
A Scientific Workflow Engine Design and
Implementation

Zhichao Zhang1,2,3,a, Meng Guo*1,2,b, Tingting Guo4,c

anyzhangzc@foxmail.com, bguomeng@sdas.org, ccatree98@qq.com

1Key Laboratory of' Computing Power Network and Information Security of Ministry of Education,
Shandong Computer Science Center (National Supercomputing Center in Jinan), Qilu University of

Technology (Shandong Academy of Sciences), Jinan, Shandong 250013, P. R. China
2Shandong Provincial Key Laboratory of Computer Networks, Shandong Fundamental Research Center

for Computer Science, Jinan, Shandong 250013, P. R. China
3Inspur General Software Co. Ltd., Jinan, Shandong 250101, P. R. China

4Shandong Carbon Manager Group Co. Ltd., Jinan, Shandong 250101, P. R. China

Abstract. This paper designs and implements a scientific workflow engine that follows
the BPMN 2.0, enriching existing research on scientific workflow engine specification
and theory. The engine is implemented using the Java language and adopts a layered
architecture, including a process virtual machine, a BPMN model engine and a scientific
workflow model engine from the bottom up, which has good scalability and is able to
provide powerful support for the design and operation of scientific workflows so as to
process scientific research data more efficiently.

Keywords: Scientific workflow; workflow; workflow engine; BPMN 2.0

1 Introduction

The current data overload such as experimental, sensor, satellite and biology data[1] makes it
almost impossible to handle complex computational processes manually any more, and thus
scientific workflow engines have become an indispensable tool, which plays an important role
in the study of geophysics of the atmosphere, oceans, seismic sounding, cosmology, and other
geophysical sciences.

There are already some popular Scientific Workflow Management Systems (SWFMS) in
various research fields, among which the more representative ones are Kepler[2], which is
oriented to the fields of biology and astronomy, and Taverna [3], which is mainly used in the
field of molecular biology, in addition to Galaxy[4] and Nextflow[5]. However, since each
scientific workflow engine is more oriented to its own research area and started relatively late,
there is no unified theory and specification, and the self-contained system is not easy to be
extended and integrated. In addition, the modelling of workflow activities is more in the way
of Petri nets[6][7] or UML diagrams[8], and the model elements are more obscure and not
easy to understand.

To address these issues, this paper implements a set of highly scalable and highly available
scientific workflow engine to meet the needs of multiple aspects, which makes the following
improvements compared with the existing scientific workflow engine. Firstly, the engine

PMIS 2024, March 15-17, Changsha, People's Republic of China
Copyright © 2024 EAI
DOI 10.4108/eai.15-3-2024.2346547

needs to strictly follow the BPMN 2.0 specification [9][10][11], which has the constraints of a
unified theory and specification, and can form a specification of the engine within the
scientific workflow domain. Secondly, this engine as an easily portable and extensible
component with few third-party dependencies. Finally, the engine is implemented using a
layered architecture, with the model-independent process virtual machine PVM extracted from
the bottom layer, and the BPMN model engine BPMN Engine extended based on the PVM.
Based on this engine can continue to extend the scientific workflow engine SciWf Engine,
including this paper, applicable to a variety of business scenarios workflow engine, the engine
also has the ability to support other process modelling languages such as jPDL, BPEL[12].

2 Process virtual machine design and implementation

2.1 Process Virtual Machine Overview

The Process Virtual Machine (PVM), which draws on the design concepts of the open source
workflow engine Activiti[13], is a set of abstract APIs with no concrete implementation, and is
used to describe the various possibilities in terms of workflow through the API. PVM just
provides the execution environment and related APIs needed by the process activity nodes,
and actually does not implement any activities, which makes PVM can be better adapted to a
variety of different workflow domain languages. However, because of the simplicity of the
definition , PVM in the actual implementation of the transformation into a lot of additional
features in order to complete the framework requirements . PVM using the Java language
implementation , does not rely on any third-party libraries or frameworks .

2.2 Key Classes for PVM

The classes in the design period are mainly used to describe the properties of the process
model, the base class is PvmElement with the ElementId attribute to serve as a unique
identifier, and its subclasses are PvmProceessDefinition, PvmActivity, and PvmTransition.
The behaviour of each activity is stored in the PvmActivity through the activityBehavior
property whose type is IPvmActivityBehavior.

