
Momentum effect based on stochastic dominance 

theory —— Evidence from Chinese Shanghai Stock 

Exchange A-share 

Liang Zhoua, Tian Tianb 

a949910883@qq.com, b2206773275@qq.com 

Alibaba Business School, Hangzhou Normal University, Hangzhou, China 

Abstract. This paper employs portfolio optimization models based on second-order 

stochastic dominance and "super-convex" third-order stochastic dominance, comparing 

them with an equal-weight portfolio optimization model. Through the computation of out-

of-sample indicators for portfolio evaluation, it is found that, in the Shanghai Stock 

Exchange A-share market, the portfolio based on stochastic dominance theory exhibits a 

significant momentum effect, leading to substantial excess returns when the formation 

period is relatively long compared to the benchmark returns. 
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1 Introduction 

The Efficient Market Hypothesis (EMH) suggests that unless there is market manipulation, 

investors cannot obtain returns higher than the market average by analyzing past prices. 

However, since the 1980s, many empirical studies have shown that there are many phenomena 

in the stock market that do not conform to the EMH. Among them, momentum effect is a more 

typical one, which is manifested by the trend of stock returns to continue in the original direction 

of movement, that is, stocks with higher returns over a period of time in the past will still have 

higher returns than stocks with lower returns in the past in the future. 

The earliest study of momentum effect was conducted by Jegadeesh and Titman[1], who found 

that the strategy of buying stocks with good past performance and selling stocks with poor past 

performance (JT price momentum strategy) in the US stock market can generate significant 

positive returns during a holding period of 3 to 12 months. Since the discovery of momentum 

effect by Jegadeesh and Titman, it has been widely studied in financial markets. Many studies 

have confirmed the robustness of momentum strategies[2][3][4]. However, for new emerging stock 

markets such as China, traditional momentum strategies do not seem to be significant[5][6]. A 

major reason may be that traditional momentum strategies only consider the historical returns 

of stocks and ignore other risk indicators. The most extensively studied portfolio optimization 

model in existing literature is the mean-variance (MV) framework[7][8]. This model considers 

not only the returns of stocks but also the variance of those returns. However, a limitation of 

this model is that it does not take into account the non-normal distribution of returns, as returns 

may not necessarily follow a normal distribution[9]. To overcome this limitation, this paper aims 
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to investigate the momentum effect of investment strategies based on the stochastic dominance 

(SD) theory in the Chinese Shanghai Stock Exchange A-share market. 

SD theory is an approach that can provide partial ordering based on partial information about 

investors' utility functions, initially proposed by Lehmann[10]. This theory  does not require any 

assumption about the distribution of asset returns. Building on these advantages, many scholars 

have applied SD theory to portfolio optimization. For example, Post and Kopa[11] improved upon 

existing "superconvex" SD conditions by relying on properties of the lower partial moments and 

developed portfolio optimization model with "superconvex" third-order SD (SCTSD) 

constraints. Portfolios constructed based on this model were compared to the Center for 

Research in Security Prices all-share index, and it was found that they achieved an average 

annual increase in out-of-sample returns of 7%. Post et al.[12] proposed a portfolio optimization 

approach based on a combination of SD decision criteria and empirical likelihood estimation. 

When applied to momentum strategies in the stock industry, this method produced significant 

improvements in out-of-sample performance compared to heuristic diversification and MV 

optimization. Kouaissah[13] proposed a two-step optimization problem, using a stochastic 

dominance method in the first optimization step to determine the effective assets of risk-averse 

investors, thereby greatly improving investors' out-of-sample returns. However, few scholars 

have used investment strategies based on the SD theory to explore the existence of momentum 

effects in the Chinese Shanghai Stock Exchange A-share market. 

The following of this paper is organized as follows. In section 2, we will introduce SD theory, 

and portfolio optimization models with SD constraints. In section 3, we will analyze the 

empirical results. In section 4, we will summarize and present the conclusions. 

