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Abstract. To achieve dual-carbon target and the fixed station spacing, this paper 

introduced an optimization model to achieve shortest running time and the lowest energy 

consumption. For this purpose, our work proposed an optimization mathematical model. 

The analytical results show the correctness and effectiveness of the model, and also 

provide theoretical and data support for the further optimization and improvement of the 

subway running scheme. This study has significance for improving the efficiency of 

subway operation and reducing the operating cost, providing theoretical support and 

technical guidance for the sustainable development of the subway industry, and is 

expected to promote the benign development of urban public transport. 
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1 Introduction 

With the acceleration of the urbanization process, a large number of people continue to migrate 

to the city, resulting in the rapid expansion of the scale of our country's cities, and the 

population of large and medium-sized cities increased rapidly. Compared with small and 

medium-sized cities, the pressure of public transportation and the difficulty of energy supply in 

large and medium-sized cities show a progressive increase. Therefore, urban underground 

railway has become the first choice of urban public transportation construction because of its 

fast running and controllable traffic time. With the improvement of subway lines, subway has 

become the first choice and dependence of urban residents. Passengers' demand for speed and 

punctuality has become the basic goal of subway route and time scheduling. At the same time 

that passengers travel more and more convenient, the energy consumption of the subway also 

gradually increases. With the idea of ecological civilization construction and the gradual 

implementation of dual-carbon goal strategy, energy saving and emission reduction has become 

a new goal of urban public transport management. Therefore, minimizing energy consumption 

under the condition of ensuring the shortest running time is a new topic in the design of urban 

subway running scheme. This has an active role in promoting the optimization of transport 

capacity and giving full play to the advantages of the subway network. Therefore, it is of great 
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theoretical significance and engineering application value to study the optimal strategy of 

subway route. 

2 Problem description 

The running process of the train between the two platforms is shown in Figure 1. Its operation 

is more complex, and there is a maximum speed limit during operation. Based on the maximum 

speed limit, trains usually have four operating conditions: traction, cruise, idle, and brake, as 

shown in Figure2. 

 

Fig. 1 Diagram of train operation process. 

 

Fig. 2 Diagram of train operation condition. 

Traction is a process of energy consumption. Traction forces need to consume electrical 

energy to overcome the resistance and do work, which is converted into kinetic energy of the 

train and generates some heat energy. Therefore, in this stage, the engine provides traction. In 

this stage, the engine is in the state of energy consumption, and the train is in the state of 

acceleration. In the cruise stage, the train moves at a constant speed, and the resultant force is 

zero. At this time, whether the train needs traction or braking depends on the total resistance 

of the train at that time. In the idle running stage, the train is neither traction nor braking, and 

does not need the engine to supply energy, its running state depends on the total resistance of 

the train, and the engine does not need to consume energy. In the braking stage, the train slows 

down and does not need the engine to supply energy, and the engine is still in a state of no 

energy consumption. If the distance between stations is short, the train generally adopts the 

strategy of "traction → idling → braking". If the distance between stations is long, the train 

usually uses traction until it approaches the maximum speed limit, then alternates between 

cruising, idling, traction, and braking is applied when approaching the platform. 



If the train accelerates at maximum traction in the acceleration stage, adopts uniform speed 

and idling as much as possible in the middle stage, and uses maximum braking force when the 

train coming to the station, the energy consumption of the train will be minimal in this 

operation. 

In the same journey, trains using different driving strategies will usually produce different time 

and energy consumption. This paper studies the strategy of trains running between the station 
thi and the station 1i + . 

Assume that the train is running on a horizontal track, the distance between the
thi station and 

the station 1i + is S，the upper limit speed of the train is maxv ，the mass of the train is m ，the 

rotating mass factor of the inertia of the rotating parts is ，the maximum traction force is 

maxdF ，and the maximum braking force is 
maxsF .Body resistance meets Davis resistance： 

22.0895  0.0098   0.006f v v= + + . 

3 Optimization model 

3.1 Physical model of train motion 

In this paper, the train is regarded as a simple point and the model of the simple point is 

adopted, and its motion follows Newton's second law. Its physical model as follows[1]. 

d f i w jF F F F F= + + +                                                          (1) 

Where:
dF  is the train traction force;

fF  is rolling resistance;
iF  is slope resistance;

wF  is air 

resistance;
jF  is acceleration resistance. 

