKTAPP. But,
the transaction time does not take into account the time
required to wait in a queue for a service (i.e., waiting
time) when multiple authentication requests present in
any one of the authentication entities. Response time
is used when such a case is considered. That is, the
response time is the transaction time plus the waiting
time per authentication request. A further discussion of
the response time is given in next section.

2.2. The Calculation of Response Time via Queueing
Networks

In a distributed system, a queueing network is
an efficient tool to analyze system scalability. To
investigate the scalability of PKTAPP and PKCROSS,
we first model the entities, the client, the local
KDC, the remote KDCs, the application servers and
communication networks, as a queueing network. The
client may represent a single or multiple users that
request group authentication at a given rate and the
authentication request is processed in these entities
according to these two techniques. Figures 3 and 4 give
queueing networks to describe the message flows of
PKCROSS and PKTAPP where each system resource
is modeled as a queue associated with a queueing
discipline.

Since a public key consumes a significantly higher
computation cost than a private key, it is not reasonable
to assume that all client requests are served at the same
average service time. Instead, a class-switching in [6]
and [33] is employed to model the class transaction with
switching from low- to high-priority class, as different
types of encryption/decryption operations are required
with different service times. Preemption-resume is one
good way to implement a service for satisfying multiple

Application

Server n

Exit

Client

WAN

WAN

Application

Server 1

Figure 4. A Queueing Network with n Application Servers for
PKTAPP

class client requests. In this paper, we use a preemptive-
resume priority discipline, i.e., the service of a class r2
request can be interrupted if a higher-priority request
of class r1 (r2 > r1) arrives during its service. The
interrupted request resumes its service from where it
stopped after the higher-priority request, and any other
request with priority higher than r2 that may arrive
during its service, complete their service.

Our goal is to use the queueing networks to calculate
the response time of an authentication request. The
calculation is sketched below. Assume that the client
requests group authentication at a rate λ. Based on
the forced law, the throughput of an entity (the client
station, the local KDC, the remote KDCs, or the
application servers) is X(j) = λv(j) for class j job where
v(j) is the number of visits to the entity by class j jobs.
Then, the total throughput X is a sum of X(j) over all job
classes at the entity. Thus, according to the utilization
law, the utilization of the entity by class j jobs is ρ(j) =
X(j)µ(j) = λv(j)µ(j) where µ(j) is the service time per visit
to the entity by class j jobs. Hence, the total utilization
ρ is a sum of ρ(j) over all classes at the entity. Thereby,
the response time of the entity is R = µ

1−ρ where µ is an
average service time of all classes at the entity, and the
total response time per authentication request is a sum
of vR over all entities.

To validate the accuracy of the queueing networks, we
first simulated the scenario of these entities as shown
in Figure 5 by doing the reference implementations of
these two techniques under Windows XP. Moreover,
a public-key cipher is usually associated with the
calculations of 1024-bit precision numbers, so a public-
key operation is computationally expensive and it costs
as much as a factor of 1000 than an equivalent secret-
key operations [15]. In the reference implementations
we adopted the results from the Crypto++ ran on
an Intel Core 2 1.83 GHz processor under Windows
XP SP 2 in 32-bit mode [10]. Table 2 gives the time
required to encrypt and decrypt a 64-byte block of
data. Without loss of generality, we chose c1 = 0.000248
msec, c2 = 0.07 msec and c3 = 1.52 msec. (Performance

5
EAI Endorsed Transactions on

Security and Safety
01 2018 - 05 2018 | Volume 4 | Issue 14 | e2

K. Xiong

L
A

N

Local KDC

Remote Realm

Remote KDC

WAN

W
A

N

Client
Application Servers

Figure 5. A Test Scenario With a Remote Realm

Table 2. The computational times of Encryption and Decryption
Operations

Protocols and Operation Key Length Computational times (msec)
AES/ECB 128 0.000248
AES/ECB 256 0.000312
RSA encryption 1024 0.07
RSA decryption 1024 1.52
RSA encryption 2048 0.15
RSA decryption 2048 5.95

Table 3. The Comparison of Analytic and Simulated Response
Times

m=1 The Number of Application Servers
Protocols Methods 1 2 4 8 16

PKCROSS
Analytic 102.1 122.1 162.1 242.1 402.1
Simulated 102.3 122.5 162.9 244.2 408.8
R-Err% -0.22 -0.30 -0.47 -0.85 -1.63

PKTAPP
Analytic 82.10 164.05 327.96 655.76 1311.38
Simulated 82.23 164.56 329.97 663.87 1344.23
R-Err% -0.15 -0.30 -0.61 -1.22 -2.44

evaluation based on an ECC key will be discussed in
another paper.) Table 3 shows the accuracy of analytical
response times obtained by the queueing methods
compared to simulated results based on the scenario
shown in Figure 5, where R-Err% is the relative error
used to measure the accuracy of the analytic results
compared to model simulation results, and it is defined
by (analytic result - simulated result)/simulated result
× 100. As seen in the table, the analytic response times
match the simulated results very well.

To investigate performance with an increased number
of application servers and remote realms, we further
presented response times as a function of authen-
tication request rates, i.e., throughput, when there
are two remote realms, as shown in Figure 6. As is
seen, PKCROSS has slightly less response time than
PKTAPP when n = 4, called a crossover number. That is,
PKCROSS is more efficient than PKTAPP if n ≥ 4, but
less efficient than PKTAPP if n < 4. Clearly, it follows
from Table 3 that the crossover number is equal to
2 when m = 1. In general, Figure 7 shows crossover

m=2 and Crossover Number = 4

0

10

20

30

40

4 6 8
Throughput (authentication requests/sec)

R
e
s
p

o
n

s
e
 T

im
e
 (

s
e

c
)

PKTAPP
n=5

PKCROSS

n=5

PKTAPP

n=4
PKCROSS

n=4

PKCROSS
n=3

PKTAPP

n=3

Figure 6. Response Time vs. Authentication Request Rate

y = 1.8916x + 0.2879

R2 = 0.9976

0

10

20

30

0 2 4 6 8 10 12 14

The number of remote realms

C
ro

s
s
o

v
e
r

n
u

m
b

e
rs

Figure 7. Crossover Numbers vs. The Number of Remote Realms

numbers with varying number of remote realms. The
crossover numbers can be 99.8% perfectly fitted by
the straight line: n = 1.8916m + 0.2879. This means that
PKCROSS is more efficient than PKTAPP when n ≥
d1.8916m + 0.2879e. In other word, PKTAPP does not
scale better than PKCROSS. That is different from what
PKTAPP’s designers expected. In next section we pro-
pose a hybrid approach that has better scalability than
PKCROSS.