2 Portfolio optimization with stochastic dominance constraints 

In SD theory, the most widely used are primarily three types: first-order SD (FSD), second-

order SD (SSD), and third-order SD (TSD). Among SD rules, the most commonly used ones in 

the literature are SSD and TSD. SSD assumes that investors are risk-averse, while TSD assumes 

that investors have a decreasing absolute risk aversion.  

Suppose there are 𝑁 different risky base assets. The joint probability distribution of their returns 

𝐹(𝑟1, 𝑟2, ⋯ , 𝑟𝑁)  are discrete with a discrete joint probability distribution with 𝑇  mutually 

exclusive and exhaustive scenarios. Let 𝑟𝑖𝑡  denote the return rate of asset 𝑖 under scenario 𝑡 with 

𝑝𝑡 , 𝑡 = 1, ⋯ , 𝑇, which satisfies ∑ 𝑝𝑡
𝑇
𝑡=1 = 1.  A portfolio is a convex combination of base assets 

characterized by a vector 𝜆 = (𝜆1, ⋯ , 𝜆𝑁), where 𝜆𝑖 denote  the proportion of asset $i$ in the 

portfolio and ∑ 𝜆𝑖
𝑁
𝑖=1 = 1.  The return of the portfolio is random and depends on the return of 

base assets as well as their proportion, which is denoted by 𝑋 = ∑ 𝜆𝑖𝑟𝑖𝑡
𝑁
𝑖=1 , 𝑡 = 1, ⋯ , 𝑇. Let 𝑌 

to denote the return of a given benchmark which are also discrete with scenario 𝑠 = 1, ⋯ , 𝑇𝑏  

with probability 𝑝𝑠. The return rate of 𝑌 under scenario 𝑠 is 𝑦𝑠 and we assume that 𝑦1 ≤ 𝑦2 ≤
⋯ ≤ 𝑦𝑇𝑏

. Without loss of generality, we assume that return rate is bounded and is in the range 

[𝑎, 𝑏], −∞ < 𝑎 ≤ 𝑏 < ∞ . This section introduce portfolio optimization models  aim at 

identifying the best portfolio that dominates the benchmark portfolio by SSD and TSD. 



 

 

 

 

2.1 Portfolio optimization with second-order stochastic dominance constraints 

Let 𝐹(𝑥) and 𝐺(𝑥) be the cumulative probability distribution of random variable 𝑋 and 𝑌.  SSD 

is related to  risk measure the first-order lower partial moment (LPM), which is defined to be 

𝐹(2)(𝑥) = ∫ 𝐹(𝑡)
𝑥

𝑎
𝑑𝑡 and 𝐺(2)(𝑥) = ∫ 𝐺(𝑡)

𝑥

𝑎
𝑑𝑡.  

Definition 1 (SSD).  𝑋 dominates 𝑌 by SSD  if and only if 𝐹(2)(𝑥) ≤ 𝐺(2)(𝑥) for all values 𝑥, 

and there is at least some 𝑥0 for which a strong inequality holds. 

For a given portfolio 𝜆, its first-order LPM at 𝑥 equals: 

𝐹𝜆
(2)(𝑥) = ∫ 𝐹𝜆(𝑡)

𝑥

𝑎
𝑑𝑡 = 𝔼𝐹𝜆

[(𝑥 − ∑ 𝜆𝑖𝑟𝑖𝑡
𝑛
𝑖=1 )𝐼𝜆,𝑡(𝑥)] = ∑ 𝑝𝑡(𝑥 − ∑ 𝜆𝑖𝑟𝑖𝑡

𝑛
𝑖=1 )𝑇

𝑡=1 𝐼𝜆,𝑡(𝑥)

 (1) 

where 𝐼𝜆,𝑡(𝑥) is an indicator function that takes value 1 when ∑ 𝜆𝑖𝑟𝑖𝑡
𝑛
𝑖=1 ≤ 𝑥, and 0 otherwise. 

