
Transit Signal Priority Control Method Based on Deep 
Reinforcement Learning 

Junnan Chen1, Xufei Zhuang2, *, Heng Li3, Chenxi Yang4  

{20211800083@imut.edu.cn1, zxf@imut.edu.cn2, henrylee.m@foxmail.com3, 1260917842@qq.com4}  

Inner Mongolia University of Technology, Hohhot, China 

Abstract. Transit signal priority control plays a pivotal role in enhancing the efficiency of 
public transportation and mitigating traffic congestion. Despite advancements in current 
research on transit signal priority control using deep reinforcement learning, the field is 
still nascent, encountering challenges like limited model generalization and slow training 
convergence, particularly in intricate traffic environments. This paper proposes a transit 
signal priority control model based on deep reinforcement learning. The model utilizes a 
deep neural network framework, integrating crucial optimizations like Dueling DQN, 
Distributional DQN and the PER mechanism, alongside enhancements to the loss function, 
to accommodate diverse traffic scenarios. The model incorporates essential information at 
intersections, encompassing vehicle positions, velocities, and lane conditions as input 
states to comprehensively depict the traffic situation. Concurrently, by delineating a set of 
signal phase configurations at intersections, a reward function is devised that considers 
various factors, such as intersection passage efficiency, bus delays, and passenger 
experience. This guides the agent to optimize the entire system throughout the learning 
process, duly considering signal control strategies to ensure effective decision-making. The 
proposed method's feasibility and effectiveness are validated through simulation 
experiments on the SUMO traffic simulation platform and comparison with three typical 
deep reinforcement learning algorithms. The experimental results indicate that the 
enhanced deep reinforcement learning network model not only accelerates the model's 
convergence speed but also dynamically adjusts signal timing based on real-time traffic 
conditions, effectively enhancing bus passage efficiency and mitigating congestion. It 
demonstrates superior adaptability, robustness, and scalability, offering strong support for 
intelligent traffic signal control systems. 

Keywords: Intelligent transportation; transit signal priority control; deep reinforcement 
learning; SUMO simulation 

1 Introduction 

Urban traffic congestion has consistently posed a challenging concern for both authorities and 
scholars. Promoting public transport stands as an effective measure to alleviate traffic 
congestion in global metropolitan areas, given its higher capacity and recognized efficiency in 
large cities. Transit signal priority (TSP) control not only minimizes the dwell time at 
intersections and shortens passenger travel time, enhancing the appeal of public transport, but 
also promotes increased public transit usage, leading to a reduction in private car travel and, 
consequently, alleviating traffic congestion. Traditional TSP control methods exhibit limitations, 
including passive and active priority. Conventional timing or inductive control methods 

PMIS 2024, March 15-17, Changsha, People's Republic of China
Copyright © 2024 EAI
DOI 10.4108/eai.15-3-2024.2346425



frequently struggle to adapt to intricate and dynamic traffic conditions, making real-time signal 
length adjustments unfeasible to meet actual demand. Consequently, during peak hours or 
specific circumstances, buses may encounter stoppages and delays, impacting overall 
operational efficiency. 

In recent years, Artificial Intelligence (AI) has played a significant role in intelligent transport, 
encompassing various applications, including traffic flow prediction, intelligent signal control, 
traffic monitoring, autonomous driving, travel recommendation, path planning, and bus priority 
control. While Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) have 
shown notable advancements in traffic signal control [1-3], their application in bus priority control 
is still in the early exploration stage. In contrast to traditional methods, RL and DRL methods 
avoid the need for detailed analysis and optimization schemes for various traffic situations; 
instead, they establish an interaction framework between the environment and the Agent. The 
Agent selects and performs actions based on state information from buses, other vehicles, and 
signal timings in the environment. This involves sensing information, modifying traffic signals, 
and obtaining the Agent's next state and immediate reward. Thus, RL and DRL have the 
advantage of robust adaptability to dynamic traffic conditions without requiring a priori 
assumptions about the optimization model. Present RL and DRL models primarily employ 
actions like green extension and red truncation [4-6]. However, this approach often results in the 
current timing scheme being one of the best among a limited set of schemes and not necessarily 
the most adaptive to the current intersection. Moreover, control strategies like green extension 
and red truncation may lead the model to overly prioritize reducing bus delays, potentially 
causing delays and congestion in other non-priority phases. 

Based on deep reinforcement learning, the TSP control method developed in this paper 
transcends the conventional paradigms of signal prolongation or early termination. It introduces 
a strategy for dynamically adjusting signal duration. This method prioritizes buses and 
concurrently mitigates delays and congestion in other priority phases. Deep neural networks are 
employed to model and control traffic signal behavior, ensuring a more flexible response of the 
signal control system to real-time traffic conditions. The DRL algorithm, incorporating the 
strengths of distributed DQN, dueling DQN and prioritized experience replay (PER), along with 
optimizing the loss function, empowers the agent to learn the optimal signal control strategy 
autonomously. This strategy aims to maximize bus operational efficiency, minimizing stopping 
time and queuing delays. Lastly, this paper will simulate the intersection traffic situation using 
the SUMO simulation platform to assess the performance and practicality of the proposed 
method. 

