
 
 
 
 
 
 

Effects of Air Cargo Transport and Intermodal 
Transportation on Airport Efficiency 

Yuxiu Chen1,a*, Wanyue Yang2,b  

a18222656753@163.com, b 3430123364@qq.com 

China Civil Aviation University Center for Sustainable Development, Tianjin 300300, China1 
China Civil Aviation University School of Transportation Science and Engineering, Tianjin 300300, 

China2 

Abstract. The study investigates the impact of air cargo logistics and multimodal 
transportation on airport operational efficiency. Six major domestic airports were selected 
based on domestic cargo throughput rankings and the degree of multimodal transportation. 
Data Envelopment Analysis (DEA) was utilized to assess the efficacy of the chosen 
airports. The research findings indicate that the quality of the logistics system surrounding 
the airport and the degree of multimodal transportation positively influence airport 
efficiency. Freight transportation has a positive impact on both the technical and scale 
efficiency of domestic airport operations. Airports with a greater share of freight volume 
tend to exhibit superior levels of overall technical efficiency, pure technical efficiency, and 
scale efficiency when contrasted with those characterized by lower proportions of freight 
volume. By evaluating the operation efficiency of airport cargo transportation modes and 
multimodal transportation through DEA, targeted guidance is provided for airports, along 
with corresponding improvement strategies. This study offers relative development 
recommendations for the overall advancement of airports, facilitating the joint 
development of the cargo transportation industry and the airport sector in China. 
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1 Introduction 

In recent years, the rapid progress in e-commerce, economic globalization, just-in-time 
production, logistics, and supply chain networks has created a substantial need for streamlined 
and proficient freight management. Individuals and businesses alike now heavily depend on 
freight systems for transporting goods.With the rapid development of high-speed rail 
domestically, high-speed rail and civil aviation transportation are not only in competitive 
relationships but can also achieve win-win cooperation. This involves exploring the network 
characteristics of airlines, as well as the complementary and intermodal services between 
airlines and high-speed rail. 

The global economy is becoming increasingly interconnected, leading to tighter linkages among 
transportation, multimodal transport, and logistics systems. The aviation transport industry is 
making increasingly substantial contributions to the world economy[1]. The liberalization of the 
aviation transport market, coupled with the rise of the new economy, has spurred the growth of 
aviation. Originating in the 1980s in the United States and later in Europe, the liberalization 
drive fueled increased air traffic and the success of budget airlines. This trend is intricately 
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linked with the emergence of the new economy, advancements in information and 
communication technologies, and globalization, all of which have bolstered the significance of 
aviation in facilitating the movement of both passengers and cargo. 

Aviation transport serves as a vital means of generating revenue for stakeholders in airport 
interests, such as government agencies, private agents, airlines, and decision-makers. Therefore, 
airports are integral components of comprehensive transportation infrastructure, essential 
frameworks necessary to meet highly developed commercial positions, and to provide 
meaningful economic and social development for the region. By understanding the operational 
efficiency of airports, better promotion of rapid airport development can be achieved. 

2 Utilization of Method Models and Evaluation Metrics 

2.1DEA Methodology 

In 1957, Arrell proposed a deterministic method for assessing the comparative efficiency of 
businesses by modeling the production frontier of an industry[1]. Subsequently, in 1978, Charnes 
et al. introduced Data Envelopment Analysis (DEA), a deterministic non-parametric technique 
designed to evaluate the relative performance of comparable units. DEA enables the estimation 
of both scale and technical efficiency, as well as the identification of scale returns characteristics. 
Enterprises operating within this production unit are considered technically inefficient. The 
inefficiency of decision units is quantified by their distance from the input-output point to the 
production frontier.DEA assesses the input scale and technical effectiveness of decision units, 
allowing for the comparison of the economic and social benefits generated after allocating 
resources such as capital and labor to similar enterprises. This method is instrumental in deriving 
technical and scale efficiencies and determining scale returns. By establishing a reference 
efficient frontier based on efficient production units and their linear combinations using 
mathematical programming methods, DEA provides a framework for performance 
evaluation.The DEA technique, as described by Coelli and Salazar, has found widespread 
application in empirical studies across various sectors including agriculture, banking, railways, 
financial institutions, schools, airlines, and airport departments. It offers flexibility through its 
input-oriented and output-oriented approaches. In the input-oriented model, the focus is on 
determining the minimum inputs necessary to achieve a given output level, while the output-
oriented model aims to maximize output given a set level of inputs. Coelli and Perelman 
demonstrated that both orientations yield the same set of efficient entities, with negligible 
differences in efficiency scores. In their analysis of the domestic airport sector, they suggested 
that choosing an output-oriented specification over an input-oriented one could be justified due 
to increased competition among airports following liberalization. 