3. A New Group Authentication Technique Using
Public-Key Cryptography
As is seen above, in PKCROSS the client is first
required to communicate with the KDC before
talking the application server. PKTAPP uses a direct
communication between the client and the application
servers for the reduction of message exchanges and the
relieve of a single point of failure on the client’s KDC.
While PKTAPP is more efficient in the case of only a
single application server and thus only a single remote
realm too, PKCROSS significantly performs better if the
number of application servers is more than a crossover
number as shown in Table 3 and Figure 7. Our proposed
technique below will consider the advantages of both

6
EAI Endorsed Transactions on

Security and Safety
01 2018 - 05 2018 | Volume 4 | Issue 14 | e2

The performance analysis of PKI-based authentication

Table 4. The Notation Used In The Case of A Single Remote
Realm

C Client
Sj Application Server j (j = 1, 2, · · · , n)
KDCL Local KDC, i.e., Client’s KDC
KDCR Remote KDC, i.e., Application servers’ KDC
KC Secret key of C
KSj Secret key of Sj
KC,S Group key shared by C and all Sj
{Message}KDCL Message encrypted with KDCL’s public key
{Message}KDCR Message encrypted with KDCR’s public key
[Message]KDCR Message signed with KDCR’s private key
KBKDCR Public key of KDCR
CertKDCL Certificate of KDCL
CertKDCR Certificate of KDCR
NC Nonce generated by C
NKDCR Nonce generated by KDCR
TMSC Timestamp generated by C
TMS1R, TMS2R Timestamps generated by KDCR

techniques. While it allows the client to deal directly
with the application servers so that the number of
messages is reduced in the authentication process like
PKTAPP, the new technique still relies on the KDC
for the authentication of the client and the application
servers like PKCROSS.

3.1. A Single Remote Realm
In this section we define the group authentication
technique among a client (denoted by C) and
application servers (denoted by Sj) that are in a
single remote realm (denoted by KDCR), where j =
1, · · · , n. The client C is a group key initiator, for
example, representing either a group member in
a video conference or a service provider in Web
services applications who wants to initiate secure
communication among groups or service providers.
(How C is chosen is beyond the scope of our study
in this paper.) The application servers Sj are the rest
of either group members or service providers. Table 4
lists all notation used in this section. Figure 8 shows
the message flow of the new group authentication
technique whose message exchanges is given in detail
as follows. (In order to emphasize our understanding of
this new technique for its performance comparison with
PKCROSS and PKTAPP, we briefly state the main goal
of each exchange message.)
Message 1, C→ KDCR:
NC , “C", “KDCR: S1, ..., Sn",KC{NC , KC,S , “KDCR : S1,
· · · , Sn”, TMSC}

Main Goal: In this message, the client C initiates a group
key request for a secure communication with the application
servers Sj .

For this purpose, it will encrypt the request message
with a key, KC,S , that the client C invents. To make
sure that only Sj can get the key (of course, KDCL and
KDCR should be able to get it as well), the key will

Application

Servers

Client

Local KDC

Remote

KDC

1

2

3
5

Local Realm
Remote Realm

4

6

Figure 8. The Message Flow of A New Technique in a Single
Remote Realm

be encrypted using the client C’s key along with the
destination, “KDCR: S1, ..., Sn". For Sj to get KC,S , the
KDCR will first need to be authenticated by the KDC of
the client C, and then Sj will need to be authenticated
by their KDC: KDCR and have KDCR give Sj the key,
KC,S . KDCR will be responsible for making sure that Sj
are valid recipients and the client C is a valid sender
validated by the client C’s KDC, KDCL. A common
nonce,NC , will also be invented to track the transaction
and give the recipient something to authenticate with
to the remote KDC server, KDCR. A timestamp TMSC
is included to prevent replay attacks or prevent the key,
KC,S , from being given out more than once.
Message 2, KDCR→ KDCL:
NC , “C", KC{NC , KC,S , “KDCR : S1, ..., Sn”, TMSC}, {NC ,
NKDCR , TMS1R,AuthInfo}KDCL , where AuthInfo
consists of “KDCR", CertKDCR , [NC , NKDCR ,
TMS1R, “KDCL”,
KBKDCR]KDCR .

Main Goal: The remote KDC, KDCR, will authenticate
the client C through KDCL who is the local KDC of the
client.

After receiving the message from the client C,
KDCR invents a nonce, NKDCR , and generates AuthInfo
necessary to authenticate KDCR. Then, it constructs
a message to send to the client C’s local KDC that
contains NKDCR , NC , TMS1R, and AuthInfo, encrypted
with KDCL’s public key. KDCR will also forward the
part of the original message encrypted with C’s key.
This is enough information for KDCL to authenticate
the client C and KDCR to make sure only if KDCL
can decrypt this message. Note that the message uses
“KDCR" instead of “KDCR: S1, ..., Sn" for the sake
of a privacy consideration. This is because the client
C’s local KDC is unnecessary to know who will be
part of the secure communication except the client C.
Additionally, this message does not explicitly contain
the identity KDCR since it is included in AuthInfo.
“KDCR" and its public key KBKDCR are uniquely
determined by CertKDCR in AuthInfo. Thus, CertKDCR
is used to prevent man-in-the-middle attacks. TMS1R
serves to avert replay attacks.
Message 3, KDCL→ KDCR:
{“C”, “KDCR”, NKDCR , KC,S , CertKDCL , TMSC ,
TMS1R}KDCR

7
EAI Endorsed Transactions on

Security and Safety
01 2018 - 05 2018 | Volume 4 | Issue 14 | e2

K. Xiong

Main Goal: After the client KDCL authenticates the
client C, it sends a reply to KDCR.

Using the key of the name given, KDCL will decrypt
the message encrypted with its public key and the
original message encrypted by KC , and verify KDCR’s
signature. Then, it will check if the NC encrypted by
key KC matches the NC encrypted by its public key.
If they match, then the client C is really the client C
and its message is not altered. KDCL will then read
the destination, in this case, “KDCR." (Again, it does
not include “KDCR: S1, · · · , Sn in the message for the
sake of a privacy consideration.) Furthermore, KDCL
will make sure if KDCR is a valid member. If so, it
continues the processing. Accordingly, KDCL will make
sure that the timestamp is within the allowed clock-
skew and that the key for this request has not already
been given out. KDCL will then give out the key, KC,S .
KDCL will also encrypt NKDCR with KDCR’s public key
to authenticate KDCL to KDCR. KDCR will verify that
theNKDCR received fromKDCL matches theNKDCR sent
to KDCL, and it will distribute the returned KC,S to Sj .
Message 4, KDCL→ C:
KC{KC,S , “KDCL”, “FromKDCR”, NC , TMSC , TMSL}

Main Goal: The KDCL further informs the client C
about its authentication and the share key KC,S with the
application servers.