2 Related works 

The prevailing TSP control systems predominantly employ the conventional active priority 
control strategy. As active priority control excessively relies on the precision of the prediction 
model and necessitates prior bus priority requests, the system waits for the bus to apply, responds, 
and then decides whether to grant signal priority. This often results in avoidable delays and 
congestion. Moreover, it struggles to cope with intersections characterized by high traffic 
volume, complexity, and dynamic changes in active priority control. Real-time priority control 
employs advanced sensors and communication technologies to acquire real-time traffic 



information at intersections, encompassing the position, speed, and direction of buses and other 
vehicles. Utilizing this information and employing prediction models and intelligent algorithms, 
the signal control strategy dynamically adapts to the real-time traffic environment. It flexibly 
adjusts the signal control period, phase length, and sequence to optimize bus and vehicle traffic 
efficiency, minimizing delays and congestion. Lee [7] and colleagues identified the most suitable 
TSP control scheme using a bus travel time prediction model. They employed the priority plan 
redevelopment function to modify or switch the implemented priority plan. This involved a 
combination of traditional green extension, red truncation, and queue clearing strategies. Zhang 
[8] and collaborators used a queue prediction model to forecast the queue length at an intersection. 
They utilized bus vehicle data, queue length, bus stop location, dwell time, and bus vehicles in 
front of the bus stop to formulate a distance prediction model between buses and stop lines. 
Employing genetic algorithms, they resolved the signal timing scheme. They implemented a 
rolling optimization strategy to adjust the signal timing scheme continuously. Sun [9] introduced 
a two-layer optimization model to enhance the capacity of buses at intersections and decrease 
the delay in social vehicle operation resulting from the timing optimization scheme. The lower 
layer model aims to reduce bus delays at intersections, minimizing the average passenger delay. 
It is solved using the differential evolution algorithm. Hamid [10] applied motion wave theory to 
depict the queuing process of social vehicles and buses. They optimized the Mixed-Integer Non-
Linear Programming (MINLP) problem, focusing on minimizing passenger delays through 
signal timing. This problem is solved using a genetic algorithm, with green time and phase 
sequence as two decision variables. Although traditional real-time priority control methods for 
bus signals have been effective in improving intersection capacity and reducing delays, they still 
have some limitations. These methods typically rely on prediction models and optimization 
algorithms to adjust the signal timing scheme, making it challenging to adapt to complex traffic 
scenarios and real-time changes in traffic flows. Additionally, traditional methods encounter 
difficulties in addressing non-linearity, non-determinism, and dynamics, thus limiting their 
capacity to enhance the overall efficiency of the public transport system. 

In TSP control, DRL utilizes deep neural networks to model interactions with the environment, 
presenting novel opportunities for TSP control. Recent research in traffic signal control [11, 12] 
has employed DRL and 'pressure' control to discern more effective strategies for traffic signal 
optimization. Positive rewards are bestowed upon the agent when it undertakes actions to 
ameliorate traffic conditions, alleviate congestion, or enhance traffic efficiency, thereby aiding 
in pressure alleviation. Conversely, if the agent's actions lead to increased traffic congestion or 
reduced traffic efficiency, it receives negative rewards to encourage avoidance of unfavorable 
behaviors. Sun [13], leveraging DRL and integrating the benefits of Double DQN and PER, 
achieved notable advancements in traffic signal control. Significant progress has been made in 
traffic signal control in RL and deep reinforcement learning DRL. In bus priority control, there 
is less research related to these methods. Shang [14] formulated the traffic signal control 
challenge for intersections with buses as a Markov Decision Process. They considered the 
repercussions of signal adjustments on adjacent intersections. Their study aims to mitigate 
passenger delays and instances of stopping. They systematically analyzed and formulated a 
signal priority strategy for mainline buses through the iterative employment of DRL. Long [5] 
introduced an improved approach for TSP control termed Enhanced Dueling Double Deep Q 
Network with Invalid Action Masking (ED3QNI). The algorithm employs invalid action 
masking, considering traffic signal constraints and skip-phase rules. It incorporates a reward 
function evaluated by humans and accommodates multiple TSP requests. Simulation results 



illustrate that the ED3QNI method proficiently investigates the interplay between the 
environment and the agent, thereby improving bus operational efficiency compared to 
conventional methods like fixed-time signals and active priority control strategies. In summary, 
current research has made significant strides in applying DRL to TSP control. In conclusion, 
contemporary research has made substantial progress in employing DRL for TSP control. 
Nevertheless, there is a need for advancement in the following areas: 1) Enhancing algorithmic 
stability and robustness to handle fluctuations in TSP request numbers and traffic volumes. 2) 
Investigating the intricate interplay between the traffic environment and the agent, formulating 
universally applicable and adaptive reward functions for a more precise evaluation of TSP and 
traffic conditions—a prospective avenue for research. 3) To boost performance, Previous studies 
have implemented enhancements using DRL, including Dueling DQN, Double DQN, and PER. 
However, the applicability and efficacy of these improvement methods may vary across 
different traffic scenarios, warranting additional empirical research to validate their 
effectiveness and generalizability. 