Dentcheva and Ruszczyński[14] proposed a linear programming model for portfolio optimization  

with SSD constraints. 

𝑚𝑎𝑥
𝜆,𝜃

∑  𝑇
𝑡=1 𝑝𝑡 ∑  𝑁

𝑖=1 𝜆𝑖𝑟𝑖𝑡

𝑠. 𝑡.   𝜃𝑠𝑡 ≥ 𝑦𝑠 − ∑  𝑛
𝑖=1 𝜆𝑖𝑟𝑖𝑡 , 𝑡 = 1, ⋯ , 𝑇; 𝑠 = 1, ⋯ , 𝑇𝑏

∑  𝑇
𝑡=1 𝑝𝑡𝜃𝑠𝑡 ≤ 𝐺(2)(𝑦𝑠), 𝑠 = 1, ⋯ , 𝑇𝑏

∑  𝑇
𝑡=1 𝑝𝑡 ∑  𝑁

𝑖=1 𝜆𝑖𝑟𝑖𝑡 ≥ ∑  
𝑇𝑏
𝑠=1 𝑝𝑠𝑦𝑠

∑  𝑁
𝑖=1 𝜆𝑖 = 1

𝜃𝑠𝑡 , 𝜆𝑖 ≥ 0, 𝑡 = 1, ⋯ , 𝑇; 𝑠 = 1, ⋯ , 𝑇𝑏 , 𝑖 = 1, … , 𝑁
 (2) 

2.2 Portfolio optimization with third-order stochastic dominance constraints 

TSD is another commonly used SD rules, which is proposed by TSD was first proposed by 

Whitmore[15]. It is defined based on second-order LPM, which is defined to be 𝐹(3)(𝑥) =

∫ 𝐹(2)(𝑡)
𝑥

𝑎
𝑑𝑡.  

Definition 2 (TSD). 𝑋 dominates 𝑌 by TSD if and only if 𝐹(3)(𝑧) ≤ 𝐺(3)(𝑧) for all values 𝑧, 

and𝔼𝐹[𝑋] ≥ 𝔼𝐺[𝑌] and there is at least one strict inequality.  

TSD is more consistent with investors' psychology. Based on Definition 2, Post and Kopa[11] 

proposed the concept of SCTSD. Given a portfolio 𝜆, its second-order LPM at 𝑥 equals: 

𝐹𝜆
(3)(𝑥) = ∫ 𝐹𝜆

(2)(𝑡)
𝑥

𝑎
𝑑𝑡 = 𝔼𝐹𝜆

[(𝑥 − ∑ 𝜆𝑖𝑟𝑖𝑡
𝑛
𝑖=1 )2𝐼𝜆,𝑡(𝑥)] = ∑ 𝑝𝑡(𝑥 − ∑ 𝜆𝑖𝑟𝑖𝑡

𝑛
𝑖=1 )2𝑇

𝑡=1 𝐼𝜆,𝑡(𝑥)

 (3) 

Similary,  second-order LPM of the benchmark portfolio equals: 

𝐺(3)(𝑥) = ∫ 𝐺(2)(𝑡)
𝑥

𝑎
𝑑𝑡 = 𝔼𝐺[(𝑥 − 𝑦𝑠)2𝐼(𝑦𝑠 ≤ 𝑥)]

 (4) 

where 𝐼(𝑦𝑠 ≤ 𝑥) is an indicator function that takes value of 1 if 𝑦𝑠 ≤ 𝑥 and otherwise 0.  Based 

on LPM, Post and Kopa[11] defines a series of data-dependent tolerance parameters 𝜀𝑠, 𝑠 =
1, ⋯ , 𝑇 in a way that  𝜀1, 𝜀2 ≔ 0 and:  



 

 

 

 

𝜀𝑠 ≔
𝐺(3)(𝑦𝑠)

𝐺(3)(𝑦𝑠−1)+2𝐺(2)(𝑦𝑠−1)(𝑦𝑠−𝑦𝑠−1)
− 1, 𝑠 = 3, ⋯ , 𝑇𝑠

 (5) 

With these parameters, Post and Kopa[11] introduced an approximation of TSD, termed as 

SCTSD. 