Since the train is running on a horizontal track, 
iF   is zero. The rolling resistance 

fF and air 

resistance wF satisfy the Davis resistance equation  

2( ) 2.0895 0.0098 0.006r f wF v F F v v= + = + + given in this paper（v is train speed）. Combining the 

train mass m 、driving force 
dF 、braking force 

sF and rotating mass factor  given in this 

paper, Eq.(1) can be concretized as follows. 

t b

dv
m F F f

dt
 = − −                                                               (2) 

3.2 Train trajectory under the condition of minimum time 

1) Determination of constraints 

a)Acceleration phase (from point O to point A) During the acceleration phase, traction reaches 

its maximum, braking force is zero, and the train accelerates forward. 
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Where E is the energy consumption. 

b)Uniform phase (from point A to point B) In this phase, traction is used to overcome the 

running resistance, the braking force is zero, the acceleration is zero, and the train is moving at 

a constant speed. 
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c) Idling stage (from B to D) In this stage, the traction force and the braking force are zero, 

and the train is slowed down by the driving resistance. 
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d) Braking stage (from D to M) In the braking stage, the traction force is zero, the braking 

force reaches its maximum, and the train is slowed down by the braking force and running 

resistance until it stops. 
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3.3 Determination of the optimal change location of train motion state 

,
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A B Mt t t、 、  determined by Eq.(4), Eq.(10) and Eq.(12) respectively. Thus, A BS S, can be 

obtained under the condition of the shortest time, and it can be substituted into Eq.(3) to 

Eq.(18) to get the train motion track. 

The speed-distance curve models of acceleration stage, uniform stage, coasting stage and 

braking stage are determined by Eq.(5), Eq.(7), Eq.(13) and Eq.(17) respectively. The 

traction/braking force - distance curve model is determined by Eq.(3), Eq.(8), Eq.(14) and 

Eq.(15) respectively. The time-distance curve model is determined by Eq.(4), Eq.(10), Eq.(12) 

and Eq.(16) respectively. The energy consumption -distance curve model is determined by 

Eq.(6), Eq.(11), Eq.(14) and Eq.(18) respectively. 



4 Performance analysis 

4.1 Numerical Results 

In this paper, Runge Kutta method is used to solve the model. In numerical analysis, Runge 

Kutta method[2-6] is a classical algorithm for solving nonlinear ordinary differential equations, 

and it is an important implicit or explicit iterative method. Because it is a high-precision and 

single-step algorithm, it is widely used in engineering, including the famous Euler method, 

which is often used to solve differential equations numerically. Due to the high precision of 

this algorithm and the adoption of measures to suppress errors, its implementation principle is 

also complicated. The forms of the general Runge Kuta method as follows. 
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Where Eq.(20) is called Runge-Kutta method of P-order. The coefficients of , ,i i j ia b c , we 

need Taylor expansion of 1iy + in Eq.(19) at ( , )i ix y to determine the parameters by the 

coefficients of the same terms.  

The initial data in this article is[7]: The distance between the 
thi platform and the 

platform 1i + is 5144.7m. The maximum speed maxv is 100km/h, the mass of the train body m  

is 176.3t, the rotating mass factor  is 1.08, and the maximum tractive force is 310KN. The 

maximum braking force 
maxsF  is 760KN. The pre-processed data is brought into the above 

model, the calculation results are obtained based on Matlab software environment, and the 

curves are derived. 

4.2 Simulation Results 

Time-distance curve, speed-distance curve, energy-consumption-distance curve and traction 

braking power-distance curve are shown in Fig.3 to Fig.6 respectively. 

 

Fig. 3 Time-distance curve. 



 

Fig.4 Velocity - distance curve. 

 

Fig.5 Energy consumption-distance curve. 

 

Fig. 6 Traction/braking force-distance curve. 

4.3 Train Tracks Based on Minimum Time Extension 

According to Eq. (19) , the shortest time is mint , in order to test the stability of the model, the 

minimum time mint can be extended. In this paper, under the condition of the lowest energy 



consumption, the minimum time mint  extended 10 seconds. The objective function can be 

obtained based on formula (6), (11),(14)and (18), as shown below. 
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Where A B M Dt t t t、 、 、  determined by Eq.(4), Eq.(10)，Eq.(12) and Eq.(16)  respectively. 

Thus, 
A BS S, can be obtained, and substituted into Eq.(3) to Eq.(18) to get the train motion 

track. 

Time-distance curve, speed-distance curve, energy-consumption-distance curve and traction 

braking power-distance curve are shown in Fig.7 to Fig.10 respectively. 

 

Fig.7 Time-distance curve. 

 



Fig.8 Velocity - distance curve. 

 

Fig.9 Energy consumption-distance curve. 

 

Fig.10 Traction/braking force-distance curve. 

From the calculation results in fig.3 to fig.10, the following conclusions can be drawn: 

(1) The shortest running time is 196.306s, about 3 minutes. 

(2) The train runs through three stages: traction, cruising and braking. 

(3)The change of working conditions has no obvious influence on the optimal running track. 

As shown above,  the theoretical operating conditions of the train are in accordance with the 

actual conditions, and verify the correctness and feasibility of the model established in this 

paper. 

 

 



5. Conclusions 

The Runge Kutta algorithm adopted in this paper has high precision, which ensures the 

accuracy of data calculation. The minimum time is about 3 minutes, which is consistent with 

the daily ride experience, and verifies the correctness and feasibility of the model and 

algorithm. The calculation results provide theoretical and data support for the further 

expansion and optimization of train trajectory. 
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