3 Deep Reinforcement Learning 

3.1 Deep Reinforcement Learning 

DRL is an innovative algorithm integrating Deep Learning with Reinforcement Learning for 
end-to-end learning from perception to action. Traditional reinforcement learning faces 
limitations in handling high-dimensional and continuous traffic state information, constraining 
its further optimization for real-time decision-making. In response, DeepMind [15] introduced 
the Deep Q-Network (DQN) model, which integrates deep neural networks and Q-learning 
algorithms to facilitate learning and decision-making in complex environments by mapping the 
state space to action-value functions (Q-values). The core idea is to use a deep convolutional 
neural network (CNN) to approximate and learn Q-values between state-action pairs. The 
network is trained to minimize the Q-values' prediction error to approximate the target Q-values 
in Q-learning. In addition, DQN introduces the concepts of Experience Replay (ER) and Goal 
Network to improve the stability and effectiveness of training.ER helps to break the temporal 
correlation between the data and improve the efficiency and stability of training by preserving 
the Agent's previous experience and randomly sampling it for training. The target network is 
then used to stabilize the estimation of the target Q-value, which helps to mitigate the instability 
problem in training by slowing down the update frequency of the target network. DQN employs 
a convolutional neural network to approximate the action-value function of the current state to 
that of the target state, with and denoting the parameters of the current network and the target 
network, respectively. The approximate optimisation objective representation of the current 
value function is given in equation (1): 

𝑦ሺ𝑠, 𝑎ሻ ൌ 𝑟 ൅ 𝛾 𝑚𝑎𝑥
௔ᇱ

𝑄ሺ𝑠′, 𝑎′; 𝜃ିሻ      (1) 

The optimal value is obtained by minimizing the Temporal Difference (TD) between the target 
value and the current value, see equation (2): 

𝛿 ൌ 𝑟 ൅ 𝛾 𝑚𝑎𝑥
௔ᇱ

𝑄ሺ𝑠′, 𝑎′; 𝜃ିሻ െ 𝑄ሺ𝑠, 𝑎, 𝜃ሻ      (2) 

The loss function of the neural network is given in equation (3): 



𝐿𝑜𝑠𝑠ሺ𝜃ሻ ൌ
ଵ

ଶ
∑ 𝛿ଶே

௜ୀଵ        (3) 

In many DRL tasks based on visual perception, the corresponding value functions of different 
state-action pairs are different. However, in some states, the magnitude of the value function is 
independent of the actions. Based on the above idea, Wang [16] proposed a competitive network 
structure as a network model for DQN. The network structure is shown in Fig. 1. 

 

Fig. 1. Dueling DQN network structure 

The first model uses the standard DQN structure, which connects the convolutional and fully 
connected layers through an input layer to output the value of each action. On the other hand, 
the second model, known as the competitive network, introduces a branching structure based on 
the abstract features extracted from the convolutional layers. The upper branch signifies the state 
value function, reflecting the static state value of the environment itself; the lower branch 
represents the state-dependent action advantage function, signifying the additional value derived 
from choosing a specific action. Ultimately, these two branches are combined to derive the value 
associated with each action. This competitive structure enables the model to learn the value of 
the environment's state independent of action effects. 

Schaul [17] introduced a deep reinforcement learning algorithm called Prioritized Experience 
Replay based on priority replay sampling. The algorithm incorporates a prioritization strategy 
that assigns sample weights based on the significance of prior experiences. Samples typically 
deemed advantageous for learning will receive higher priority, being more likely to be selected 
for training, enhancing the learning of crucial experiences during the training process. This 
mechanism intensifies the algorithm's emphasis on crucial experiences, expediting the model's 
learning process. The priority formula is shown in equation (4): 

𝑃ሺ𝑖ሻ ൌ
௣೔

ഀ

∑ ௣ೖ
ഀ

ೖ
         (4) 

Where 𝛼 determines the degree of priority to be applied. 

3.2 Distributional reinforcement learning 

Distributional DQN represents an enhancement of the conventional DQN algorithm, with its 



primary innovation involving the incorporation of distributional estimation for the value 
function associated with state-action pairs. Unlike traditional DQN, which solely estimates the 
expected value, Distributional DQN offers a more comprehensive depiction of the uncertainty 
in state values by portraying the value function as a probability distribution. The algorithm 
employs a collection of atomic primes to approximate the distribution of the value function, 
expressing diverse potential state values through the learned probabilities associated with each 
atomic prime. This enhancement aids in addressing variability and uncertainty among distinct 
state values, enhancing the algorithm's adaptability to intricate tasks. This capability allows 
Distributional DQN to exhibit enhanced flexibility across reinforcement learning scenarios, 
leading to superior learning outcomes. 

Bellenmare [18] introduced a probability mass distribution relying on discrete supports, see 
equation (5), where 𝑧 is a vector comprising atomic elements with 𝑁௔௧௢௠௦ ∈ 𝑁ା. 

𝑧௜ ൌ 𝑣௠௜௡ ൅ ሺ𝑖 െ 1ሻ ௩೘ೌೣି௩೘೔೙

ேೌ೟೚೘ೞିଵ
, 𝑖 ∈ ሼ1, ⋯ , 𝑁௔௧௢௠௦ሽ      (5) 

Employ d୲ to represent the estimated distribution within this support at time t. The probability 
mass associated with each atom i is p஘

୧ ሺS୲, A୲ሻ, i.e., d୲ ൌ ൫z, p஘ሺS୲, A୲ሻ൯. The learning process 
aims to achieve convergence between the estimated distribution of cumulative returns and the 
actual distribution through updates to parameter θ. In distributed reinforcement learning, the 
distribution of returns adheres to a modified version of Bellman's equation. In a given state S୲ 
and for a specific action A୲, the payoff distribution associated with the optimal policyπ∗should 
align with the target payoff distribution derived from the distribution corresponding to the 
subsequent state S୲ାଵ and action a୲ାଵ

∗ ൌ π∗ሺS୲ାଵሻ. Distributional DQN initially constructs a 
support vector for the target distribution d୲′ and subsequently minimizes the KL divergence 
between the distribution d୲ and the target distribution d୲′. See equations (6) and (7) for target 
distributions. 