2.2Construction of the DEA Model 

Data Envelopment Analysis (DEA) is a methodological approach used to evaluate the efficiency 
of Decision Making Units (DMUs) based on multiple inputs and outputs. By employing 
mathematical programming models, DEA calculates the relative efficiency of each DMU within 
a set of n similar units, considering m input indicators and s output indicators[2].The traditional 
CCR method is utilized to calculate DEA efficiency. Input indicator data for DMUs can be 
represented by the matrix 𝑋 ൌ 𝑋  (i=1,2,…,m; j=1,2,…,n), where 𝑋 denotes the ith input 



 
 
 
 
 
 

indicator of 𝐷𝑀𝑈Similarly, matrix Y=𝑦 (r=1,2,…,s; j=1,2,…,n) represents output indicator 
data. 
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, 𝜃 is referred to as the efficiency evaluation index of𝐷𝑀𝑈.The conventional 

CCR model calculates the following issues for each 𝐷𝑀𝑈 (1≤o≤n): 
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 1  𝑗 ൌ 1,2 … … 𝑛   𝑟 ൌ 1,2 … … 𝑠  𝑖 ൌ 1,2 … … 𝑚 (1) 

Due to the nonlinearity of Model 1, it poses computational challenges. By employing a C2 
transformation, Model (1) is linearized into a linear programming model, as follows: 

𝑀𝐴𝑋𝜃=∑ 𝜇𝑦
௦
ୀଵ  

s.t ∑ 𝜇𝑦
௦
ୀଵ െ ∑ 𝑣


ୀଵ 𝑥  0; ∑ 𝑣


ୀଵ 𝑥 ൌ 1   𝜇, 𝑣  0 

𝑗 ൌ 1,2 … … 𝑛   𝑟 ൌ 1,2 … … 𝑠  𝑖 ൌ 1,2 … … 𝑚                                  (2) 

In addition to assessing the efficiency of decision-making units[3], researchers often aim to 
understand the gaps between the utilization of indicators by decision-making units and the 
effectiveness of these units. Therefore, researchers have developed a complementary model to 
Model (2) called the envelopment DEA model to compute the input redundancy and output 
deficiency of DMUs. The model is as follows: 

𝑀𝑖𝑛𝜃 

s.t∑ 𝜆𝑥  𝑠
ି ൌ 𝜃𝑥


ୀଵ .  𝑖 ൌ 1,2 … … 𝑚 

∑ 𝜆𝑦  𝑠
ା ൌ 𝑦


ୀଵ   𝑟 ൌ 1,2 … … 𝑠 

 𝜆≥0. 𝑠
ି, 𝑠

ା≥0 ∀𝑗, 𝑖, 𝑟 (3) 

Here, 𝑠
ି  (i=1,2,...,m) and 𝑠

ା  (r=1,2,...,s) respectively represent the input slack and output 
shortfall of DMU. 

2.3 Selection of Evaluation Indicators 

In the process of cargo transportation at airports, there are numerous factors that impact airport 
operational efficiency. These factors can be broadly categorized into four main groups: airport 
infrastructure, airport technology, airport human resources, and airport competitive factors. 
Airport infrastructure generally encompasses facilities such as the number and length of 
runways, the number of parking stands, cargo area size, and terminal area. Airport technology 
factors typically involve runway and taxiway design, cargo area functionality, and terminal 
layout. Airport human resources mainly include the quantity and overall quality of staff, as well 
as their annual income. Competitive factors within airports include competition from 
surrounding transportation infrastructure diverting cargo traffic and cooperation from other 
modes of transportation to jointly facilitate cargo transportation. 

This study investigates the determinants of airport operational efficiency, taking into account 
the accessibility of airport data. It explores the interplay between airport operational efficiency 
and air transportation, along with multimodal transport within airports. Utilizing the DEA 
method, the selection of output and input variables is contingent upon data accessibility, factors 
impacting airport operational efficiency, and existing literature on airport efficiency. Notably, 



 
 
 
 
 
 

input indicators include the number of runways, cargo area size, and parking stand quantity, 
while output indicators comprise cargo and mail throughput volume, aircraft movements, and 
the growth rate of cargo and mail throughput volume compared to the preceding year[4]. 