The client decrypts the share key KC,S , “FromKDCR”,
NC , TMSC , and TMSL. The client needs to make sure
that the NC matches the nonce of a pending request,
the timestamp is within the allowed clock-skew, and
KC,S matches the group key that was previously created.
The resources required for a brute force attack scale
exponentially with increasing key size, not linearly. As
a result, doubling the key size for an algorithm does not
simply double the required number of operations, but
rather squares them. Thus, using timestamps and nonce
numbers makes the encrypted message random to some
extent. Thus, this prevents a brute-force cryptographic
attack and a plain-text attack on the secret key of the
client.
Message 5, KDCR→ Sj :
KSj {“C”, KC,S }, KC,S {NC , TMSC , TMS2R}

Main Goal: KDCR informs its application servers Sj
about their shared key KC,S with the client C.

The application servers Sj will decrypt the first
message to get KC,S , and then use the shared key KC,S to
decrypt the second message to get TMSC and TMS2R.
TMSC is included so that Sj knows when the group key
was inverted byC. To make sure that it is not a replay, Sj
should keep all timestamps that were recently received,
say in the last five minutes that is a parameter set
approximately for the maximum allowable time skew.
Then, Sj should check that each received timestamp
from a given request initiator is different from any of
the stored values. Any authentication request older than
five minutes (or whenever the value of the maximum

allowable time skew) would be rejected anyway, so Sj
would not remember values older than 5 minutes.
Messages 6, Sj → C:
KC,S {NC , TMSC}, where j = 1, 2, · · · , n.

Main Goal: In the end, the application servers Sj
communicate with C for making sure that KC,S is not
altered.

The application servers send replies to the client.
Then, by using pre-generated KC,S , the client decrypts
the message to make sure that the group key KC,S is not
altered. It also verifies nonce NC and makes sure the
received timestamp of the pending request is within the
allowed clock-skew of the timestamp TMSC .

In the new technique, note that KC,S can be
replaced by KC,Sj when C only wants to securely
communicate with any one of application servers Sj .
The aforementioned technique can be also modified so
that a reply is issued to C by either KDCL or KDCR
whenever needed after C is authenticated.

3.2. Multiple Remote Realms

In a large network, application servers are often
within different network domains. For instance, in Web
services service providers may be partitioned into many
different realms due to their location flexibility. To work
together, a service provider may wish to gain access to
other service providers’ application servers in remote
realms. To support “cross-realm" authentication, the
service provider’s KDC needs to establish an either
direct or indirect trust relationship with the other
service providers’ KDCs. Here, we briefly describe how
the proposed technique is extended in multiple remote
realms.

Assume that the n application servers Sj are
distributed inm realms, each with KDC servers denoted
by KDCi (i = 1, · · · , m). Let ni be the number of
application servers within KDCi , where 0 ≤ ni ≤ m
and

∑m
i=1 ni = n. Clearly, the case of a single remote

realm is associated with n1 = n and ni = 0 (i = 2, · · · , m).
We further let Si,k be those application servers which
belong to the set {Sj |j = 1, · · · , n} within realm i, where
k = 1, · · · , ni . Then, the set ∪mi=1{Si,k |k = 1, · · · , ni} is
identical to the set {Sj |j = 1, 2, · · · , n}. Table 5 lists
additional notation used in this section.

Figure 9 shows how the client authenticates to
application servers. Authentication messages are given
below.
Messages 1 and 1’, C → KDCi for each fixed i:
NC , “C", “KDCi : Si,1, ..., Si,ni ", KC{NC , KC,S , “KDCi :
Si,1, · · · , Si,ni”, TMSC}
Messages 2 and 2’, KDCi → KDCL:
NC , “C", KC{NC , KC,S , “KDCi : Si,1, · · · , Si,ni”, TMSC},
{NC , NKDCi , TMS1i ,
AuthInfoi}KDCL , where AuthInfoi consists of “KDCi",

8
EAI Endorsed Transactions on

Security and Safety
01 2018 - 05 2018 | Volume 4 | Issue 14 | e2

The performance analysis of PKI-based authentication

Table 5. The Additional Notation Needed In Multiple Remote
Realms

Si,k Application Server k in realm i
KDCi Remote KDC server in realm i
KSi,k Secret key of Si,k
KBKDCi Public key of KDCi
{Message}KDCi Message encrypted with KDCi ’s public key
[Message]KDCi Message signed with KDCi ’s private key
NKDCi Nonce generated by KDCi
CertKDCi Certificate of KDCi
TMS1i and TMS2i Timestamps generated by KDCi

Application

Servers

Client

Local KDC

Remote

KDC

1

2

3

5

Local Realm

Remote Realm 1

Application

Servers

Remote

KDC

5’

Remote Realm m

2’

3’

1’

4, 4’

6

6’

Figure 9. The Message Flow of The New Technique in Multiple
Remote Realms

CertKDCi , and [NC , NKDCi , TMS1i , “KDCL”,
KBKDCi]KDCi
Messages 3 and 3’, KDCL → KDCi where i = 1, · · · , n:
{“C”, “KDCi”, NKDCi , KC,S , CertKDCL , TMSC , }KDCi
Messages 4 and 4’, KDCL→ C:
KC{KC,S , “KDCL”, “FromKDCi”, NC , TMSC , TMSL}
Messages 5 and 5’, KDCi → Si,k :
KSi,k {“C”, KC,S }, KC,S {NC , TMSC , TMS2i}, where i = 1,
· · · , m and k = 1, · · · , ni .
Messages 6 and 6’, Si,k → C:
KC,S {NC , TMSC}, where i = 1, · · · , m and k = 1, · · · , ni .

In the first three messages, the client C authenticates
to her local KDC through remote KDCi . Message 4 or
4’ checks if the group key KC,S is valid, and Message 5
or 5’ distributes the group key KC,S and authenticates
designated application servers within their individual
KDC realms. An explanation of these messages are
similar to the one in Section 3.1.

4. The Performance Evaluation of The New
Proposed Technique
In this paper we focus on studying the efficiency of
the proposed group authentication technique. Hence,
we first compute its computational and communication

Table 6. The Operations of Encryption and Decryption When n
Application Servers are in m Remote Realms

Entities # Secret Key # Private Key # Public Key
Client 3 0 0
Local KDC 2 1 4m
Remote KDC n+1 2m 3m
Application server 3n 0 0
Total 4n+6 2m+1 7m

costs. Then, we give a thorough performance evaluation
of the new technique using the queueing method
proposed in Section 2. The security discussion of this
new authentication will be given in Section 5.