𝑑௧′ ≡ ൫𝑅௧ାଵ ൅ 𝛾௧ାଵ𝑧, 𝑝ఏഥሺ𝑆௧ାଵ, 𝑎ത௧ାଵ
∗ ሻ൯      (6) 

𝐷௄௅ሺ𝜙௭𝑑௧′ ∥ 𝑑௧ሻ         (7) 
Where ϕ୸  represents the projection of the target distribution onto the fixed support z , and 
aത୲ାଵ

∗ ൌ argmaxq஘ഥሺS୲ାଵ, aሻ is the greedy action corresponding to the mean action value function 
at state S୲ାଵ, see equation (8). 

𝑝ఏഥሺ𝑆௧ାଵ, 𝑎ሻ ൌ 𝑧்𝑝ఏሺ𝑆௧ାଵ, 𝑎ሻ        (8) 
A deep neural network models the parameterized distributions, and the parameters θ and θି 
are employed to formulate the current value distribution and the target distribution. The model's 
network structure resembles the DQN, with a critical distinction: the output is transformed from 
an action-value function to FDASFUGZ\SGF. Additionally, softmax is individually applied to 
each output action to guarantee proper distribution normalization for each action. 

4 Distributed Deep Reinforcement Learning Based Approach for 
Transit Signal Priority Control 

4.1 State 

The design of the state space must consider the intersection's traffic information for a 
comprehensive and effective depiction of traffic conditions. This traffic information 



encompasses various aspects: each inlet and outlet lane of the intersection, dedicated lanes for 
buses and social vehicles, the respective waiting times for buses and social vehicles, the length 
of the vehicle queue at the current intersection, and changes in signal phases. To precisely 
capture the bus's positional information, lanes are partitioned into cells of uniform size, 
describing the bus's position within the lane through cell P. The current state of the intersection 
is acquired by collecting and encoding the state into a state vector. This state vector, represented 
by an array of length j, assigns each element to a state within the state space. The state vector 
𝑆௣ is shown in equations (9) and (10). 

𝑆௣ ൌ ൫𝑆ଵ, 𝑆ଶ, ⋯ ⋯ , 𝑆௜, ⋯ ⋯ , 𝑆௝൯        (9) 
𝑆௜ ൌ ൫𝑃௕, 𝑃௖, 𝐿, 𝐶௥, 𝐶௚൯       (10) 

Where 𝑆௜ represents the state space of the current intersection in phase 𝑖. Pୠ denotes the bus's 
position, 𝑃௖ signifies the location of the social vehicle, 𝐿 represents the queue length at the 
current intersection, 𝐶௥ indicates the duration of the red in the current phase, and 𝐶௚ signifies 
the duration of the green in the current phase. 

The elements in the array are encoded to represent various state information. For each vehicle, 
its state is mapped to the corresponding position in the state array based on its lane position, the 
lane ID, and other relevant information. The specific state coding includes: 1) Mapping the 
vehicle position on the lane to different lane cells by inverting and mapping the vehicle position. 
Each lane is 750m long, and to more accurately describe the current traffic conditions at the 
intersection, the first four cells are all 7m in length, while cells 5-10 are 12m, 20m, 40m, 60m, 
240m, and 350m in length, respectively; 2) Combining the lane group and cell where the vehicle 
is located into a string and converting it to an integer to create a unique identifier for the vehicle 
location. For instance, if the vehicle is in the third lane cell of the second lane, the bus's location 
is represented as 23, enabling it to be pinpointed in the state array; 3) Calculating the position 
of the bus in the state array based on the lane group and cell where it is located, and marking it 
as 1 to indicate that the cell is occupied by the bus, otherwise, it is marked as 0. A schematic 
diagram illustrating the bus location information is presented in Figure 2. 

 

Fig. 2. Schematic of bus location information 

4.2 Action 

The definition of the action space must comprehensively consider the signal control strategy at 
the intersection, ensuring that the Agent can make effective decisions in diverse scenarios. The 



fundamental structure of the action space comprises a set of signal phase configurations at 
intersections, denoted as F = {NSG, NSLG, EWG, EWLG}. Each action signifies a distinct 
phase setting, and each configuration corresponds to a green allocated to a different travel 
direction. NSG represents a green for the north-south direction, NSLG indicates a green for a 
north-south left turn, EWG signifies a green for the east-west direction, and EWLG represents 
a green for an east-west left turn. The action space can consist of integer-numbered phase 
configurations, where each integer corresponds to a distinct signal phase setting. The initial 
traffic light duration for each phase is set to 100 seconds. As the Agent learns iteratively, the 
Agent determines the duration of each phase based on the reward function and the prevailing 
traffic conditions at the intersection. Recognizing the time needed for pedestrians to reach the 
central safety island, the minimum green duration is established at 12 seconds, while the 
maximum green duration is set at 35 seconds. After each green interval, a yellow light phase of 
3 seconds is implemented, and the yellow light transitions to red at its conclusion. If the duration 
is below the minimum green duration, the minimum duration is enforced; if it surpasses the 
maximum green duration, an immediate transition to the next phase occurs. The epsilon-greedy 
strategy is employed to strike a balance between exploration and exploitation when the Agent 
chooses an action. This facilitates the gradual development of knowledge regarding the optimal 
phase configuration throughout the learning process. 