3 Evaluation and analysis of airport operational efficiency in china 

3.1 Sample evaluation 

This paper examines the cargo throughput of airports and the relevant policies regarding 
multimodal transportation associated with these airports. Six domestic airports, including 
Guangzhou Baiyun International Airport, Shanghai Pudong International Airport, Shenzhen 
Bao'an International Airport, Zhengzhou Xinzheng International Airport, Chongqing Jiangbei 
International Airport, and Tianjin Binhai International Airport, have been chosen as evaluation 
samples.These six airports represent the strategic importance of freight transportation in China. 
The basic data for the six major airports in 2022 are selected as the foundation for evaluation. 
Table 1 and Table 2 present the basic data for these six airports. Table 3 conducts dimensionless 
processing on the basic data. 

Table 1. Fundamental data 

Airport 
Runwa

y 
Count 

Seat/Count 

Cargo 
Area 

(10,00
0 

square 
meters) 

Parkin
g 

Stands 

2022 Annual 
Cargo 

Throughput(t
) 

2022 
Annual 
Aircraft 

Movement
s 

2022 Year-
on-Year 
Growth 
Rate of 
Cargo 

Throughpu
t 

Zhengzhou 
Xinzheng 

2 23.79 158 2 624654.08 94427 -11.4% 

Shanghai 
Pudong 

4 40 340 4 3117215.59 204378 -21.7% 

Guangzho
u Baiyun 

3 80 269 3 1884559 266627 -7.9% 

Shenzhen 
Bao'an 

2 171.2 199 2 1506955.03 235693 -3.9% 

Chongqing 
Jiangbei 

3 80 209 3 414775.41 188586 -13% 

Tianjin 
Binhai 

2 19 59 2 131516.91 60173 -32.5% 

Data Source: Chinese Civil Aviation Statistical Bulletin 

Table 2. Dimensionless data 

Airport 
Runw

ay 
Count 

Seat/Count 

Cargo 
Area 

(10,000 
square 
meters) 

Parking 
Stands 

2022 Annual 
Cargo 

Throughput(t) 

2022 
Annual 
Aircraft 

Movements 

2022 Year-
on-Year 
Growth 
Rate of 
Cargo 

Throughput 
Zhengzhou 
Xinzheng 

0.000
0 

0.0315 0.3523 0.1346 0.1511 0.4444 0.0000 

Shanghai 
Pudong 

2.000
0 

0.1380 1.0000 1.0000 0.9454 0.2407 2.0000 



 
 
 
 
 
 

Guangzhou 
Baiyun 

1.500
0 

0.4008 0.7473 0.4884 1.0000 1.0000 1.5000 

Shenzhen 
Bao'an 

0.000
0 

1.0000 0.4982 0.3626 0.8119 0.6204 0.0000 

Chongqing 
Jiangbei 

1.500
0 

579.5814 0.5338 0.0744 0.6547 0.9722 1.5000 

Tianjin 
Binhai 

0.000
1 

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

3.2Static Evaluation Results and Analysis Based on the BCC Model 

Using Data Envelopment Analysis (DEA) methodology, an assessment is conducted on overall 
technical, scale, and comprehensive efficiency. Based on collected input-output data from 
sampled airports, software is employed for computation. Table 3 presents the calculation results 
of the BCC model, encompassing technical efficiency, comprehensive efficiency, scale 
efficiency, and the effectiveness of DEA. 

Table3. BCC Model Calculation Results: Validity Analysis 

Airport 
Technological 

Efficiency (TE) 

Scale 
efficiency 

SE(k) 

Overall 
Efficiency 

OE(θ) 