4.1. The Operations of Encryption and Decryption
The baseline transactions are constructed with one or
more application servers in a remote realm as shown
in Figure 8. Due to page limit, we directly consider
the case of m remote realms, each with ni application
servers where 0 < ni ≤ n and i = 1, 2, · · · , m. Table 6
summarizes the number of encryption and decryption
operations performed in the proposed technique. As
is shown in Tables 1 and 6, in our technique the
computational burden on the client is mitigated to
its local KDC compared to PKTAPP. Specifically, in
term of the calculation of public key operations the
burden on the client’s local KDC is O(m) in both the
proposed technique and PKCROSS but the burden on
the client is O(n) in PKTAPP. Let us recall that m is the
number of remote KDC servers and n is a total number
of application servers where 1 ≤ m ≤ n. Hence, their
computational burdens may be significantly different
when m� n. Note that the proposed technique uses
public key cryptography to authenticate the client’s
KDC and the remote KDCs of application servers. So,
it reduces the risk of a single failure on these KDCs.

Next, let us consider the operation costs of the
proposed technique. Denote by f3(n,m) the total
computational time of its encryption and decryption
operations. Then, it follows from Table 6 that f3(n,m)
is computed by

f3(n,m) = 4c1n + (2c2 + 7c3)m + 6c1 + c2

Thus, we have the following proposition.

Proposition 4.1. (a) The proposed technique requires
less computational time than PKCROSS. (b) For n ≥
4, the proposed technique requires less computational
time than PKTAPP. But, when 1 ≤ n < 4, the proposed
technique requires less computational time PKTAPP if
and only if the number of remote realms m is less than
bn + (n−4)c1

2c2+7c3
c.

Proof. The differences of computational times
among the three techniques are given by f1(n,m) −

9
EAI Endorsed Transactions on

Security and Safety
01 2018 - 05 2018 | Volume 4 | Issue 14 | e2

K. Xiong

f3(n,m) = −4c1 + (c1 + 2c2 + 7c3)n − (2c2 + 7c3)m
and f2(n,m) − f3(n,m) = 4c1m + 5c1. Obviously, our
technique requires less computational time than
PKCROSS due to f2(n,m) − f3(n,m) > 0. Moreover,
f1(n,m) − f3(n,m) ≥ 0 if and only if m ≤ n + (n−4)c1

2c2+7c3
,

which implies (b) due to n ≥ m.

Similarly, we can easily get that

Proposition 4.2. For m ≥ 4, the proposed technique
requires less computational time than PKTAPP. But,
when 1 ≤ m < 4, the proposed technique requires less
computational time PKTAPP if and only if the number
of application servers n should be more than dm −

(m−4)c1
c1+2c2+7c3

e.

Furthermore, let g3(n,m) be the transaction time
of the proposed technique, i.e., the computational
time of its encryption and decryption operations plus
its communication time. Note that the number of
WAN communications required in the technique is
3m+2n, and recall that d is the time spent in a WAN
communication. Then, the following statements hold.

Proposition 4.3. (a) The proposed technique has less
transaction time than PKCROSS. (b) The proposed
technique uses less transaction time than PKTAPP if
and only if the number of application servers n should
be more than dm + (d−c1)m+4c1

c1+2c2+7c3+2d e.

Proof. For j = 1, 2, 3, gj (n,m) are given by
g1(n,m) − g3(n,m) = [f1(n,m) − f3(n,m)] + (2n − 3m)d =
(c1 + 2c2 + 7c3 + 2d)n − (2c2 + 7c3 + 3d)m − 4c1, and
g2(n,m) − g3(n,m) = [f2(n,m) − f3(n,m)]. These easily
derive (a)-(b) in this proposition.

Note that when n = 1, we get that m + (d−c1)m+4c1
c1+2c2+7c3+2d >

1 = n due to usually d > c1, which imply
g1(n,m) − g3(n,m) < 0. Also, when m = 1 and n ≥ 2,
m + (d−c1)m+4c1

c1+2c2+7c3+2d = 1 + d+3c1
c1+2c2+7c3+2d < 2 ≤ n due to

c1 < c3, which imply g1(n,m) − g3(n,m) > 0. Thus, we
have that

Corollary 2. PKTAPP is more efficient than the proposed
technique when n = 1, but less efficient whenm = 1 and
n ≥ 2, in term of transaction time.

By using Proposition 4.3 we calculated the minimal
number of application servers so as to ensure that
our technique requires less transaction time than
PKTAPP with varied d = 0.12 msec, 4.8 msec and
10 msec when c1 = 0.000248 msec, c2 = 0.07 msec
and c3 = 1.52 msec in Table 7. We observed that the
minimal number of application servers is sensitive to
d rather than cj (j = 1, 2, 3). Table 8 further presents the
difference of transaction times between our technique
and PKCROSS. We also noted that our proposed
technique requires significantly less transaction time

Table 7. The Minimal Number of Application Servers

The Number of Remote Realms
Servers 1 2 3 4 5 6 7 8 9 10
d=0.12 2 3 4 5 6 7 8 9 10 11
d=4.8 2 3 4 5 7 8 9 10 12 13
d=10 2 3 4 6 7 8 10 11 12 14

Remote

KDC 1

Remote

KDC m

WAN

Local

KDC

LAN
Exit

Application Servers

Application Servers

Client

WAN

WAN

Figure 10. A Queueing Network with n Remote Realms for the
New Technique

than PKCROSS, and the difference of transaction times
between the two techniques are independent of the
number of application servers. That is, the proposed
technique is more efficient than PKCORSS.