4.3 Reward 

The formulation of the reward function must consider various factors, such as traffic flow 
efficiency, bus operating delays, and passenger travel experience. This ensures that the Agent, 
during the learning process, makes decisions aimed at the overall optimization of the system. 

Firstly, the reward function should prioritize overall traffic flow efficiency at the intersection. 
In this context, penalty terms based on vehicle waiting time and queue length at the intersection 
can be considered to incentivize the Agent to implement measures that reduce congestion. The 
Agent will receive positive reinforcement by minimizing waiting time and queue length, 
reflecting its contribution to overall traffic smoothness. Secondly, in achieving TSP control, the 
delay of a particular bus at the current intersection should not be the sole consideration. Instead, 
the overall delay of multi-bus priority requests at the current intersection should be considered. 
Therefore, the reward term for the total waiting time of buses should be included. Ensuring that 
buses receive more green time at intersections or reducing their waiting time will earn positive 
rewards for Agents, motivating them to optimize signal control to meet bus priority requests. 
Finally, in considering the travel experience of all passengers at the intersection, the reward 
function should also incorporate delay considerations for social vehicles. This ensures the 
reduction of bus delays without adversely affecting the normal movement of social vehicles. In 
summary, the reward function is defined as a weighted average of the following rewards: 

(1) The delay time dୠ for a multi-bus request at the current intersection, denoted as dୠ୲ , see 
equation (11), is calculated as the total waiting time for all buses at the intersection at the 
previous time t minus the waiting time for all buses at the intersection at the current time step 
t'. 

𝑑௕ ൌ ∑ ሺ𝑑௕௧௫ െ 𝑑௕௧ᇱ௫ሻ௠
௫ୀଵ 𝑚⁄        (11) 

(2) The average delay time dୡ of all social vehicles at the current intersection, denoted as dୡ୲, 
see equation (12), is calculated as the total waiting time for all social vehicles at the intersection 



at the previous time t minus the waiting time dୡ୲ᇱ for all social vehicles at the intersection at 
the current time step t'. 

𝑑௖ ൌ ∑ ൫𝑑௖௧௬ െ 𝑑௖௧ᇱ௬൯௡
௬ୀଵ 𝑛⁄       (12) 

(3) The vehicle queue length at the current intersection denoted as 𝐿 , see equation (13), is 
calculated as the difference between the vehicle queue length L୲  at the intersection at the 
previous time 𝑡 and the vehicle queue length 𝐿௧ᇲat the current time 𝑡ᇱ. 

𝐿 ൌ 𝐿௧ െ 𝐿௧ᇲ        (13) 
Therefore, the final reward function 𝑅 is shown in equation (14). 

𝑅 ൌ 𝑘ଵ𝑑௕൅𝑘ଶ𝑑௖ ൅ 𝑘ଷ𝐿       (14) 
where 𝑘ଵ，𝑘ଶ，𝑘ଷ are the weighting factors. 𝑘ଵ ൅ 𝑘ଶ ൅ 𝑘ଷ ൌ 1. 

4.4 Improved Distributed Deep Reinforcement Learning Network Model 

The enhanced distributed deep reinforcement learning network model is illustrated in Fig. 3. 
The position matrix and speed matrix of the buses, acquired by discretizing real-time traffic 
information, serve as inputs. These inputs undergo feature extraction and transformation into 
one-dimensional vectors through convolutional neural networks. These vectors capture spatial 
information, including lane occupancy, vehicle waiting time, queue length, and more. The 
unfolded vectors are utilized as input data, and following the forward propagation process of 
the neural network, the distribution of valuations for each action is ultimately obtained. During 
each interaction with the environment, the Agent stores the state, action, reward, next 
state〈s୲, a୲, r୲, s୲ାଵ〉 , and other information of each time step in the experience pool. These 
experiences are randomly sampled for learning during training. Simultaneously, by introducing 
the concept of priority, we prioritize selecting more beneficial experiences for learning, thereby 
enhancing training efficiency and stability. Furthermore, unlike the traditional mean squared 
error loss function, the enhanced model is trained using the Huber loss function to enhance 
robustness to outliers. The Huber loss function, designed for regression problems, distinguishes 
between mean squared error (MSE) and mean absolute error (MAE), exhibiting reduced 
sensitivity to outliers. In handling more significant errors, the Huber loss function leverages the 
advantages of mean square error, whereas, for smaller errors, it aligns more closely with mean 
absolute error. This adaptability allows the model to handle diverse training scenarios better, 
resulting in improved training performance and experimental results. The Huber loss function 
is show in equation (15). 