Parking 
Stands 

Looseness 
Variable 

S- 

slack 
variable 

S+ 
Validity 

Zhengzhou 
Xinzheng 

1 1 1 0 0 1 
DEA 

Strongly 
Efficient 

Shanghai 
Pudong 

1 1 1 0 0 1 
DEA 

Strongly 
Efficient 

Guangzhou 
Baiyun 

1 1 1 0 0 1 
DEA 

Strongly 
Efficient 

Shenzhen 
Bao'an 

1 1 1 0 0．004 1 
DEA 

Weakly 
Efficient 

Chongqing 
Jiangbei 

1 1 1 0 0 1 
DEA 

Strongly 
Efficient 

Tianjin 
Binhai 

0.994 0.976 0.879 0 0 0.994 
DEA 

Inefficient 

3.3 Efficiency Analysis 

In DEA efficiency evaluation, technical efficiency reflects the efficiency brought by technical 
factors. A value of 1 indicates reasonable use of resources, whereas a value less than 1 suggests 
room for improvement in technical efficiency[5]. Scale efficiency reflects the efficiency brought 
by the scale of operations. A value of 1 indicates constant returns to scale (optimal state), a value 
less than 1 indicates increasing returns to scale (expanding the scale may increase efficiency), 
and a value greater than 1 indicates decreasing returns to scale (reducing the scale may increase 
efficiency)[6]. Comprehensive efficiency reflects the overall efficiency of decision-making units 
(DMUs), where the value equals the product of technical efficiency and scale efficiency and is 
thus less than or equal to 1. Slack variables, S- representing 'how much input can be reduced to 
achieve target efficiency[7] and S+ representing 'how much output can be increased to achieve 
target efficiency,' are indicative. Combining comprehensive efficiency indicators, S-, and S+, 



 
 
 
 
 
 

three metrics in total, the effectiveness of DEA can be determined. If comprehensive efficiency 
equals 1 and both S- and S+ are 0, it's labeled as 'DEA strong effective.' If comprehensive 
efficiency equals 1 but either S- or S+ is greater than 0, it's labeled as 'DEA weak effective. If 
comprehensive efficiency is less than 1, it's labeled as 'non-DEA effective. 

The operational efficiency of airports hinges on both technical efficiency and scale efficiency. 
An airport's overall efficiency is deemed optimal only when both technical and scale efficiencies 
are maximized, resulting in a relative efficiency value of 1. As per Table 3, five airports—
Shanghai Pudong, Guangzhou, Shenzhen, Chongqing, and Zhengzhou—demonstrate effective 
comprehensive efficiency. These airports exhibit judicious allocation of infrastructure resources, 
maximal utilization, and robust operational management. Conversely, Tianjin Airport's 
comprehensive efficiency shortfall underscores the imperative for enhancing scale efficiency in 
airport operations. Evaluation indicates that each airport's efficiency status varies based on the 
utilization level of tangible assets. For detailed airport analyses, employing the multi-objective 
DEA method empowers managers to discern trade-offs between outputs, facilitating the 
identification of alternative high-efficiency operational strategies and the formulation of 
targeted plans to attain desired output levels. 

4 Conclusion 

This research utilizes the Data Envelopment Analysis (DEA) technique to evaluate the 
operational efficiency of the six primary domestic cargo airports during the year 2022. It 
examines the extent to which the quality of multimodal transportation and the aviation transport 
system impact the technical and scale efficiencies of these airports[8]. The findings underscore 
the substantial influence of the national logistics system's quality on airport efficiency. Notably, 
intermodality significantly shapes airport efficiency, particularly evident in airports directly 
integrated with the high-speed rail network, which demonstrate superior technical and pure 
technical efficiencies. Additionally, the ease of goods or passenger boarding onto aircraft 
emerges as a pivotal factor in efficiency levels. Consequently, enhancing facilities, such as 
increasing the proportion of boarding gates equipped with jet bridges, to optimize airport-
aircraft interfaces, leads to heightened efficiency levels. 

The above research findings carry significant guidance. Achieving a highly efficient and 
integrated multimodal transport system necessitates seamless connectivity and effective 
integration across various transportation modes. High-speed rail lines operate independently of 
airports, and the robustness of the logistics network is contingent upon governmental services, 
investment, policies, and strategic planning. Pertinent authorities play pivotal roles in 
infrastructure development, fostering transportation regulatory frameworks, and devising and 
executing efficient customs procedures. Within the aviation transport sector, substantial 
investment in innovating the logistics transport process is recommended. 

These findings also bear relevance for airport managers. The operational efficacy of airports 
hinges on adept management of passenger and cargo flows. The global supply chain demands 
cutting-edge logistics services, incorporating the utilization of new multimodal transport and 
information technology in material distribution and physical management[9]. Investments in 
logistics innovation should enhance security screenings, boarding procedures, personnel flows, 



 
 
 
 
 
 

and terminal operations. Additionally, the formulation and enhancement of hub management 
strategies necessitate support from logistics innovation. 

Lastly, the study acknowledges its limitations and deficiencies. One prominent factor is the 
utilization of a limited dataset; hence, the validity of this study's results could be bolstered by a 
larger sample of airports. Furthermore, when assessing the impact of air cargo transport and 
multimodal transport on airport efficiency, incorporating more pertinent evaluation indicators 
of air cargo transport would facilitate a more thorough analysis of airport cargo operations 
efficiency. 
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