4.2. The Calculation of Response Time via a
Queueing Network
Similar to Section 2, we can use a queueing network
to characterize the message flow of the proposed
technique where each system resource is modeled as
a queue associated with a queueing discipline shown
in Figure 10. Figures 11, 12 and 13 show response
times as a function of authentication request rates, i.e.,
throughput, in the case of one, two or eight remote
realms with varying number of application servers. As
is seen, our technique performs better than PKCROSS
in all cases. It has also been demonstrated that our
technique is more efficient than PKTAPP when n ≥ 2
for one remote realm in Figure 11, when n ≥ 4 for
two remote realms in Figure 12, and when n ≥ 12
for eight remote realms in Figure 13 (roughly n ≥
1.5m if m > 1). These crossover numbers from m = 1
to 12 are further depicted in Figure 14 where the
crossover numbers are 99.6% perfectly fitted by the
straight line: n = 1.4406m + 0.6364, which predicts the
number of application servers required to ensure that
our technique performs better than PKTAPP. Moreover,
the line n = 1.4406m + 0.6364 is below the straight
line n = 1.8916m + 0.2879 given in Section 2 due
to 1.8916m + 0.2879 > 1.4406m + 0.6364 when m ≥ 1.
This again confirms that our technique is more efficient

10
EAI Endorsed Transactions on

Security and Safety
01 2018 - 05 2018 | Volume 4 | Issue 14 | e2

The performance analysis of PKI-based authentication

Table 8. The Difference of Transaction Times Between Our Technique and PKCROSS (i.e., g2(n,m)-g3(n,m))

The Number of Remote Realms
Difference (msec) 1 2 3 4 5 8 12 16 20 24
d=0.12 0.1222 0.2432 0.3642 0.4852 0.6062 0.9691 1.45314 1.93711 2.42108 2.90504
d=4.8 4.8022 9.6032 14.404 19.205 24.006 38.409 57.6131 76.8171 96.0210 115.225
d=10 10.002 20.003 30.004 40.005 50.006 80.009 120.013 160.017 200.021 240.025

0

10

20

30

40

2 7 12 17 22 27

Throughput (authentication requests/sec)

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
)

PKTAPP

n=4

PKCROSS

n=4

Our Technique

n=4

PKTAPP n=2

PKCROSS

n=2

Our Technique

n=2

PKCROSS

n=1

Our Technique

n=1

PKTAPP

n=1

Figure 11. Response Times vs. Authentication Request Rates
when m = 1

0

10

20

30

40

3 6 9 12

Throughput (authentication requests/sec)

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e
c

)

Our Technique n=5

PKTAPP n=4

PKCROSS n=4

PKTAPP

n=5

PKCROSS

n=5

Our Technique

n=4

PKCROSS n=3

Our Technique n=3

PKTAPP n=3

PKCROSS n=2

Our Technique

n=2

PKTAPP

n=2

Figure 12. Response Times vs. Authentication Request Rates
when m = 2

than PKCROSS. We also noted that the numbers n
in Table 7 are smaller than the crossover numbers in
Figure 14. This means that it is not sufficient only if
transaction time is employed to analyze performance
that researchers have often used.

5. Security Discussions
The proposed authentication technique allows for
efficient message exchanges and the establishment of
a group authentication among a client and multiple
application servers. It is based on a security handshake.
When presenting the message exchanges of the
authentication technique in Sections 3.1 and 3.2, we

0

10

20

30

40

1.5 1.75 2 2.25

Throughput (authentication requests/sec)
R

e
s
p

o
n

s
e

 T
im

e
 (
s

e
c

)

PKCROSS

n=13

PKCROSS

n=12

Our Technique

and PKTAPP

n=12

Our Technique

n=13

PKTAPP

n=11

PKCROSS

n=11

PKTAPP

n=13

Our Technique

n=11

Figure 13. Response Times vs. Authentication Request Rates
when m = 8

y = 1.4406x + 0.6364

R
2
 = 0.9958

0

5

10

15

20

0 2 4 6 8 10 12 14

The number of remote realms

C
ro

s
s

o
v

e
r

N
u

m
b

e
rs

Figure 14. Crossover Numbers vs. Remote Realms

have discussed its security. We further give the security
discussion of this technique below.

A replay attack is one of common security pitfalls.
The proposed technique is a server-based protocol pro-
viding authenticated transport (with key authentica-
tion and key freshness assurances) in six messages.
If the clocks between the clients and the KDCs were
not synchronized, and if old tickets and authenticators
were not cached, a replay attack would become pos-
sible. However, the proposed technique employs both
timestamps and nonces as well as these nonces are
unpredictable in its authentication messages. Thus, if
a message is received with a timestamp that is beyond
the allowed clock skew, then the message will be dis-
carded. Moreover, as long as both each KDC and each

11
EAI Endorsed Transactions on

Security and Safety
01 2018 - 05 2018 | Volume 4 | Issue 14 | e2

K. Xiong

application server in this proposed technique remem-
ber recent nonces within the allowed clock skew, then
replay attacks are not possible. This means that in this
technique, the clients and the KDCs runs must provide
secure and reasonably synchronized clocks to prevent
replay attacks. Subsequently, the proposed authentica-
tion technique will not suffer from replay attacks.

Note that Messages 2 and 2’ do not leave clear except
NC and "C" in order that any clock synchronization
problem from client can be avoided to misuse by an
attacker. Moreover, the identity of the client and the
integrity of Messages 2 and 2’ can be authenticated
through the information of "AuthInfo." The CertKDCR
used in the field of "AuthInfo" is prevent man-in-middle
attacks.

As is known, the traditional Kerberos transmits the
identity of the client in plaintext. But, this is not a case
in the proposed technique except the first two messages.
This change enhances the client’s privacy protection. It
prevents an attacker from the tracking of the identities
of the client’s and the KDCs’ who communicate
each other for authentication. Additionally, an original
version of Kerberos protocol [28] used the Needham-
Schroder protocol as modified by Denning and Sacco
(see [9] and [13]). However, there is a ticket invalidation
issue in the Needham-Schroder protocol. A suggested
fix was proposed in the extended Needham-Schroder
protocol and in the Otway-Rees through a use of 7 and
5 messages respectively. The proposed authentication
technique does not encounter a ticket invalidation
issue.

Furthermore, the proposed technique is conceptually
simple as it involves the client that generates a
key and the KDCs that authenticate and distribute
the key to group members via a pair-wise secure
channel established with each group member. It works
well in one-to-many multicast scenarios, for example,
secure communications among service providers in
Web services.

As is well-known, denial of service (DoS) attacks is one
of the most common attacks these days [14]. DoS attacks
cannot be prevented in PKCROSS and PKTAPP because
authentication requests can be constantly sent to the
KDC and the application server by an attacker [19].
While our proposed technique has several performance
strengths as compared to PKCROSS and PKTAPP as
shown in this paper, we have also realized that DoS
attacks are out of our control. The client’s request
message might be passed through by the remote KDC
to the client’s local KDC with lack of any verification,
which results in serious DoS attacks. To prevent them,
we are required to securely migrate the client’s request
and maintain an authentication state at every remote
KDC that might not be an easy task. This is why a DoS
attack is one of the most difficult attacks that we can
prevent, as happened in PKCROSS and PKTAPP. But,

our technique is motivated by secure communications
in Web services applications and it is mainly toward
to e-business applications in which a trust-but-verify
framework for Web services authorization has been
proven an efficient method [39]. So, under the same
framework we trust a client in a certain degree and
allow the client to contact the KDC server of the
application servers directly. Then, the authentication
procedures proposed in this paper will follow. However,
if the remote KDC server is badly under DOS attacks
due to unauthenticated messages from the client, then
we leave the option to switch back to the way in which
a client needs to be first authenticated by its local KDC,
e.g., using PKCROSS.