𝐿ఋ൫𝑦, 𝑓ሺ𝑥ሻ൯ ൌ ቐ
    

ଵ

ଶ
൫𝑦 െ 𝑓ሺ𝑥ሻ൯

ଶ
,         𝑖𝑓|𝑦 െ 𝑓ሺ𝑥ሻ| ൑ 𝛿

𝛿 ቀ|𝑦 െ 𝑓ሺ𝑥ሻ| െ
ଵ

ଶ
𝛿ቁ ,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (15) 

In this equation, 𝑦  represents the actual observed target value, 𝑓ሺ𝑎ሻ  denotes the predicted 
value of the model, and 𝛿 is a hyperparameter that determines the point at which the Huber 
loss function transitions into a compromise between squared error and absolute error. If the 
difference between the predicted and actual values is less than or equal to 5, the Huber loss 
function incorporates squared error. However, when the difference exceeds 8, the Huber loss 
function adopts a linear error with a slope 5. This choice reduces sensitivity to outliers, 
enhancing robustness compared to MSE. 



 

Fig. 3. Improved distributed deep reinforcement learning network model 

5 Experimental results and analyses 

In this study, we construct a simulation environment for TSP control using the SUMO 
(Simulation of Urban MObility) traffic simulation software. SUMO offers a practical platform 
for simulating dynamic changes in urban traffic flow, enabling users to test various traffic signal 
control strategies in the simulation. The simulation environment incorporates authentic road 
networks, vehicle flows, and intersections, ensuring the experiment's authenticity and reliability. 
This chapter initially introduces the simulation environment and parameter configurations for 
the experiment. Subsequently, it assesses the efficacy of the distributed deep reinforcement 
learning algorithm, Distributional Dueling Deep Q-Network based on Prioritized Experience 
Reply (DPDDQN), in TSP control within the SUMO traffic simulation software. Furthermore, 
it compares and analyzes this algorithm against other deep reinforcement learning algorithms, 
namely, DQN, Dueling DQN, and DQN with PER algorithm. 

5.1 Simulation environment and parameter settings 

The experiment is conducted using the microscopic traffic simulation platform SUMO for 
simulation experiments, and the hardware and software configuration information is presented 
in Table 1. The Traci (Traffic Control Interface) interface module provided in SUMO facilitates 
online interaction with the simulation platform. This module enables users to manipulate the 
traffic simulation online and retrieve various values of the objects in the simulation. The 
algorithmic model is implemented using the Tensorflow-gpu deep learning framework, and the 
detailed settings for the traffic road network simulation are as follows. 

Table 1. Hardware and software configurations 

Configuration Parameters 
CPU Intel(R) Xeno(R) Gold 6136 24-core @3GHz 

Memory 64GB 
Graphics Card NVIDIA GeForce RTX 3090 

Graphics Memory 24GB 
Operating System Windows 10 

SUMO 1.17.0 
Python 3.7.16 

Tensorflow 2.0 



Figure 4 depicts a simulated intersection of four roads measuring 750 × 750 𝑚ଶ. It includes 
four inlet and four exit lanes. The individual lanes have a width of 3.2m, and there is a bus stop, 
10m long, located in the rightmost lane of each route, positioned 100m from the stop line. 
Each inlet lane defines the possible directions that a car can follow: the leftmost lane is used 
only for left turns; the rightmost lane is dedicated to right turns and straight ahead; the two 
middle lanes are dedicated to straight ahead. The layout of the traffic signal system is as follows: 
the left-turn lane is provided with a dedicated traffic signal, while the other three lanes share the 
same traffic signal. The inlet lanes of the intersection are discretized and divided into cells. 
These cells are used to mark the presence or absence of bus vehicles. There are 20 cells in each 
direction, 10 of which are along the leftmost lane, while the other 10 are spread across the other 
three lanes. There are a total of 80 cells for the entire intersection. 

In each experimental round, 1000 vehicles are generated, and the details of the vehicle 
information are presented in Table 2. To better emulate real-world traffic scenarios, vehicle 
arrival times are determined based on the Weibull distribution with a shape parameter of 2, 
exhibiting a rapid increase in the middle moment followed by a gradual decrease. The generated 
vehicles consist of 20% buses and 80% social vehicles, primarily cars. Both buses and social 
vehicles have a 75% probability of traveling straight and a 25% probability of turning left or 
right. Every vehicle shares the same probability of being generated at the starting position of 
each exit. Due to the random generation of vehicles in each experimental round, the likelihood 
of vehicles arriving in precisely the same layout situation is low. 

Table 2. Vehicle information sheets 

Vehicle 
type 

Length 
(𝑚) 

Initial speed (𝑚/
𝑠) 

Acceleration 
(𝑚 𝑠ଶ⁄ ) 

Maximum speed(𝑚/
𝑠) 

bus 8.5 10 0.5 25 
car 5 10 0.2 20 

 

Fig. 4. Schematic diagram of the intersection simulation area 

As this experiment requires comparison with three other algorithms, identical network structures 
are employed for each model to ensure experiment validity. The entire experiment comprises 
800 iterations, with a maximum of 5400 steps(the duration of each episode, with 1 step = 1 
second) per iteration, conducted over 100 rounds. Other fundamental parameter settings are 
detailed in Table 3. 