Runtime classes are mainly used for the process of running the process, the base class is the
execution of PvmExecution, its subclasses are PvmProcessActivity, PvmActivityInstance and
PvmTransitionInstance, each subclass is responsible for providing a specific process
scheduling, for example, PvmActivityInstance will execute the behaviour of the activity
recorded in PvmActivity.

2.3 Process Scheduling for PVM

PVM's process scheduling is quite flexible, it records where the current process is executing
through the PvmProcessActivity and enables the process to flow correctly by moving the
PvmProcessActivity. The PVM defines a series of atomic operations to make the process work.

Atomic operation is one of the most basic single-step operations during the execution of
process instances, which is essentially an event producer that can notify the listener to execute
event processing logic during the execution of each single-step operation. Atomic operation

adds control logic to event notifications, such as starting an activity, and ending a process, and
so on.

Figure 1 depicts the PVM's execution of atomic operations during the forward flow of a
process, with light-coloured nodes representing objects related to process instance and the
methods they contain, and blue-coloured nodes representing atomic operations. Figure 2
depicts the execution of atomic operations during a process interruption.

Activity
Execute

Process
Start

Process
End

IPvm
Activity
Instance

Activity
EndEnd

Take

Activity
Start

Execute
SubActivity

Transition
Notify

Activity
End

Transition
Notify

Activity
Start

Transition
Start

TakeAll

IPvm
Transition
Instance

Transition
Take

Transition
End Take

Figure 1. Atomic operations for process forward flow scenarios.

AbortAbort
Abort
Notify

End

IPvm
Execution

Figure 2. Atomic operations for process interruption scenarios.

3 Bpmn engine design and implementation

BPMN engine is a process resolution engine for the BPMN 2.0 specification, a specific
implementation of PVM under the BPMN2.0 specification. The BPMN engine uses the Java
language like the PVM. The BPMN engine relies only on PVM and a few libraries related to
JSON operations.

3.1 Formal definition of the BPMN model

In this paper, we use directed graph for process model construction, based on the relevant
specification of BPMN 2.0, the process model is a directed model graph constructed by the
model elements such as start event, end event, task, exclusion gateway, parallel gateway,
sequential flow, sub-process, etc., which is finally converted into a process model file in xml
format.

(1) The complete process model contains start and end events, with the start event as the
process entry and the end event as the process end marker.

(2) The task is a node of activity that cannot be subdivided.

(3) The sub-process can be refined into another process.

(4) Sequence flow describes the process operation and data flow direction, which is used to
connect tasks, gateways, events and sub-processes with inputs and outputs.

(5) Tasks, gateways, and sub-process nodes should have input and output streams to ensure
that processes are connected and reachable.

In response to the above model definition, an example flow diagram is given in this paper, as
shown in figure 3.

Figure 3. Example of BPMN modelling process.

According to Figure 3, it can be seen that a standard process model definition consists of
multiple model elements, including process entry and termination, data flow control, process
routing branches and task nodes and other elements, through the organic combination of the
model elements to build a complete, practical use of the process model definition. A detailed
description of each of the main model elements is given below, with specific data shown in
Table 1.

Table 1. Process Model Element Data Interpretation.

Modelling element Description Symbol

StartEvent
It indicates the start of the process and is the entry

point for the execution of the process.

EndEvent
It indicates the end of the process and is the

terminating element of the process.

Task Processing of specific operations.

SequenceFlow Connector between two model elements.

Modelling element Description Symbol

ExclusiveGateway It is used to model the decisions in the process.

ParallelGateway It is used for process modelling of concurrent tasks.

3.2 Structured design of BPMN models

Workflow model is the foundation and core of workflow technology, and an unreasonable
workflow model will cause irreparable losses once it is put into actual operation. Therefore,
designing and building a standardised workflow model is the key to using workflow
technology.

The standardised process model should contain a StartEvent, an EndEvent and a
SequenceFlow at least, and the data can flow to all task nodes. If there is a branching structure,
it needs to be implemented by gateways, and the process data must be closed-loop. The
complexity of the process model is mainly reflected in the construction of mutually exclusive
and synchronous branches and sub-processes, so we give a standard specification for the use
of mutually exclusive branches, parallel branches and sub-processes.

(1) Standardization of mutually exclusive structures

Process models that use mutually exclusive structures must be constructed using an
ExclusiveGateway, and execution expressions should be created for the output streams of the
ExclusiveGateway so that the value of the expression can be computed to select a branch
when routing is performed. The example of the mutually exclusive structure is shown in
Figure 4. There are two branches that can be executed after the execution of node A, and the
engine needs to calculate the expression in the output stream based on the input variables, in
order to select the execution node B or node C.