In the proposed technique, we also allow the client
to create the group key KC,S . This is particularly useful
when the client does not need to get a reply from
its local KDC for a further verification. If the reply
is required, then we can easily mitigate the creation
of KC,S from the client to its local KDC by slightly
modifying the proposed technique accordingly.

6. Related Work
Kerberos (see RFC1510 [29]) has changed rapidly
since 1999. Among them, there have been numerous
proposals to integrate public key cryptography into
Kerberos [8], [11], [16], [25], [19], [31], [34], [41],
and [37]. These proposals address various concerns of
Kerberos in distributed networks, for instance, security,
scalability, and portability. Neuman, et al. [34] proposed
PKINIT to enable use of public key cryptography for
an initial authentication between the client and its local
KDC. PKINIT is an extension of the Kerberos protocol.
Its mechanism has been developed under the IETF
Kerberos WG for eleven years [3] before PKINIT was
approved as an IETF Proposed Standard (RFC4556, see
Zhu and Tung [41]).

PKCROSS [25] has been proposed to simplify the
administrative burden of maintaining cross-realm keys
so that it improves the scalability of Kerberos in large
multi-realm networks. Public key cryptography takes
place only KDC-to-KDC authentication. PKINIT and
PKCROSS are centralized KDC protocols. Sirbu and
Chuang [37] extended these two protocols to create
PKDA for improving scalability and addressing the
single point of failure on the KDC. PKTAPP is only
a slight variation on the PKDA specification. Both
PKDA and PKTAPP use lengthy public-key message
exchanges between the client and the application
servers, so they may not be anymore efficient than
public key enabled authentication once with a KDC
and faster secret-key cryptography for subsequent
encryption with application servers [24]. PKTAPP is
also known as KX.509/KCA [16] and Windows has its
own protocol which is the equivalent to KX.509/KCA

12
EAI Endorsed Transactions on

Security and Safety
01 2018 - 05 2018 | Volume 4 | Issue 14 | e2

The performance analysis of PKI-based authentication

(see Altman [3]). Although the evolution of PKTAPP, its
protocol structure has not been dramatically changed.
We believe that PKCROSS and PKTAPP will revive
soon. The Kerberos Consortium at MIT was just formed
in September 2007 and listed PKCROSS as Project 10
in its proposal [32]. Kerberos on the web and Kerberos
on mobile devices have been included in the strategic
pillars of the MIT Kerberos Consortiym [21].

Performance evaluation is a fundamental considera-
tion in the design of security protocols. However, per-
formance associated with most of these protocols has
been poorly understood. To analyze the performance of
a protocol, we can first implement the protocol and then
analyze measurement data taken from the implementa-
tion. But, the implementation of a protocol is very time-
consuming and constricted to development resources
and funding. While the implementation of KX.509 was
released in 2007 [30], up to today, PKCROSS has not
been implemented yet due to a matter of lack of devel-
opment resources and funding [4]. A group of scientists
have recently started to discuss the implementation
of PKCROSS [22] and [23]. Hence, performance mod-
eling has become an attractive approach since it can
quickly provide a performance guidance used for a
protocol design. The simplest modeling approach for
a study of security protocols is to coount the num-
ber of secret, private, public key operations and then
compute their corresponding costs (for example, see
Amir et al. [2] and Steiner et al. [38]). This approach
is straightforward. But, as shown in Sections 2 and 4,
it is not easy to compute the number of operations for
PKCROSS, PKTAPP and our authentication techniques
since their message exchanges become complicated in
the case of multiple KDC remote realms. Furthermore,
this approach does not consider the waiting time of an
authentication request in a queue. Hence, in order to
efficiently and effectively analyze the performance of
a protocol, we use a queueing network model as our
protocol evaluation tool.

Queueing theory has been used in an analysis of
chanllge/response authentication protocols in Liang
and Wang [20]. But, they studied the performance of
these protocols by only using a single M/M/1 queue
which is the simplest case in queueing theory. Existing
studies in Harbitter and Menasce [24] employed
the performance modeling approach for examining
the impact of PKCROSS and PKTAPP on network
throughput based on their skeleton implementations
and construction of closed queueing networks for a
relatively simple case: there is only a single remote
realm. This present paper also employs a performance
modeling approach for a study of PKCROSS and
PKTAPP but extends Harbitter and Menasce [24] in
several essential and important aspects. First, while the
performance of PKCROSS and PKTAPP was studied
in Harbitter and Menasce [24], it remains unknown

which technique performs better in multiple remote
realms that are typical in an increasingly large network
these days. It is very difficult to analyze the case
of multiple remote realms due to the complexity of
authentication message exchanges. The difficulty is in
the complexity analysis of these protocols and the
building and analysis of queueing network models
that reflects the workload of authentication requests
for these protocols in the case of multiple remote
realms. Second, we explicit derive the formulas for
calculating the computational and communication
times of these protocols so as to easily determine
which technique is better. Third, using a closed
queueing network in Harbitter and Menasce [24]
assumes there exist constant authentication requests in
the queueing network. This means that the number of
the client’s authentication requests remains unchanged
with time, which is obviously an unrealistic assumption
in a real-world computer application such as Web
services. Rather, we adopted an open queueing network
where the client requests authentication at a given
rate, i.e., the number of authentication requests in
a computing system under study is not constant; it
can be dynamically changed with time. Fourth, in
order to better understand the performance of the
authentication technique, we distinguish the processing
ordering of multiple authentication requests by using
the preemptive-resume priority discipline. Fifth, due to
a performance trade off between these two protocols
according to our scalability analysis, we propose a new
hybrid technique. Our analysis has showed that the
new technique has better scalability than these two
protocols in most cases. Finally, we must point out that
the approach of using queueing networks is relatively
complicated in the case of multiple remote realms but
it is necessary. As is seen, the numbers n given in
Table 8 based on the approach of counting the number
of operations are smaller than the crossover numbers
presented in Figure 14. The preliminary results of this
research was published in [40].