Definition 3 (SCTSD). Portfolio 𝜆 dominates the benchmark portfolio 𝑌 by SCTSD if and only 

if: 

(1 + 𝜀𝑠)𝐹𝜆
(3)(𝑦𝑠) ≤ 𝐺(3)(𝑦𝑠), 𝑠 = 1, ⋯ , 𝑇𝑏

∑ (𝑝𝑡 ∑ 𝜆𝑖𝑟𝑖𝑡
𝑁
𝑖=𝑖 )𝑇

𝑡=1 ≥ ∑ (𝑝𝑠𝑦𝑠)
𝑇𝑏
𝑠=1

 (6) 

Post and Kopa[11] transforms the portfolio optimization model with SCTSD constraints into a 

manageable quadratic constrained programming model, as detailed below: 

𝑚𝑎𝑥
𝜆,𝜃

 ∑  𝑇
𝑡=1 𝑝𝑡 ∑  𝑁

𝑖=1 𝜆𝑖𝑟𝑖𝑡

𝑠. 𝑡.   𝜃𝑠𝑡 ≥ 𝑦𝑠 − ∑  𝑁
𝑖=1 𝜆𝑖𝑟𝑖𝑡 , 𝑡 = 1, ⋯ , 𝑇; 𝑠 = 1, ⋯ , 𝑇𝑏

(1 + 𝜀𝑠) ∑  𝑇
𝑡=1 𝑝𝑡𝜃𝑠𝑡

2 ≤ 𝐺(3)(𝑦𝑠), 𝑠 = 1, ⋯ , 𝑇𝑏

∑  𝑇
𝑡=1 𝑝𝑡 ∑  𝑁

𝑖=1 𝜆𝑖𝑟𝑖𝑡 ≥ ∑  
𝑇𝑏
𝑠=1 𝑝𝑠𝑦𝑠

∑  𝑁
𝑖=1 𝜆𝑖 = 1

𝜃𝑠𝑡 , 𝜆𝑖 ≥ 0, 𝑡 = 1, ⋯ , 𝑇; 𝑠 = 1, ⋯ , 𝑇𝑏 , 𝑖 = 1, … , 𝑁
 (7) 

3 Empirical analysis 

3.1 Data 

This paper considers all 2154 stocks of Shanghai A-share listed before December 31, 2022, and 

selects the Shanghai Stock Exchange A share Index (SSEA) as the benchmark. We consider a 

period from January 1, 2002 to December 31, 2022. The daily return of each stock is the daily 

change in the stock's price on that day. All data above are from the iFinD APP. 

In this paper, we conducted preliminary processing and screening of all stocks. Stocks do not 

have price fluctuation limits on the first trading day, and the price fluctuations are significantly 

higher than subsequent trading days. Therefore, when calculating the weights of the portfolio, 

we do not consider the price fluctuations of stocks on the first trading day to avoid the impact 

of this special value on the solution of the entire portfolio optimization model. In the selection 

of stocks, we exclude ST stocks and *ST stocks to avoid the impact of such stocks on the optimal 

investment portfolio due to poor performance or even possible delisting. 

In this paper, we employ an equal-weight(EW) portfolio optimization model for comparison. In 

determining the optimal number of stocks to be held in the EW model, we select the top 1% of 

stocks based on their return rankings from the filtered stocks as our investment strategy. 



 

 

 

 

3.2 Momentum investment strategy 

Investors form portfolios by optimizing based on historical return data over a J-month formation 

period and rebalance them after the end of a K-month holding period. Specifically, at the 

beginning of each stage, investors utilize historical return data from the past J months to solve 

the portfolio optimization model, obtain, and update their portfolios to ensure that the capital 

allocation ratios after rebalancing match those of the optimal investment portfolio obtained. This 

adjusted portfolio is held for K months and rebalanced again after this period ends. The entire 

process is repeated in multiple stages. In our study, we explicitly specify the condition of 

disallowing short positions, which means that investors can only choose to buy stocks and 

cannot trade by borrowing stocks. 