Figure 4. Example of mutually exclusive structure.

(2) Standardization of parallel structure

If a parallel execution structure is required in the process model, a ParallelGateway is used as
a way to execute branches in parallel. It should be noted that ParallelGateway can split and
merge branches, i.e., a parallel structure should have two ParallelGateway nodes. The example
of parallel structure is shown in Figure 5. After the execution of node A, the ParallelGateway
node will split the process into two branches so that node B and node C can be executed

concurrently, and then the second ParallelGateway will merge the branches and flow to the
end node.

Figure 5. Example of parallel structure.

(3) Standardization of sub-process

Sub-processes are used to solve complex embedded processes. BPMN 2.0 requires that the
internal elements of the SubProcess should contain complete model elements, while the output
streams of the nodes in the process should not be directly connected to the nodes in the
SubProcess, but should be connected to the SubProcess nodes. The normalized sub-process
structure is shown in Figure 6.

Figure 6. Example of sub-process structure.

By following standardised process model rules, we construct a unified model base that
provides solid support for model validation methods. This modelling foundation ensures
consistency and accuracy of models, allowing various model validation methods to be
manipulated and compared on the same platform. In this way, we provide a more rigorous and
standardised methodology for the design and implementation of the scientific workflow
engine, thereby improving the reliability and efficiency of model validation. This unified
model foundation not only helps to improve the performance of the scientific workflow engine,
but also provides clearer and more specific guidance for future model validation efforts.

3.3 Analytical design of BPMN models

This paper uses the process definition tool and build the process model based on the XML
specification defined by BPMN 2.0 for the process description file, and after the process
model design is completed, it will be saved as a bpmn file and stored in the database. Process
model parsing is mainly used to parse model elements and related attributes, such as start and
end events, task nodes, gateways, sequence flows, and sub-processes, during process
deployment, and store them in the database to avoid repeated parsing of model files when the
process is running, so as to improve the efficiency of process operation. The process model
file follows the XML specification defined by BPMN 2.0, and each element contains the name
and id attributes, and different elements also contain their own unique attributes.

3.4 Implemention of the BPMN model

BPMN Engine consists of two main parts, one is the BPMN model library and the other is the
BPMN behaviour library. The model library declares the main activity elements of the BPMN
Engine, and the behaviour library defines the specific execution logic of each main activity.
The main elements of this engine are described above, but in order to ensure that the entire
scientific workflow engine is reasonable and extensible, and also to strictly follow the
requirements of the BPMN 2.0, a more complex internal implementation is used in the BPMN
model library. The following are the key classes in the model library.

(1) BpmnModel is used to describe a complete flowchart, which has two key properties,
defaultProcess and defaultDiagram. The defaultProcess records the activity nodes, sequence
flows and their corresponding attribute configurations in the flowchart, and the
defaultDiagram records the geometry information corresponding to the elements in the
defaultProcess.

(2) BpmnModelElement is the base class for all elements in a BPMN model, and it has only
one internal attribute Model, of type BpmnModel, which means that any element in the whole
model can be accessed via the Model attribute inside a model element.

(3) Process represents a BPMN process and is the type of the defaultProcess attribute of the
BpmnModel class, which inherits from the root element class RootElement, and the Key
attribute is a unique identifier of the Process object, which also holds a collection attribute of
process elements. Process is the core of a bpmn model, and the process engine will convert the
Process object into a structure that the engine can recognize during process execution, and
then make the process instance run correctly in accordance with the design graph.

(4) FlowElement has two main subclasses FlowNode and SequenceFlow. FlowNode
represents the flow object in the BPMN 2.0, which is the main graphical element that defines
the process, and can be extended by the FlowNode class for activities such as StartEvent,
EndEvent, Task, ExclusiveGateway, ParallelGateway, and so on, which are supported by this
engine. SequenceFlow is represented in the flowchart as a link between nodes, which allows
process instances to flow in the order of the link.

(5) OmgdiElement and OmgdcElement and their subclasses are classes used to describe image
features, for example Bounds is used to describe the coordinates and size of a node, recorded
in the bounds property of the Node class. The Point class is used to record the path points of a
connected line, recorded in the Edge class.