Table 3. Basic parameter settings 

Parameters Parameter settings 
Epsilon ε Initial value is 1, final value is 

0.01 
The number of hidden layers in the neural network 𝑁௟ 4 

The number of neurons per layer in the neural network 𝑊௟ 400 
The number of episodes 𝐸௣ 100 

learning rate α 0.001 
The number of iterations to replace Parameters 𝑇௘ 800 

the min number of samples needed into the memory 𝑀௠௜௡ 600 
the max number of samples needed into the memory 𝑀௠௔௫ 50000 

Size of state space S 80 
Size of action space A 4 

the gamma parameter of the Bellman equation γ 0.75 

Apart from the aforementioned fundamental parameters, the PER algorithm incorporates a 
stochastic scaling factor 𝜇 = 0.6, adjusted importance sampling weight 𝜎 = 0.4, and specifies 
the value distribution range of DPDDQN as 𝑣௠௜௡ ൌ െ 50, 𝑣௠௔௫ ൌ 0, the number of atoms 
𝑁௔௧௢௠௦ ൌ 50. Following continuous experimental verification, the weights for the reward 
function were ultimately established as 𝑘ଵ=0.4, 𝑘ଶ=0.3, and 𝑘ଷ=0.3. 

5.2 Experimental evaluation and analysis of results 

To assess the effectiveness of the DPDDQN algorithm, this section primarily analyzes its 
performance in TSP control, comparing it with DQN, DQN with PER, and Dueling DQN. 
Graphs illustrating the performance of each algorithm across various metrics are provided to 
visualize their effectiveness in managing TSP. The metrics encompass cumulative rewards, 
average delays for buses and social vehicles, average queue lengths, and per capita delays. When 
calculating per capita delay, it is assumed that the average number of passengers per social 
vehicle is 2. In practical scenarios, buses often have 15-20 times the passenger capacity of cars. 
For this study, we assume buses have 20 times the passenger capacity of social vehicles. Thus, 
the per capita delay, 𝑑௢, is defined in equation (16): 

𝑑௢ ൌ ሺ∑ 40 ∗ 𝑑௕
௠
௫ୀଵ ൅ ∑ 2 ∗ 𝑑௖

௡
௫ୀଵ ሻ ሺ40𝑚 ൅ 2𝑛ሻ⁄     (16) 

The loss curves in deep reinforcement learning are typically non-smooth during training due to 
the non-convex nature and highly complex non-linear properties of optimization problems in 
this domain. Despite the lack of smoothness in the loss curve, the primary concern is usually the 
overall trend of the loss values. During training, if the model performance improves, the overall 
trend of the loss values should decrease. Figure 5 displays a graph of the prediction error of the 
enhanced neural network, exhibiting an overall decreasing trend and a gradual leveling off of 
the prediction error. Additionally, since scores in each set constantly fluctuate, a more intuitive 
observation of the Agent's reward acquisition through testing is facilitated by plotting the reward 
value curve, resulting in a smoother curve. From Fig. 6, it is evident that the DPDDQN 
demonstrates higher reward values and less fluctuation compared to the other three algorithms. 
This indicates that the algorithm is more stable during testing, less vulnerable to random factors, 
and able to optimise its control strategy faster during the learning process. 

Moreover, Figure 7 illustrates that the improved algorithm yields favorable experimental results 
regarding both the average delay and queue length of buses and social vehicles and the per capita 
delay at the current intersection. This indicates that the algorithm reduces bus delays and 



simultaneously decreases the delays and queue lengths of social vehicles, with a substantial 
reduction in per capita delay. Table 4 compares each index of DPDDQN with the other three 
algorithms. From Table 4, it is evident that the improved algorithm reduces the average delay 
of buses by 35.07%, the average delay of social vehicles by 22.42%, the average queue length 
by 11.52%, and the per capita delay by 26.61% compared to the other three typical algorithms 
with the best results. The experimental results indicate that the improved algorithm outperforms 
the other three algorithms. 

Table 4. Comparison of each metric for each algorithm 

Algorithm 
Average 
reward 

Average bus 
delay(s) 

Average social 
vehicle 
delay(s) 

Queue 
length 

Average per 
capita 

delay(s) 
DQN -12.77 73.25 930.28 6.43 185.03 

DQN with 
PER 

-7.54 59.93 771.72 6.15 152.77 

Dueling DQN -8.23 53.43 719.61 5.99 140.32 
DPDDQN -6.21 34.69 558.26 5.30 102.98 

 

 

Fig. 5. Neural network prediction error curve 



 

Fig. 6. Comparison of average reward values of the algorithms 

   
(a) Average bus delay            (b) Average car delay 

   
(c) Average queue length     (d) Average delay per passenger 

Fig. 7. Pair of traffic scenarios for each algorithm 

 



6 Conclusion 

This paper explores the TSP control problem and introduces a TSP method grounded in deep 
reinforcement learning. The enhanced algorithm amalgamates the strengths of Dueling DQN, 
Distributional DQN and PER, substantially improving control effectiveness. 

Firstly, unlike previous TSP control based on deep reinforcement learning, this paper abandons 
conventional actions like green extension or red truncation. Instead, it mitigates bus delays and 
traffic congestion through the Agent's flexible adjustment of signal duration. Secondly, the 
structure of Dueling DQN is incorporated, enhancing the modeling capability for complex 
environments by decomposing the value function into state value and advantage function. 
Distributional DQN is introduced to offer a more comprehensive understanding of the potential 
benefits of different behaviors by modeling the value distribution. This enriches information for 
the model, enabling better adaptation to complex and dynamic traffic environments. 
Additionally, the paper employs the Huber loss function for training, which handles outliers in 
the reward signal more effectively than the traditional mean square error, enhancing training 
stability and convergence speed. Experimental results demonstrate a significant improvement 
in model performance with this enhancement. The improved algorithm handles multiple bus 
requests in the same control cycle. It effectively reduces the delay of bus and social vehicles, 
and the queue length at intersections adjusts signal duration flexibly and adapts better to 
complex traffic scenarios. This provides a more flexible and efficient solution for applications 
in real traffic management. 