3.3 Evaluation of out-of-sample performance 

 

Fig. 1. Mean of Daily Returns of the Investment Strategy 

 

Fig. 2. Standard Deviation of Daily Returns of the Investment Strategy 

 

Fig. 3. Sharpe ratio of Daily Returns of the Investment Strategy 



 

 

 

 

 

Fig. 4. CVaR of Daily Returns of the Investment Strategy 

Fig. 1. - Fig. 4. report descriptive statistics and evaluation indicators for the returns delivered by 

investment strategies in the holding period without deducting transaction costs. In the in-sample 

evaluation, as the formation period 𝐽 increases, the returns of SSD and SCTSD investment 

strategies continuously decrease, leading to a decrease in the Sharpe ratio. However, in the out-

of-sample evaluation, as the formation period 𝐽  increases, the returns of SSD and SCTSD 

investment strategies continue to increase, while the standard deviation continuously decreases. 

This ultimately results in an increase in the Sharpe ratio. From Fig. 1., it can be observed that 

when 𝐽 = 3, both SSD and SCTSD investment strategies have lower returns compared to the 

benchmark. However, when 𝐽 = 12, both SSD and SCTSD investment strategies have higher 

returns than the benchmark. Despite the benchmark having a small standard deviation, when 

𝐽 = 12 , the benchmark's returns are significantly lower than those of SSD and SCTSD 

investment strategies, leading to a lower Sharpe ratio for the benchmark compared to SSD and 

SCTSD investment strategies. The maximum drawdown and the CVaR also significantly 

decrease with the increase in the formation period 𝐽. This indicates that with a longer formation 

period 𝐽, SSD and SCTSD investment strategies exhibit more significant momentum effects and 

lower risk. 

As the holding period 𝐾 increases, when 𝐽 = 3, the returns of both SSD and SCTSD investment 

strategies consistently increase but remain below the benchmark. It can be anticipated that when 

transaction costs are deducted during trading, the returns of SSD and SCTSD investment 

strategies will be significantly lower than those of the benchmark, possibly even becoming 

negative. When 𝐽 = 6 and 9, the returns of SSD and SCTSD investment strategies first rise and 

then stabilize. When 𝐽 = 12 , the returns of both SSD and SCTSD investment strategies 

generally stabilize and are higher than the benchmark. Although there are notable fluctuations 

in the standard deviation of SSD and SCTSD investment strategies when 𝐽 = 9 and 12, the 

overall trend of Sharpe ratios for SSD and SCTSD investment strategies closely follows the 

trend of returns. The CVaR also show slight decreases as the holding period 𝐾 increases. This 

suggests that with the increase in the formation period 𝐽, the momentum effects of SSD and 

SCTSD investment strategies become more prominent, particularly for shorter holding periods 

𝐾. 

4 Conclusions 

This paper investigates the Chinese Shanghai Stock Exchange A-share market using the 

portfolio optimization models with SD constraints. The research results distinctly indicate that 



 

 

 

 

the investment strategy performs remarkably well out-of-sample when the formation period is 

extended, achieving significant excess returns. Conversely, with a shorter formation period, 

even with a longer holding period, it is challenging to attain excess returns. As the formation 

period extends, the returns of the investment strategy gradually increase, while various risk 

indicators exhibit a declining trend.  

For investors, the selection of an investment portfolio with an extended formation period is 

crucial in the investment process, contributing to obtaining more robust excess returns. Longer 

formation period strategies often demonstrate greater reliability in the face of market volatility 

and uncertainty. Therefore, investors should carefully consider the choice of the formation 

period to better optimize their investment portfolios, achieving more reliable and sustained 

investment returns. 
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