3.5 Realisation of BPMM behaviour

The BPMN model in Section 3.4 is only a static description of the process and does not
represent an actual process run at a time, so it is also necessary to define behaviours for the
BPMN model that correspond to each of its activities, so that a process is able to achieve a real
flow based on the behaviours of the different activities.

The most central class in the BPMN behaviour library is FlowNodeBehavior, which is a
concrete implementation class of the IPvmActivityBehavior interface in the PVM layer,
defining the default execution logic for all sub-classes of FlowNode. In the PVM's atomic
operation ActivityExecute, the Execute method of the IPvmActivityBehavior interface is

called to execute the specific business logic of the different activity nodes. And the Execute
method in FlowNodeBehavior is the default implementation for all subclasses of FlowNode.

In FlowNode, the outgoingGatewayType attribute is used to identify the node exclusive
gateway or parallel gateway. According to the different value, the Leave method will enter
different branches. The exclusive gateway approach leaves a node with the option of having a
default link flowing to the next node, whereas the parallel gateway approach flows the data
along all the going links to each succeeding node.

4 Design and implementation of sciwf engine

4.1 Overview of SciWf Engine

Both the PVM and BPMN Engine in the previous section are highly abstract process
resolution engines, usually with no code logic associated with a specific business and few
third-party dependencies. In this chapter, we implement a scientific workflow engine (SciWf
Engine) in conjunction with a scientific workflow business scenario.

The SciWf Engine is an extension of the BPMN Engine, which also consists of a model
library and a behavioural library. The model library is inherited from BPMN Engine's model
library, while the behaviour library is based on BPMN Engine's behaviour library and imports
necessary third-party dependencies to achieve complex and variable functional requirements.

4.2 Architectural design of SciWf Engine

The SciWf Engine adopts a layered architecture to complete bottom-up encapsulation as
shown in figure 7.

The core interface layer, SciWfCore, has been defined by PVM.

The basic component layer, SciWfComp, provides basic components and services such as
session context, persistent storage, event listening, and cache management.

The core implementation layer, SciWfImpl, defines the key model classes of the BPMN
specification and the concrete implementation of FlowElementBehavior.

The command layer, SciWfCmd, uses the Command Pattern to decouple functions. It provides
abstract interfaces that allows most client-related requirements to be implemented outside the
engine in the form of concrete command implementation classes, such as Pass, Back, Suspend,
Resuse, Enable, Deactivate, etc.

The command interception layer, SciWfCmdncptr, adopts the Chain of Responsibility Pattern.
The layer is responsible for creating conditions for the execution of commands, such as
starting transactions, creating command contexts, logging, and so on.

The business interface layer, SciWfBiz, is designed for specific businesses, and provides
various interfaces, such as RuntimeService, RepositoryService, HistoryService, TaskService,
etc.

The process engine layer, SciWfEngine, is the gateway to all interfaces. Clients can invoke the
apis provided by SciWfEngine to implement specific functions.

PVM

Session Context
Persistence
Framework

Event-Listener
Framework

Cache
Manager

ProcessInstance ActivitiyInstance TransactionInstance

FlowNodeBehaviorImpl

Pass Reject Back Jump

Suspend Resume Abort ...Cmd

SciWfCmdIncptr

Runtime
Service

History
Service

Repository
Service

Management
Service

Task
Service

SciWfEngine

Figure 7. Layered Architecture Design for SciWf Engine.

4.3 Main activities of the SciWf Engine

In order to meet the needs of scientific computing, SciWf Engine is extended based on
BPMN2.0, which implements a richer activity model that can meet the needs of computation,
transformation, storage and notification.

(1) ComputeTask is the most commonly used activity in SciWf Engine, which is used to
execute a computational process, and after the computation is completed, the result is stored in
the process instance context and flows to the next node. ComputeTask supports HTTP, direct
calls and other execution methods, the input parameter can be variables, constants, etc. in the
context of the process instance. Direct call means configuring a Java file for the compute task
and dynamically executing the file with the help of Java's reflection mechanism.

(2) MappingTask is used to implement the mapping and conversion between two entity
structures, and is usually used to connect two ComputeTask nodes, converting the output of
the former task into the parameter structure required by the latter.

(3) ScriptTask is an activity that executes the corresponding JavaScript script when the
process execution arrives. The return value of a ScriptTask can be set to a process variable via
the resultVar attribute, which can be an already existing or a new process variable. If specified
as an existing process variable, the value of the process variable is overridden by the result
value of the script execution. If you do not specify a result variable name, the script result
value is ignored.