In summary, the TSP control method based on deep reinforcement learning proposed in this 
paper has achieved significant innovations and advantages in algorithm structure, training 
methods, and application scenarios, offering novel ideas and approaches for developing the bus 
priority field. Future research can focus on the following aspects: 1) Deepening the 
understanding and improvement of the deep reinforcement learning model. By optimizing the 
algorithm structure, introducing more environmental features, and considering diverse reward 
mechanisms, the model's adaptability to complex urban traffic environments can be enhanced, 
making it more versatile and robust. 2) This study only considered expediting buses through the 
current intersection without affecting the traffic of social vehicles, neglecting overall scheduling 
delays of buses and queuing issues such as overflow at downstream bus stops. Future research 
could expand to a more comprehensive bus system scheduling optimization, considering 
cooperative scheduling between buses to enhance overall bus transport efficiency. 3) Future 
research should enhance validation and application in real-world scenarios. Conducting field 
experiments in real traffic networks can verify the feasibility and effectiveness of the algorithms 
in real traffic management, providing stronger support for practical applications. 

Acknowledgments. This work was supported by the Science and technology plan projects of 
Inner Mongolia Autonomous Region(Grant No. 2020GG0104). 

References 

[1] Bouktif S, Cheniki A, Ouni A. Traffic Signal Control Using Hybrid Action Space Deep 
Reinforcement Learning[J]. Sensors, 2021,21(7), 2302. 
[2] Ducrocq R, Farhi N. Deep Reinforcement Q-Learning for Intelligent Traffic Signal Control with 



Partial Detection[J]. International Journal of Intelligent Transportation Systems Research, 2023,21(1), 
192-206. 
[3] Wu C, Kim I, Ma Z. Deep Reinforcement Learning Based Traffic Signal Control: A Comparative 
Analysis[J]. Procedia Computer Science,2023, 220, 275-282. 
[4] Cheng H K, Kou K P, Wong K I. Transit Signal Priority Control with Deep Reinforcement 
Learning[C]//2022 10th International Conference on Traffic and Logistic Engineering (ICTLE). IEEE, 
2022: 78-82. 
[5] Long M, Zou X, Zhou Y, et al. Deep reinforcement learning for transit signal priority in a connected 
environment[J]. Transportation Research Part C: Emerging Technologies, 2022, 142: 103814. 
[6] Shen W C, Zou L, Deng R S, et al. A TSP Control Method Based on Deep Reinforcement 
Learning[J].2023.Applied Sciences-Basel, 13(11), 6772. 
[7] Lee J, Shalaby A. Rule-based transit signal priority control method using a real-time transit travel 
time prediction model[J]. Canadian Journal of Civil Engineering, 2013, 40(1): 68-75. 
[8] Zhang C L, Yang X D, Wei J M, et al. Cooperative Transit Signal Priority Considering Bus Stops 
Under Adaptive Signal Control[J]. IEEE Access,2023,11:66808 - 66817. 
[9] Sun X, Lin K, Jiao P, et al. Signal timing optimization model based on bus priority[J]. Information, 
2020, 11(6): 325. 
[10] Hamid B, Mohammad H. Proposing a kinematic wave-based adaptive transit signal priority control 
using genetic algorithm[J].IET Intelligent Transport Systems,2023,17(5):912-928. 
[11] Wei H, Chen C, Zheng G, et al. Presslight: Learning max pressure control to coordinate traffic 
signals in arterial network[C]//Proceedings of the 25th ACM SIGKDD International Conference on 
Knowledge Discovery & Data Mining. 2019: 1290-1298. 
[12] Wei H, Xu N, Zhang H, et al. Colight: Learning network-level cooperation for traffic signal 
control[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge 
Management. 2019: 1913-1922. 
[13] Sun H, Chen C L, Liu Q, et al. Traffic Signal Control Method Based on Deep Reinforcement 
Learning [J]. Computer Science,2020,47(02):169-174. 
[14] Shang C L, LIU X M, Tian Y L, et al. Priority of Dedicated Bus Arterial Control Based on Deep 
Reinforcement Learning [J]. Journal of Transportation Systems Engineering and Information 
Technology,2021,21(03):64-70. 
[15] Mnih V, Kavukcuoglu K, Silver D, et al. Human-levelcontrol through deep reinforcement 
learning[J]. Nature, 2015 .518(7540):529-533. 
[16] Wang Z, Freitas N D, Lanctot M. Dueling network architecturesfor deep reinforcement 
learning[C]//Proceedings of the International Conference on Machine Learning. New York, USA,2016: 
1995-2003. 
[17] Schaul T, Quan J, Antonoglou, et al. Prioritized experience replay[C]// Proceedings of the 4th 
International Conference on Learning Representations. San Juan, Puerto Rico.2016:322-355. 
[18] Bellemare M G, Dabney W ， Munos R. A distribution-alperspective on reinforcement 

learning[C]//Proceedings of the 34th International Conference on Machine 
Learning.JMLR.org,2017:449-458. 