7. Conclusions and future work
Public-key enabled Kerberos-based techniques such
as PKINIT, PKCROSS, PKDA and PKTAPP (a.k.a
KX.509/KCA) give a potential effective way for cross-
realm authentication. However, the authentication
problem is simple to describe but hard to solve,
especially for multiple realms. Their performance has
been poorly understood. In this paper we presented a
throughout performance evaluation of PKCROSS and
PKTAPP in terms of computational and communication
times, and through the use of validated analytical
queueing models. Our analysis revealed that PKTAPP
does not perform better than PKCROSS in a large
network where there are many application servers

13
EAI Endorsed Transactions on

Security and Safety
01 2018 - 05 2018 | Volume 4 | Issue 14 | e2

K. Xiong

within either a single or multiple remote realms.
Thus, we proposed a new public key cryptography-
based group authentication technique. While giving
the design and security of the new authentication
technique in Section 5, we mainly focus on the study
of its performance compared to PKCROSS and PKTAPP
in this paper. Our performance analysis has showed
that the proposed technique outperforms PKCROSS in
terms of computational and communication times in
Propositions 4.1 and 4.3, and response time in Figures
11, 12 and 13. This paper also gave the predicted
minimal number of application servers so as to ensure
that the proposed approach is more efficient than
PKTAPP in multiple remote realms. Roughly speaking,
the proposed technique performs better than PKTAPP
when the number of application servers is about 50%
more than the number of remote realms (i.e., n ≥ 1.5m)
in Section 4.2.

As is shown, our performance methodology based on
complexity analysis and queueing theory is an effective
way to analyze the performance of security protocols. In
the future, we plan to apply the methodology to other
protocols, such as IKEv2 in Kaufman [27] and AAA
in Patel et al. [35]. Particularly, it is of very interest to
apply our method to those protocols which are used in
either time-sensitive or resource-limited applications,
e.g., the ones in wireless sensor networks.

References

[1] Y. Amir, Y. Kim, C. Nita-Rotaru, and G. Tsudik. On the
performance of group key agreement protocols. ACM
Transactions on Information and Systems Security (TISSEC),
7(3):1-32, August 2004.

[2] Y. Amir, Y. Kim, C. Nita-Rotaru, J. Schultz, J. Stanton and
G. Tsudik. Secure group communication using robust
contributory key agreement. IEEE Transactions on Parallel
and Distributed Systems, 15(5):468–480, 2004.

[3] J. Altman. NIST PKI’06: Integrating PKI and
Kerberos. www.secure-endpoints.com/talks/

nist-pki-06-kerberos.pdf, 2007.
[4] J. Altman. Personal communication, 2007.
[5] D. Barry. Web Services and Service-Oriented Architecture:

Your Road Map to Emerging IT. Morgan Kaufmann, 2003.
[6] S. Bruell and G. Balbo. Computerational Algorithms for

Closed Queueing Netowrks. Editored by P. J. Denning,
Science Library, Elsevier North Holland, Inc., New York,
1980.

[7] S. Buckley. MIT Kerberos Consortium Proposal to
Sponsors. http://www.kerberos.org/join/overview.

pdf, 2008.
[8] CITI. kx509 and KCA. http://www.citi.umich.edu/

projects/kerb_pki/, 2006.
[9] J. Clark and J. Jacob A Survey of authentication protocol

literature. http://www.cs.york.ac.uk/~jac/papers/

drareviewps.ps, 1997.
[10] W. Dai. Crypto++ 3.1 benchmarks. http://www.

eskimo.com/~weidai/benchmark.html, 2007.

[11] D. Davis. Kerberos plus RSA for world wide web security.
In Proceedings of the First USENIX UNIX Workshop on
Electronic Commerce, New York City, New York, July 1995.

[12] D. Davis. Compliance defects in public-key cryptogra-
phy. In Proceedings of the Sixth USENIX UNIX Security
Symposium (USENIX Security’96), San Jose, California,
July 1996.

[13] D. Denning and G. Sacco. Timestamps in key
distribution protocols. Communications of the ACM,
24(8):533–536, August 1981.

[14] D. Dumitriu, E. Knightly, A. Kuzmanovic, I. Stoica, W.
Zwaenepoel. Denial-of-service resilience in peer-to-peer
file sharing systems. In Proceedings of the 2005 ACM
SIGMETRICS international conference on Measurement and
modeling of computer systems (SIGMETRICS 05), pages 38–
49 , 2005.

[15] P. Dongara and T. N. Vijaykumar. Accelerating private-
key cryptography via multithreading on symmetric
multiprocessors. In Proc. IEEE Int’l Symp. Performance
Analysis of Systems and Software (ISPASS 03), pages 58–69,
IEEE Press, 2003.

[16] W. Doster and M. Watts and D. Hyde. The KX.509
Protocol. http://www.citi.umich.edu/techreports/

reports/citi-tr-01-2.pdf, 2001.
[17] J. Garman. Kerberos: The Definitive Guide. O’Reilly, 2003.
[18] 3GPP. Technical Specification Group Services and

System Aspects; Study on the security aspects of the next
generation system. In 3rd Generation Partnership Project
(3GPP), TR 33.899, 08 2017. [Online]. Available: http://
www.3gpp.org/ftp/specs/archive/33series/33.899/.

[19] Y. Kirsal and O. Gemikonakli. Further Improvements
to the Kerberos Timed Authentication Protocol. In
Novel Algorithms and Techniques In Telecommunications,
Automation and Industrial Electronics, eidted by T. Sobh,
K. Elleithy, A. Mahmood, and M. Karim, Springer, 2008.

[20] W. Liang and W. Wang. A Quantitative study of
authentication and QoS in Wireless IP Networks. In
Proceedings of the 24th IEEE Conference on Computer
Communications (INFOCOM), 2005.

[21] T. Hardjono. Kerberos on the Web: Update.
http://www.kerberos.org/events/Board-3-30-09/

3-hardjono-kerbweb.pdf, MIT Kerberos Consortium,
December 2005.

[22] Heimdal. PKCROSS for Heimdal. http://www.taca.

jp/krb-cross-realm/pkcross-heimdal.html, April
2008.

[23] Heimdal. Initial version of PKCROSS
Implementation. http://www.stacken.kth.se/lists/

heimdal-discuss/2008-04/msg00004.html, Heimdal
Discussion Mailing List, April 2008.

[24] A. Harbitter and D. Menasce. Perofrmance of public-
key-enabled Kerberos authentication in large networks.
In Proceedings of 2001 IEEE Symposium on Security and
Privacy, Oakland, California, 2001.