(4) MessageActivity can send messages to a specified user in order to notify the user that a
scientific computing process or a session has been completed. The subject and content of the
message can be dynamically set through JavaScript scripts, and when the process execution
arrives at the message activity, the message sending tool will be called to send the dynamic
content to the specified user's mailbox.

5 Conclusions

This paper introduces some concepts related to traditional workflow, scientific workflow and
BPMN specification, and designs and implements a set of scientific workflow parsing engine
based on Java language. The engine is implemented using a layered architecture, the bottom
layer is the PVM process virtual machine, the BPMN model engine is the extension and
implementation of the PVM based on following the BPMN 2.0, and the top layer of the SciWf
Engine is the further extension and implementation of the BPMN model engine in
combination with the business scenarios of scientific computing. This engine can be used as a
middleware for a scientific workflow management system, responsible for parsing process
models and controlling the startup, running and termination of process instances. The SciWf
Engine is highly versatile and extensible, and work that can be continued as follows:

(1) Implementing a parsing engine using other process languages based on PVM.

(2) Developing a complete scientific workflow management system in conjunction with the
SciWf Engine.

(3) Implementing embedded sub-processes parsing and running.

Acknowledgements. This work was financially supported by the Shandong Provincial Key
Research and Development Program (No. 2022CXGC020106) and the Pilot Project for
Integrated Innovation of Science, Education and Industry of Qilu University of Technology
(Shandong Academy of Sciences) (No. 2022JBZ01-01).

References

[1] Grossman, RL.: Ten lessons for data sharing with a data commons. Sci Data. Vol. 10, No. 1,
pp. 120 (2023)
[2] Yang, P. C. , Purawat, S. , Ieong, P. U. , Jeng, M. T. , Demarco, K. R. , & Vorobyov, I. , et al.:
A demonstration of modularity, reuse, reproducibility, portability and scalability for modeling and
simulation of cardiac electrophysiology using Kepler Workflows. PLoS Comput Biol. Vol. 15, No. 3,
pp. e1006856 (2019)
[3] Gou, C. , Li, J. , Li, Y. , Liu, J. , Zhao, S. , & Xiao, Y. , et al.: Construction of a specialized
integrated simulation platform for molecule screening based on scientific computing workflow engine.
Sci Rep. Vol. 13, No. 1, pp. 15549 (2023)
[4] Teichman, G. , Cohen, D. , Ganon, O. , Dunsky, N. , Shani, S. , & Gingold, H. , et al.:
RNAlysis: analyze your RNA sequencing data without writing a single line of code. BMC Biol. Vol.
21, No. 1, pp. 74 (2023)
[5] Li, Y. , Molik, D. , & Pfrender, M. E.: EPPS, a metabarcoding bioinformatics pipeline using
Nextflow. Biodiversity Science. Vol. 27, No. 5 (2019)
[6] Ji, W.: Research on Computer Software Engineering based on Scientific Workflow. pp. 698-
703. Proceedings of 3rd International Conference on Mechatronics Engineering and Information
Technology (ICMEIT 2019), (2019)
[7] Du, N. , Li, Q. , & Liang, Y.: Actor Petri net model for scientific workflows. Proceedings of
the 4th International Conference on Ubiquitous Information Management and Communication,
ICUIMC 2010, Suwon, Republic of Korea (2010)

[8] Pllana, S. , Qin, J. , & Fahringer, T.: UML based Grid Workflow Modeling under ASKALON.
Distributed & Parallel Systems. pp. 191-200 (2006）

[9] OMG.: Business process model and notation (BPMN) version 2.0. (2010)
[10] Park, M. , Na, H. , Ahn, H. , & Kim, K. P.: A scientific workflow model designer based on
scientific information control nets. IEEE, (2015)
[11] Chinosi, M. , & Trombetta, A.: BPMN: An introduction to the standard. Computer Standards
Interfaces. Vol. 34, No. 1, pp. 124-134 (2011)
[12] Yongchareon, S. , Liu, C. , & Zhao, X.: UniFlexView: A unified framework for consistent
construction of BPMN and BPEL process views. Concurrency and Computation: Practice and
Experience. Vol. 32, No. 11, (2020)
[13] Huang, W. , Zhu, J. , Gao, Y. , Liu, G. , & Yuan, Y. , et al.: Design and implementation of
customized workflow configuration platform for electric power company. Energy Reports. Vol. 7, No.
S7, pp. 230-241 (2010)