[25] M. Hur, B. Tung, T. Ryutov, C. Neuman, A. Med-
vinsky, G. Tsudik, and B. Sommerfeld. Public
key cryptography for cross-realm authentication in
Kerberos (PKCROSS). http://tools.ietf.org/html/

draft-ietf-cat-kerberos-pk-cross-07, May 2001.
[26] R. Jover. Some key challenges in securing 5G

wireless networks. Electronic Comment Filing System,

14
EAI Endorsed Transactions on

Security and Safety
01 2018 - 05 2018 | Volume 4 | Issue 14 | e2

www.secure-endpoints.com/talks/nist-pki-06-kerberos.pdf
www.secure-endpoints.com/talks/nist-pki-06-kerberos.pdf
http://www.kerberos.org/join/overview.pdf
http://www.kerberos.org/join/overview.pdf
http://www.citi.umich.edu/projects/kerb_pki/
http://www.citi.umich.edu/projects/kerb_pki/
http://www.cs.york.ac.uk/~jac/papers/drareviewps.ps
http://www.cs.york.ac.uk/~jac/papers/drareviewps.ps
http://www.eskimo.com/~weidai/benchmark.html
http://www.eskimo.com/~weidai/benchmark.html
http://www.citi.umich.edu/techreports/reports/citi-tr-01-2.pdf
http://www.citi.umich.edu/techreports/reports/citi-tr-01-2.pdf
http://www.3gpp.org/ftp/specs/archive/33 series/33.899/
http://www.3gpp.org/ftp/specs/archive/33 series/33.899/
http://www.kerberos.org/events/Board-3-30-09/3-hardjono-kerbweb.pdf
http://www.kerberos.org/events/Board-3-30-09/3-hardjono-kerbweb.pdf
http://www.taca.jp/krb-cross-realm/pkcross-heimdal.html
http://www.taca.jp/krb-cross-realm/pkcross-heimdal.html
http://www.stacken.kth.se/lists/heimdal-discuss/2008-04/msg00004.html
http://www.stacken.kth.se/lists/heimdal-discuss/2008-04/msg00004.html
http://tools.ietf.org/html/draft-ietf-cat-kerberos-pk-cross-07
http://tools.ietf.org/html/draft-ietf-cat-kerberos-pk-cross-07

The performance analysis of PKI-based authentication

2017. [Online]. Available: https://www.fcc.gov/ecfs/
filing/10130278051628

[27] C. Kaufman. Internet Key Exchange (IKEv2) Proto-
col. http://www.ietf.org/rfc/rfc4306.txt, December
2005.

[28] C. Kaufman, R. Perlman, and M. Speciner. Private
Communication in a PUBLIC World, Second Edition.
Prentice Hall PTR, Basel-Boston-Berlin, 2002.

[29] J. Kohl and C. Neuman. RFC 1510: The Kerberos
network authentication service (v5). http://rfc.net/

rfc1510.html, 1993.
[30] KX.509. KX.509 Source. http://kx509.cvs.

sourceforge.net/kx509/, 2007.
[31] A. Medvinsky, M. Hur, and C. Neuman. Public key

utilizing tickets for application servers (PKTAPP). http:

//tools.ietf.org/html/draft-ietf-cat-pktapp-00,
January 1997.

[32] The MIT Kerberos Consortium. Proposal for corporate
sponsors. www.kerberos.org/join/proposal.pdf, 2007.

[33] R. Muntz, K. Chandy, F. Baskett, and F. Palacios. Open,
closed, and mixed networks of queues with different
classes of customers. Journal of the ACM, April 1975.

[34] B. Neuman, B. Tung, J. Way, and J. Tros-
tle. Public key cryptography for initial
authentication in Kerberos servers (PKINIT-
02). http://ietf.org/internet-drafts/

draft-ietf-cat-Kerberos-pk-init-02.txt, October

2002.
[35] A. Patel, K. Leung, M. Khalil, and H. Akhtar.

Authentication protocol for mobile IPv6. http://www.

rfc-editor.org/rfc/rfc4285.txt, 2006.
[36] D. Rupprecht, A. Dabrowski, T. Holz, E. Weippl, and

C. Pppper. On security research towards future mobile
network generations. https://arxiv.org/pdf/1710.

08932.pdf, 2017.
[37] M. Sirbu and J. Chuang. Distributed authentication

in Kerberos using public key cryptography. In IEEE
Symposium On Network and Distributed System Security
(NDSS’97), 1997.

[38] M. Steiner, G. Tsudik and M. Waidner. Diffie-Hellman
key distribution extended to group communication. In
Proceedings of the 3rd ACM conference on Computer and
communications security (CCS’96), 1996.

[39] C. Skalka and X. Wang. Trust but verify: authorization
for web services. In Conference on Computer and
Communications Security, Proceedings of the 2004 workshop
on Secure web service, October 2004.

[40] K. Xiong. The Performance of Public Key-based
Authentication Protocols. In Proceedings of the 6th
International Conference on Network and System Security,
2012.

[41] L. Zhu and B. Tung. RFC 4556: Public key cryptography
for initial authentication in Kerberos (PKINIT). http:

//www.ietf.org/rfc/rfc4556.txt, June 2006.

15
EAI Endorsed Transactions on

Security and Safety
01 2018 - 05 2018 | Volume 4 | Issue 14 | e2

https://www.fcc.gov/ecfs/filing/10130278051628
https://www.fcc.gov/ecfs/filing/10130278051628
http://www.ietf.org/rfc/rfc4306.txt
http://rfc.net/rfc1510.html
http://rfc.net/rfc1510.html
http://kx509.cvs.sourceforge.net/kx509/
http://kx509.cvs.sourceforge.net/kx509/
http://tools.ietf.org/html/draft-ietf-cat-pktapp-00
http://tools.ietf.org/html/draft-ietf-cat-pktapp-00
www.kerberos.org/join/proposal.pdf
http://ietf.org/internet-drafts/draft-ietf-cat-Kerberos-pk-init-02.txt
http://ietf.org/internet-drafts/draft-ietf-cat-Kerberos-pk-init-02.txt
http://www.rfc-editor.org/rfc/rfc4285.txt
http://www.rfc-editor.org/rfc/rfc4285.txt
https://arxiv.org/pdf/1710.08932.pdf
https://arxiv.org/pdf/1710.08932.pdf
http://www.ietf.org/rfc/rfc4556.txt
http://www.ietf.org/rfc/rfc4556.txt

	1 Introduction
	2 PKCROSS and PKTAPP
	2.1 Protocol Analysis
	2.2 The Calculation of Response Time via Queueing Networks

	3 A New Group Authentication Technique Using Public-Key Cryptography
	3.1 A Single Remote Realm
	3.2 Multiple Remote Realms

	4 The Performance Evaluation of The New Proposed Technique
	4.1 The Operations of Encryption and Decryption
	4.2 The Calculation of Response Time via a Queueing Network

	5 Security Discussions
	6 Related Work
	7 Conclusions and future work

